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ABSTRACT  

Gypsum plasterboards are widely used for compartmentation and for retarding the spread of fire in 

buildings. Although numerous heat transfer studies have been conducted, literature indicates there 

are extensive differences in the thermal properties used in these studies. Comprehensive 

experimental and numerical analyses have been conducted to elucidate the leading factor in the 

ablation of a gypsum board system when it is exposed to the standard fire resistance test.  

 

A methodology based on both simultaneous thermal analysis and computational modelling is 

proposed to understand the behaviour of a gypsum plasterboard when the boundary temperature 

increases quickly as one side of the wall is subjected to the standard ISO 834. 

 

Finally, four different wall assemblies made of a commercial fireproof plasterboard system are 

exposed to the standard test. The temperature on the unexposed face is examined to validate the 

computational model of the plasterboard. 

 

KEYWORDS: heat transfer, compartment fires, fire modelling, fire resistance tests, gypsum 

plasterboards, thermogravimetric analysis. 

 

1. INTRODUCTION  
 

Gypsum plasterboards are widely used as passive fire protection elements because of their superior 

fire resistance and relatively inexpensive production costs. There are two main types of gypsum 

plasterboards; Type A corresponds to the conventional gypsum plasterboard, and Type F (or Type X) 

refers to ‘fire-resistant’ gypsum plasterboard. Gypsum plasterboard consists of a porous gypsum core 

between two layers of paper, creating a sandwich structure. These gypsum plasterboards can be 

assembled on different systems regardless of the use of insulated material between the plasterboards 

or the use of one or multiple layers of gypsum plasterboard. Although they have been widely studied, 

there are still many discrepancies [1] in the values of the thermal properties and the related modelling 

of heat transfer behaviour.  

 

The values of thermal conductivity and specific heat, and the methods used to determine these 

thermal properties are the most controversial. Some studies determine conductivity by analysing the 

gypsum across the different temperature steady states that it undergoes during degradation processes. 

These studies include the analysis of the conductivity before and after dehydration and the analysis 

of the gypsum subjected to the ISO 834 curve up to 1000ºC [2, 3]. Additionally, because gypsum is 

porous, most studies convert convection, pore radiation, and ablation into equivalent thermal 

conductivity to determine transient conductivity [4, 5]. 

 

Further discrepancies arise from the complexity of modelling chemical reactions undergone by 

gypsum in fire. Gypsum dihydrate (CaSO4.2H2O) crystals theoretically contain 21% of water by 

weight [6]. This water is primarily lost during two consecutive and temperature-overlapped 

dehydration processes that gypsum undergoes at atmospheric pressure between 80 ºC and 250ºC.  



 

OHOHCaSOOHCaSO 22424 2/32/1.2.    (1) 

OHCaSOOHCaSO 2424 2/12/1.    (2) 

 

Sultan et al. [7] and Pérez-Moreno et al. [8] determined the second dehydration process occurring at 

a temperature of approximately 600ºC. However, the most common approach is to consider the two 

dehydration processes over the previously mentioned temperature range. Our results also fit this 

value in the typical range. Considering our results and those of Sultan et al., it can be presumed that 

the second dehydration process is masked by the large peaks in specific heat due to the first 

decomposition reaction from gypsum to the hemihydrates [9]. Using a pinhole lid increases the water 

content in the gas phase over the degradation zone of the sample, which makes the second 

dehydration more difficult (i.e., the required temperature is shifted to a higher value). Thus, the 

overlap between dehydration reactions [10] is changed. 

 

Once chemical water is lost, the plasterboard can reabsorb water; however, there is a third 

endothermic reaction in the gypsum at approximately 360ºC. This reaction induces a transition 

between a material (sol) that is easy to rehydrate by forming hemihydrates and another material 

(insol) that is difficult to rehydrate by absorbing water (because it has a different crystalline 

structure) [11, 12]. 

