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Abstract. This work describes a non-linear dynamic model for the study of the vibration signals generat-
ed by gear transmissions. The developed model considers both the parametric excitations due to the vari-
able compliance of bearings and gears, can handle changes in the transmitted torque and allows the inte-
gration of the dynamic equations quickly and accurately. This model has been developed previously by 
the authors to assess the profile deviations on the dynamic behavior of gear transmissions and its influ-
ence on the transmitted torque. It also includes the presence of gear defects as cracks and pitting during 
the calculation of meshing forces. In this paper, the model has been enhanced in order to include two 
common defects such as index errors and run out or eccentricity errors. Index errors occur as a result of a 
non-uniform angular distribution of the tooth profiles along the pitch circle. Run out appears due to the 
displacement of the geometric center of the gear with respect to the center of rotation of the shaft on 
which it is mounted. Although both errors are caused by different reasons, sometimes they have been con-
fused because of their similitudes. The procedure for including both kinds of errors in the model is de-
scribed and simulations under several transmitted torques are presented. The results are assessed and 
compared focusing the attention on certain transmission parameters and magnitudes as transmission error, 
load forces in the tooth flanks and demodulation techniques on the resulting vibratory signals. 
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Nomenclature 
 
An   pitch error amplitude of harmonic n 
C damping matrix 
GMF  Gear Mesh Frequency 
BPF  Ball Pass Frequency 
dof  degree of freedom 
ei   eccentricity error  
ePj1,2   are the index errors of pinion and wheel 
fb bearing forces 
fExt external forces 
fR  meshing forces 
K stiffness matrix 
L   superscript related with the tooth left flanks 
LOA   Line of Action 
LSR   Load Sharing Ratio 
LTE   Loaded Transmission Error 
M mass matrix 
R  superscript related with the tooth right flanks 
r1, r2   position vectors for gear center 
uTj   elastic deflection obtained at contact point j under the force vector F  
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Z  Gear number of teeth 
δj   geometrical separations between teeth profiles at potential contact j  
θ1, θ2   rotation angles of gears 
θei  angular position of gear geometric center with respect to the actual center line 

1 Introduction  

The need of more reliable and efficient gear transmissions, with an increment of trans-
mitted torques and speeds, has motivated the interest of researchers in the development 
of analytical tools that can provide a deeper understanding of the dynamics involved in 
these kinds of systems. These analytical models are currently being used for the im-
provement of the dynamic behavior of transmissions, enabling for example the reduc-
tion of the magnitude of the transmitted loads, attenuating the acoustic noise and vibra-
tion, and simultaneously increasing the reliability of the whole transmission. 
Furthermore, these tools can also provide an excellent basis for the development and 
validation of strategies and troubleshooting techniques based on vibration analysis. 
Therefore, this kind of analytical model could also play an important role on the devel-
opment of specific techniques for machinery condition monitoring in non-stationary 
conditions.  
 
The operation of machinery in non-stationary conditions is mainly related to changes in 
speed and load. Whilst the speed variation can be approached by the use of order track-
ing techniques and synchronous average, load variations involve changes in the dynam-
ic parameters of the system as stiffness and damping. Therefore, it would be very inter-
esting the development of such theoretical models which have the ability to simulate the 
consequences of load changes on the resulting vibration and its interaction with the 
presence of defects. Furthermore, such kinds of models would provide the basis for a 
better understanding of the noise sources involved on gear transmissions. 
 
Bearing this objective in mind, the authors have been working on the development of 
advanced tools for the simulation of gear dynamics under different kinds of defects. 
Meshing forces, which are probably the most critical aspect of a gear model, have been 
formulated by means of an advanced combination of numerical and analytical formula-
tions [2]. Subsequently, the procedure used for the meshing forces calculation was 
adapted in order to consider different types of tooth defects as cracks and pitting [4] as 
well as profile deviations [5]. Although these models are mainly focused on simulating 
the main features of gears, bearings have been also modelled, as they constitute a crucial 
part of mechanical transmissions [1]. This aspect, which includes a variable compliance 
model for bearings, has been included in the model for the assessment of the vibrations 
of gear transmissions due to transmitted torque [3]. 
 