 

QinsolCaSOsolCaSO  )()( 44
 (3) 

 

Here, Q is the energy released in the reaction. 

 

Conventionally, more reactions occurring in gypsum at higher temperatures can be distinguished; 

however, they may be related to the decomposition (or thermal oxidation) of impurities contained 

within the gypsum. To identify the reactions that occur in gypsum at higher temperatures, we must 

analyse the impurities (i.e. by X-ray diffraction) because different reactions may occur at the same 

temperature depending on the type of impurities [13, 14, 15].  

 

However, we ignore the effects of impurities on the thermal behaviour of gypsum plasterboard 

because the reactions that affect the impurities occur at temperatures over 500ºC. Our simulations 

consider that ablation will begin with the third endothermic reaction (around 360ºC). 

 

Once the values of the parameters that characterize the behaviour of gypsum were determined by 

small-scale tests, we employed four standard tests to validate the results for a large-scale model [16, 

17, 18]. The standards define tests for the different non-load-bearing elements such as walls and 

ceilings. In the present study, we examined four tests with different configurations (two cladding 

walls and two partition walls).  

 

The objective of the standard fire tests is to evaluate the fire resistance behaviour of a building 

system under well-defined boundary conditions of temperature and pressure [16]. According to EN 

1363-1, a linear pressure gradient exists along the height of the furnace. Although the gradient will 

vary slightly as a function of the furnace temperature, a mean value of 8.5 Pa per meter height may 

be assumed in assessing the furnace pressure conditions. These tests enable us to quantify the 

capacity of the system to bear high temperatures and, thus, provide information regarding the 

behaviour of gypsum assemblies under fire conditions.  

 



2. SMALL-SCALE TESTS 
 

As mentioned previously, we developed small-scale tests to determine thermal properties: specific 

heat by simultaneous thermal analysis (STA)—Netzsch STA 449 F3—and thermal conductivity 

analysis by laser flash apparatus (LFA) using a pulse light technique—Netzsch LFA 447. In addition, 

these tests were performed to elucidate the thermodynamic characteristics of the thermal processes 

occurring in the gypsum plasterboard core during heating. 

 

First, a detailed thermal analysis of two different gypsum-plasterboard samples was conducted 

(Table 1). The tests were performed in an air atmosphere at a heating rate of 10°C/min. The 

temperatures range was 30–800°C. All tests were performed without the pan lid. 

 

Thermogravimetric parameters, such as the residue and extrapolated onset temperature (Tonset) [19], 

were directly obtained from the STA tests. The onset temperature corresponds to the temperature at 

which the loss of mass begins. 

 

 Sample 1 (type A, 12.89 mg): Residue = 0.81 and Tonset = 80ºC 

 Sample 2 (type F, 19.77 mg): Residue = 0.80 and Tonset = 80ºC 

 

Figure 1 shows the STA (heat flow and mass loss) results for both samples. Note that there is only 

one peak in the range between 80ºC and 180ºC (at approximately 150ºC) that we attribute to 

dehydration reactions working as competitive reactions (meaning that the onset temperature of the 

second process occurs before the endset temperature of the first process). The presence of just one 

peak is attributable to the open pan configuration, which avoids the accumulation of saturated water 

vapour and the absorption of water on the surface of the sample, thus rehydrating a portion of this 

sample. In these reactions, the gypsum plasterboard lost approximately 16% mass, which is the 

amount contained within as chemical water. Once these processes occur, the gypsum becomes a 

soluble anhydride of CaSO4. The third reaction, which occurs at approximately 358 ºC in sample 1 

and at 360ºC in sample 2, is a reaction related to a transition in the crystalline structure from the 

soluble to the insoluble anhydride CaSO4. This steady state of gypsum did not overlap with any other 

reaction and the sample mass remained constant. At this point, the material cannot absorb a 

significant amount of water. Furthermore, when gypsum does not have any chemical water, it 

becomes brittle (less resistance and flexibility). 