This work presents an enhanced model for simulating mechanical transmissions, which 
includes index and run out errors. Index errors, also known as pitch errors or tooth spac-
ing errors, are one of the most common errors that can be found in actual gears. Ideal 
gears should present the same distance between teeth profiles along the pitch circle. 
However, mismatches on the relative position between the cutting or finishing tools and 
the workpiece and also distortions during heat treatments, result in tooth displacements 
with respect to its ideal position. As a consequence, not only noise and vibration levels 
are notably increased [6]-[7] but also important overloads can appear due to the differ-
ent load sharing between teeth pairs [8]-[9]. This is caused by the delays or advances in 



the tooth contacts compared to the expected instant when no indexing errors are present.  
Gear run out is due to displacement of the gear geometric center with respect to the cen-
ter of rotation of the shaft on which it is mounted. Despite the fact that run out has a dif-
ferent origin, this error could give a similar pattern of symptoms as indexing errors, and 
also results in an effective accumulated pitch variation, which may lead to confusion. 
That is due to manufacturing errors on the gear bore but it could also be derived from 
shaft or bearing housing manufacturing errors as well as wrong mounting. 
 
In this work, both index and run out errors have been considered in the enhanced model 
which also takes into account the non-linearity and variable compliance inherent to 
gears and bearings. Due to the capabilities of the model, it is possible to consider these 
kinds of errors in an easy and simply way, enabling quasi-static and dynamic simula-
tions. The model simulates the static and dynamic behavior of a sample transmission 
with and without errors working under several load conditions. Thus, several transmis-
sion features as Load Sharing Ratio (LSR), Loaded Transmission Error (LTE) and dy-
namic forces at bearing level are obtained for each error type and they are analyzed and 
compared with those obtained without defects. 

2 Dynamic model and error formulation 

The model presented in this work has enhanced previous features that allow index and 
run out errors to be studied. Reader should check previous works, such as [5], for a 
more detailed description of the model and its particular application to the study of tooth 
profile deviations. Nevertheless, a brief summary of the main capabilities of gears and 
bearings advanced formulations is detailed next.  
 
In the case of gears, a hybrid formulation is used for the calculation of tooth contact 
forces which involve a double approach, numerical and analytical (see [2] for further in-
formation). This aspect allows simulating complex contact conditions as those which 
arise near resonance, when contacts in the tooth back could be take place. Moreover, it 
gives an accurate picture regarding the load distribution between the active teeth pairs 
considering at the same time the coupling deflections between them. The calculation 
procedure involves the determination of the minimum distances between teeth profiles 
when gear location is known under the assumption of gear rigid bodies. Then, overlaps 
between teeth profiles are obtained and forces determined using the non-linear hybrid 
procedure.  
 