 

The remaining processes are associated with the type and amount of impurities and additives in the 

gypsum. However, in the present study, these reactions are not considered because we assume that 

the gypsum board mechanically breaks down before achieving the reaction temperatures of the 

impurities (after 500 ºC). 

    
Fig. 1. STA analysis of gypsum plasterboards. 



 

For the gypsum plasterboard, we determined the effective specific heat by using sapphire (α-Al2O3) 

as the reference material. Three tests were performed in the STA: one without a sample, another with 

the reference sample, and the last with the material under investigation. It is important to note that 

buoyancy effects did not let us accurately correct the mass loss curve [20], and thus all the derivative 

properties obtained from mass loss. Finally, the effective specific heat was calculated using ASTM 

E1269 [21]: 
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Here, HF is the heat flow (kW) obtained from STA and Cpref is the specific heat of sapphire in the 

same temperature range. 

 

Figure 2 shows the effective specific heat values for the range of temperatures in the test. The 

effective specific heat comprises the sum of the actual specific heat of the gypsum plasterboard, the 

thermal effects of the dehydration reaction, and the third reaction [22]. The negative specific heat 

values observed in the test results are related to the exothermic character of the third reaction. The 

manufacturer indicates that, in order to achieve the actual specific heat, it is necessary to avoid the 

ranges of temperatures where reactions take place. Measuring the effective specific heat allow us to 

include the necessary energy for dehydration in the specific heat curve into the computational model. 

 

 

Fig. 2. Effective specific heat of the gypsum samples. 

 

The thermal diffusivity of the samples was obtained in the range of 30–250ºC (Figure 3). The 

technique was introduced by Parker et al. [23] and represents both a direct method for measuring the 

thermal diffusivity and an indirect method for measuring the thermal conductivity the material when 

thermal expansion and specific heat are known. 

 

The Cape-Lehman model [24], which considers radial heat loss from the unexposed face, was 

employed to determine thermal diffusivity by using the relationship between the sample thickness (d 

in meters) and the time at which the temperature of the unexposed face reaches half of the maximum 

value (t1/2 in seconds) [23]. 
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Density was obtained using the mass-temperature curve from thermogravimetric analysis, 

considering a constant volume of material (Figure 4). This assumption of constant volume is 

supported by the low linear expansion coefficient of the gypsum plasterboard (approximately 15 × 

10−6 ºC-1 [25]). This value assumes an increase in thickness of: 

 

)1(0   TeLL 
 (6) 

 

Over the range of 250 ºC tested in the LFA, the thickness increases by 0.37%. 

 

 

Fig. 3. Thermal diffusivity from LFA analysis. 
 

Fig. 4. Density calculated for the gypsum samples. 

 

Regarding conductivity, studies listed in the bibliography reflect the same behavioural tendency. 

However, other studies were performed by drying the samples; therefore, they do not consider water 

content [26] or they studied gypsum conductivity in a steady state [2]. In the present study, we 

obtained the thermal conductivity considering the actual specific heat and the measured thermal 

diffusivity. The actual specific heat does not consider the dehydration enthalpy. 

 

To determine the conductivity of the gypsum board (Figure 5), we used the following relation of 

thermal diffusivity: 
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Fig. 5. Conductivity calculated for the gypsum samples. 



 

3. STANDARD FIRE TESTS 
 

The European normative standards EN 1363 and EN 1364 [16-18] established the requirements to 

perform fire resistance tests for non-load-bearing elements, walls, and ceilings. The test furnace must 

maintain the average temperatures specified by the standards (Figure 6). 

 

20)18(log345 10  tT  (8) 

 

 
Fig. 6. Normalized temperature at the furnace. 

 

There are two criteria in the standards for failure of the test: 

 

 The average temperature of the unexposed face increases to more than 140ºC over the 

initial temperature. 

 The temperature at any point of the unexposed face increases to more than 180ºC over the 

initial temperature. 

 

In the present study, we analysed the results of four fire resistance tests, including different wall 

systems based on gypsum plasterboards, while considering two types of gypsum. The characteristics 

of these samples are listed in Table 2. Test 1 consisted of two pairs of commercially available 12.5 

mm Type A gypsum plasterboards, separated by an air gap of 46 mm and joined by C-shaped steel 

studs. Test 2 consisted of a cladding wall composed of a pair of commercially available 12.5 mm 

Type A gypsum plasterboards, also joined by C-shaped steel studs. Test 3 consisted of two pairs of 

commercially available 15 mm Type F gypsum plasterboards separated by an air gap of 92 mm and 

joined by two C-shaped steel studs. Test 4 consisted of a cladding wall composed of four 

commercially available 15 mm Type F gypsum plasterboards. 

 

Figure 7 shows the distribution of the temperature measurement points. The wall of the figure has a 

height of 3 m and a width of 3 m. C and F denote the temperatures on the unexposed face of the 

system; A and D are the thermocouples on the interior face of the exposed board; and B and E are 

points located on the interior face of the unexposed boards. The number of temperature 

measurements designated with the symbols ‘CT’ refer to the unexposed board temperature obtained 

with the thermographic camera. 
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Fig. 7. Temperature points on the wall (left). In depth plane without (centre) and with studs (right). 

 

Figure 8 shows the temperatures measured in depth at points 12 (without stud) and 21 (with stud) 

during Test 1. In Tests 2 to 4 we obtained only the temperature on the unexposed face (Figures 9, 10, 

and 11). Our numerical approach needs to be validated against these temperatures to verify the 

credibility of the test results. 

 

 
Fig. 8. Test 1: Temperatures of the different layers of the solution. 

 

As shown, temperatures at A and B (as well as those at D and E) of the wall system are very close 

during the first stages of the test. However, the difference between them grew gradually when the 

furnace temperature exceeded 800ºC (dashed vertical line in Figure 10). At this time, the temperature 

at A (and D) begins to grow from approximately 100ºC, while that of B (and E) seems to be steady 

for slightly longer.  

 

At this moment, the exposed board (system of boards) is almost dehydrated, whereas dehydration is 

just beginning on the unexposed board. The temperatures at A and B (and those at D and E) did not 

increase at the same time because radiation is the primary factor. The delay in time taken for a 

difference in temperature between A and D (B and E) to occur is due to the high level of heat 

dissipation of steel compared to gypsum. 

 

Once the first board falls off, there is a sudden increase in the temperature of the unexposed face. 

This may be because of the combined effect of ablation and consequent convection of hot air into the 



air gap and radiation heat transfer through both the hole and the porous media of gypsum at high 

temperatures. We do not know the exact time when the exposed board fell but we can determine by 

observation that this time was between 3720 s and 4000 s for test 1 and between 6900 s and 7140 s 

for test 3. We do not have time data from the cladding walls tests. 

 

If we monitor the ‘failure point’ (the point where the temperature limit was reached), the tendency of 

the temperatures in the rear face was similar in all tests. Stages varied owing to the number of 

plasterboards, but the stabilization stage and increase in the final temperature were the same because 

of the combined effects of ablation and radiation. In the last stages of the resistance test, radiation 

through the pores became the primary factor leading to the ‘failure point’. This is because at high 

temperatures, water migrates from the pores and radiation through the pores becomes significant 

(since it is proportional to temperature to the power of three), which highly improves the heat 

transfer [27]. 

 

 
Fig. 9. Test 2: Temperature of the unexposed surfaces 

 
Fig. 10. Test 3: Temperature of the unexposed surfaces. 

 
Fig. 11. Test 4: Temperature of the unexposed surfaces. 

 

Figures 12 to 15 show the temperature distribution on the rear faces. This distribution of 

temperatures was measured using a thermographic camera during the entire test (FLIR SC 640, focal 

length 19.31 mm). These figures show the maximum temperature obtained on the unexposed face, 

the zones at which the fault occurs first, and the fissures that appear in the board.  

 

Furthermore, we use thermographic data to predict the exact instant and position of the system 

failure because in the resistance tests, the thermocouples are in fixed positions. The failure occurs 

when the temperature in these positions reaches 180ºC at a point or the average temperature reaches 

140ºC over the initial temperature. We use this temperature data from the unexposed side for 

validation purposes.  

 

In all the tests, the boards were fixed to the oven structure on the top, bottom, and left sides. On the 

right side, an insulation material (ceramic wool) was used to avoid holes, which could enable heat 



loss from the interior of the oven. The steel structure must be taken into consideration when 

analysing the cladding walls. Furthermore, the element for monitoring the deformation was at the 

same position (on the right side) in all the tests except for test 4, where it is, more or less, at the 

centre line. 

 

 
Fig. 12. Test 1: Temperature distribution at 95 min 

[19.8-347.9ºC] 

 
Fig. 13. Test 2: Temperature distribution at 45 min 

[18.5-376.6ºC]. 

  
Fig. 14. Test 3: Temperature distribution at 155 min 

[18.4-260.7ºC]. 

 
Fig. 15. Test 4: Temperature distribution at 165 min 

[19.3-312.4ºC].   

 

Figures 12-15 show the high temperature reached by the screws. In addition, it is notable that, in 

most of the tests, temperature (average or maximum) is responsible for the failure of the system but 

not for the deformation. If we divide the plasterboard into nine equal areas (AR01, AR02, ..., AR09), 

as in Figure 16, we can obtain the temperature distribution over the unexposed board at the moment 

of the test failure. Table 3 shows the average and maximum temperatures for any element of the 

layout. 

 



 
Fig. 16. Layout of temperature areas. 

 

The maximum temperatures were observed to be slightly higher than the maximum values allowed 

by EN 1363. This is because the thermocouples did not register the maximum temperature zone, and 

in the last steps of the heat transfer through the boards, the temperature curve increased sharply.  

 

Despite the differences between all the tests, both maximum and average temperatures at the central 

column, comprised of the AR02, AR05, and AR08 areas, is higher than the lateral columns. In 

addition, AR05 achieved the maximum temperatures both at the peak and at the average. However, 

the central row (AR04, AR05, and AR06) was not clearly different because the steel structure 

between the camera and the board interfered with the monitoring.  

 

Tests 1 and 3 (partition elements) show that the average temperature of the top elements (AR01, 

AR02, and AR03) is higher than those of the bottom ones (AR07, AR08, and AR09) in test 1, but not 

in test 3. However, tests 2 and 4 (cladding walls) showed that the bottom elements are hotter than the 

top ones. 

 

Finally, Figures 17 and 18 show some of the gypsum plasterboard assemblies after the tests. The 

remaining gypsum boards were dehydrated and brittle. They also had a lower solubility and their 

mechanical resistance was practically zero. 

 

 
Fig. 17. Cracking system failure. 

 
Fig. 18. System after the test. 
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4. MODELLING APPROACH 

 

In this study, the numerical model was developed using the Fire Dynamics Simulator (FDS) [28], 

considering the parameters determined experimentally in the small-scale tests. STA provided the 

specific heat and, for a given reaction, the relative amounts of products (i.e. water), the reference 

temperature at which the reaction takes place, and the temperature range of the reaction. In our 

numerical approach, we simply considered the global dehydration reaction with a maximum rate at 

the peak of the STA enthalpy record. We also prescribed the pyrolysis range of temperatures from 

the onset temperature to the endset temperature. Mass loss along the global dehydration reaction was 

directly obtained from the STA mass loss record. 

 

The model considers a gypsum sample of 50 × 50 mm2, with a mesh size of 5 mm for the gas zone 

and 2.5 mm for solids. The reported 2.5 mm size is the mean size of the dedicated computational 

mesh used by FDS to solve the 1D heat conduction equation. It is possible because the solid regions 

obeyed the ‘one cell thick’ rule of FDS. We use CELL_SIZE_FACTOR=0.5 to decrease the mesh 

size from 5 mm to 2.5 mm. We set the required temperature on the exposed face. This temperature 

follows the European normative standards EN 1363 and EN 1364 [16-18]. When applying boundary 

conditions to the back side, the model considers the attribute BACKING=’EXPOSED’. This attribute 

is used when FDS is required to calculate the heat transfer through the solid into the space behind the 

solid. The wall emissivity of all gypsum plasterboards is assumed to equal 0.88. We set the heat 

transfer coefficient to be 8 W/m2 ºC at the exposed and unexposed surfaces. 

 

The model was set to predict the ablation of the gypsum board by employing approaches related to 

the ablation behaviour undergone by the gypsum board at elevated temperatures. Ablation cracks 

were modelled by setting the temperature of the back of the boards where an equivalent mass of 

gypsum of 10 × 10 mm2 was removed from the simulation. We consider the hypothesis that the 

temperature at which ablation and shrinkage cracks appear was related to the peak temperature of the 

third reaction. Subsequently, the internal structure of the gypsum changes, becoming a brittle 

powder. This method can be performed for any type of gypsum by directly using the STA results.  

 

Figure 19 shows the temperature distribution inside exposed boards of Test 3 simulation. Isotherms 

80, 150, and 180 define the dehydrated region at any time during the test. Isotherm 360 corresponds 

in this case to the temperature that defines the ablation. This is the temperature of the sample 2 third 

reaction (Figure 1). Therefore, in the figure, we see how this temperature is approximated on the 

unexposed side through the plasterboard, and when it reaches this side, the model assumes that the 

plasterboard fell off. 
 

 

Fig. 19. Numerical temperature profiles inside plasterboard for Test 3. 
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Simplified curves of conductivity and specific heat were inputted to the computer model. Figure 20 

compares these conductivities with some of the values obtained from past studies [4, 5, 29, 7, 30, 31, 

32], without considering the dehydration process. As shown, to improve the evaluation of heat 

transfer between solid obstructions by FDS, some assumptions were made for the thermal 

conductivity in each wall assembly. Case 1 refers to the ceiling and cladding walls and Case 2 to the 

partition solution. XB means that system has a number X of boards. Additionally, some approaches 

included systems composed of more than one board in contact with each other. The bigger a building 

system, the lower is its conductivity coefficient. This approach considers the contact interface 

between layers that obstruct heat transfer. We have used similar trends to those reported in the papers 

listed in the bibliography. 

 

At high temperatures, water migrates from the pores and the radiation through the pores becomes 

significant, which greatly improves the heat transfer. The heat transfer through the gypsum pores was 

modelled by convection and radiation. To consider this, we assume an increase in the thermal 

conductivity of gypsum at temperatures above 800°C. This equivalent conductivity allows 

accelerated radiation in voids at high temperatures [33]. We add this equivalent conductivity to the 

calculated conductivity with the measured specific heat and thermal diffusion. 

 

 

 
Fig. 20. Comparison of thermal conductivity values of gypsum with the reference values. 

 

Equation 7 was used until 250ºC. After this temperature, we define two tables with thermal 

conductivity values. These thermal conductivities depend on the number of boards and on the 

configuration (Table 4). Thermal conductivities are adjusted with the validation of the computer 

model against the experimental results. The more tests we use for validation, the more accurate is the 

adjustment. 

 

The effective specific heat (Figure 21) arises from the necessity of simulating different phases of 

gypsum. We consider some of the most relevant points of the effective specific heat measured with 

the STA (Figure 2) and introduce those values into FDS. We also remove negative values that are not 

associated with a mass loss. We keep the previous values from the third reaction. 
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Fig. 21. Comparison of specific heat values of gypsum with the reference values. 

 

Finally, to validate the numerical model of the gypsum plasterboard reactions, we compared the 

model results against several standard fire tests, as described in the following section. 

 

5. VALIDATION OF THE MODEL 

 

Figures 22 and 25 show the comparisons between the temperature measurements of the unexposed 

boards from the standard tests and the model under investigation. In general, the time of system 

failure is accurately predicted. Better approximations are achieved for the partition solutions (Tests 1 

and 3), in which the model predicts the temperature increase before system failure. These models 

account for the ablation of the exposed faces by considering the previously described hypothesis. 

However, for cladding wall solutions, the model fails to capture the shape of the temperature 

increase. 

 

 
Fig. 22. Validation of the computational model for 

Test 1. 

 
Fig. 23. Validation of the computational model for 

Test 2.  
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Fig. 24. Validation of the computational model for 

Test 3. 

 
Fig. 25. Validation of the computational model for 

Test 4. 

 

Table 5 lists the dispersion between the model and the experimental temperature values. The 

absolute and relative errors were calculated at certain relevant times.  

 

Cladding wall model simulations have the worst approximation to the real test. This is because our 

model has been validated using the hypothesis of the ablation at the temperature of the third reaction, 

and this fact is the most relevant factor in the system failure of the partition configurations. In the 

case of cladding walls, the failure is determined only by the conductivity of the boards. In this case, 

we should consider the drawback that the FDS model has to simulate conductivity through parallel 

obstructions. Our model, as for the models used in studies described in the literature, does not 

consider the presence of cardboard on the boards during the simulation. 

 

In the fire resistant test simulation, the most important parameter is the failure time. According to 

this parameter, the errors are less than 13.6% even for the worst case.  

 

6. CONCLUSIONS 

 

This paper presents the results of four fire resistance tests. These results include valuable time-

temperature data for the different configurations and the novelty of recorder temperature results 

obtained by a thermographic camera. The thermographic camera was able to collect real-time points 

of system failure even if they did not correspond with the locations of the thermocouples. Therefore, 

it was possible to record the distribution of temperature on the unexposed side. These results 

facilitate a better validation of thermal transfer models because they consider the fast heat transfer 

zone. 

 

At elevated temperatures (around 360 ºC), there is a third endothermic reaction in the gypsum that 

implies a transition between a material that is easy to rehydrate by forming hemihydrates and another 

material that is difficult to rehydrate by absorbing water. A new hypothesis has been developed to 

consider the ablation in the model for the exposed boards of the partition systems; this hypothesis 

considers the temperature of the third endothermic reaction as the ablation temperature.  

 

The characterization procedure performed in this study estimated the global behaviour of different 

types of board against standard tests satisfactorily. The model quickly predicted the time at which the 

system failed by considering the thermal properties of the gypsum in use. However, to predict the 

temperatures in systems with multiple layers, it is necessary to adapt the thermal conductivity at high 

temperatures according to the construction solution under consideration. This is because of the 

limitations present in determining certain thermal properties, such as the conductivity between the 

interfaces of the plasterboards. Figure 25 shows that the cladding wall configuration with four boards 



provides the worst approximation of the temperature. Thus, the thermal conductivity is adapted by 

basing it on the construction system to be modelled. 
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TABLES 

 

Table 1. Basic properties of two samples in the study 

 

NORMATIVE DENSITY MASS 

UNE EN 520 
Theoretical 

(kg/m3) 
Sample 
(kg/m3) 

Sample 
(mg) 

Sample 1  A 724 722 12.891 

Sample 2  F 766 777 19.769 

  



 

 

 

Table 2. Assemblies of the gypsum boards tested under European normatives EN 1363 and EN 1364 

Test 
Ambient 

Temperature 
(oC) 

Building system  Gypsum Configuration 

1 20 

 
 
 
 
 
 

Sample 1 Partition 

2 22 

 
 
 
 

Sample 1 
Cladding 

walls 

3 22 

 

 
 
 
 
 
 

Sample 2 Partition 

4 23 

 
 
 
 
 

Sample 2 
Cladding 

walls 



Table 3. Temperature layout. 

 
test 1 test 2 test 3 test 4 

Label Max (ºC) Avg (ºC) Max (ºC) Avg (ºC) Max (ºC) Avg (ºC) Max (ºC) Avg (ºC) 

AR01 215.1 89.1 226.2 116.6 341.0 101.0 196.4 92.4 

AR02 384.8 170.4 232.5 139.3 290.9 104.0 213.6 91.8 

AR03 337.9 79.3 211.2 109.2 240.2 90.0 259.3 103.0 

AR04 303.1 105.8 262.1 148.2 297.7 107.7 254.1 122.6 

AR05 390.5 223.1 284.4 194.6 379.4 117.6 313.4 135.6 

AR06 250.6 100.8 282.4 159.8 283.6 96.7 310.5 163.5 

AR07 288.2 83.0 222.3 120.2 298.2 97.0 265.7 109.5 

AR08 282.5 135.5 243.8 152.5 355.9 114.8 314.8 129.1 

AR09 212.0 75.0 239.0 113.6 238.9 92.1 318.2 138.2 
 



Table 4. Thermal conductivity values over 250 ºC  

Cladding walls  Partition 

Number of 
boards 

800ºC 1000ºC  Number of 
boards 

800ºC 1000ºC 

Sample 1 Sample 2 Samples 1 
and 2 

 Sample 1 Sample 2 Samples 1 
and 2 

1 0.3 0.3 1  2 0.2 0.2 0.6 

2 0.26 0.25 0.85  4 or more 0.23 0.12 0.6 

3 0.24 0.23 0.85      

4 0.24 0.23 0.85      



Table 5. Simulation errors 

 t1 (s) t2 (s) t3 (s) t4 (s) t5 (s) t6 (s)  Time of 
system 

collapse  Test 1 2520 3900 4260 4740 5100 5340 Test 1 

Temperature_exp (ºC) 49 50 68 71 100 204 Time_exp (s) 5340 

Temperature_sim (ºC) 61 68 70 95 113 245 Time_Sim (s) 5270 

Relative error (%) 23.75 35.88 2.28 33.48 13.42 20.07 Relative error (%) 1.31 

Absolute error (ºC) -12 -18 -2 -24 -13 -41 Absolute error (s) 70 

Test 2 650 1450 2050 2280 - - Test 2  

Temperature_exp (ºC) 39 56 97 180 - - Time_exp (s) 2280 

Temperature_sim (ºC) 52 82 100 115   Time_Sim (s) 2590 

Relative error (%) 32.16 45.74 3.17 -37.86 - - Relative error (%) 13.60 

Absolute error (ºC) -13 -26 -3 65 - - Absolute error (s) -310 

Test 3 3000 7550 8920 9250 - - Test 3  

Temperature_exp (ºC) 33 48 80 189 - - Time_exp (s) 9250 

Temperature_sim (ºC) 38 61 103 242   Time_Sim (s) 9165 

Relative error (%) 16.19 26.41 28.73 27.80 - - Relative error (%) 0.92 

Absolute error (ºC) -5 -13 -23 -53 - - Absolute error (s) 85 

Test 4 2370 6715 8660 9045 - - Test 4  

Temperature_exp (ºC) 39 103 91 180 - - Time_exp (s) 9045 

Temperature_sim (ºC) 58 154 327 332   Time_Sim (s) 8330 

Relative error (%) 49.22 98.14 261.02 84.32 - - Relative error (%) 7.9 

Absolute error (ºC) -19 -51 -236 -152 - - Absolute error (s) 715 

 