On the other hand, bearings behavior is included by means of a non-linear variable 
compliance model [1]. In this case, only Hertzian forces are considered, neglecting elas-
tic deflections of bearing races. Following a similar approach as that used for gears, the 
first step for bearing forces calculation requires the calculation of the ball-outer and 
ball-inner profile overlapping to obtain the corresponding force. Then, all the forces ob-
tained for each active contact are added in order to obtain the resulting force. 
Both gear and bearing forces are implemented in ad-hoc functions which are used to 
build a dynamic model in Simulink environment. Particular attention is given to the de-
velopment of accurate methodologies for modeling defects, both in gears and bearings, 
which at the same time do not require an intensive computational effort in order to ena-
ble dynamic simulations.  
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In this work, a transmission was simulated using this enhanced model. Fig. 1 shows a de-
scription of the transmission model developed, including the designation for the degrees 
of freedom (dof) considered in simulations. Each gear was supported in two bearings by 
a flexible shaft and three dof per each element (gear or bearing) was considered (two or-
thogonal translations and one rotation). Subscripts R and b are used to design gears and 
bearing related dof, which are furthermore grouped in vectors qibj= {xibj, yibj, θ ibj}T and 
qiRj = {xiRj, yiRj, θ iRj}T. Where xiRj means the displacement along the x-axis of gear j of 
shaft i. Moreover, and additional rotational inertia was considered at transmission out-
put. External torque was applied on the output inertia while angular position of the input 
shaft was prescribed in simulations. This approach circumvents the difficulties associat-
ed with defining working conditions in these kinds of problems when friction or damp-
ing is considered in simulations. Then a dynamic model with 19 dof is developed lead-
ing to equation (1) 
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Where M, C and K are constant coefficient matrices, while vectors fb, fR and fExt stands 
for non-linear bearing, meshing and external forces. Gear related non-linearity is re-
moved from equation (1) by a quasi-static calculation of gear meshing stiffness for sev-
eral positions along a meshing cycle under a certain transmitted torque. Then the result-
ing stiffness for each contacting point is store and used subsequently in dynamic 
simulations. More details regarding the particular procedure used for this task can be 
found in references [2] and [5]. 
 
The approach followed in the formulation of the role played by pitch and run out errors 
is described next.  

 

Fig. 1.- Scheme of the developed model 



2.1 Index errors 

Although index errors are common and it is known their impact on gear dynamics, the 
number of researchers who propose numerical models for studying this phenomenon is 
sparse. In this work, index errors were added to the original model under the common 
assumption used by researchers to address gear profile deviations which generally con-
siders that changes in the profiles are so small that the Line of Action (LOA) of the 
meshing contact forces does not change. In this way, there is only a reduction in the 
magnitude of the geometric overlap between the profiles of the teeth in contact in com-
parison with the ideal profiles [11, ¡Error! No se encuentra el origen de la referen-
cia.]. 
 
Following this procedure the expression developed to obtain the geometrical separations 
between teeth profiles (see [2]) was modified according to (2) in order to include index 
errors 
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under the condition 0; 1,...jF j n   

 
Where δj represents the geometrical separations between teeth profiles at potential con-
tact j (see Fig. 2) obtained for a certain position and rotation of gears (defined by vec-
tors r1, r2 and angles θ1, θ2). On the right side, uTj represents the elastic deflection ob-
tained at contact point j under the force vector F which is the unknown problem that 
was constrained by the complementarity condition in order to assure compressive con-
tacts. Moreover, ePj1,2 are the index errors of pinion and wheel which were divided in 
these corresponding to the left (superscript L) and to the right flanks (superscript R) of 
each tooth. 
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Fig. 2.- Example or considered potential contacts for calculation of geometrical overlaps 

Index errors can be expressed as an angle or as a distance measured along the pitch line 
(see Fig. 3). In this work, the index errors were expressed in terms of distance above the 
pitch circle. The index error is different between wheels and is not periodic each mesh-
ing cycle (unlike the profile errors and reliefs). Thus, it is necessary to define the index 
error over the full rotation of the gear. Adopting a particular tooth as a reference for de-
fining the accumulated index error, the error is discrete (one constant value for each 
flank) and periodic (with period 2π), so its value can be calculated in terms of the angle 
θ with respect to the reference tooth as the sum of n harmonic functions of amplitude An 
as 
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Where Z is the gear number of teeth and the floor function discretizes the harmonic 
function so that the particular index error for each tooth is determined. When the tooth 
used as a reference to measure the index error is not the contact tooth corresponding to 
the first angular position θ in (3), the angle should be modified including the corre-
sponding phase deviation. Although in this paper the index error was considered period-
ic, in order to allow for comparison with run out, it is also possible to use other func-
tions different from (3) so as to represent other kinds of errors like local pitch defects 
[9] or linear errors [8]. 

 

Fig. 3.- Index error definition 

2.2 Run out error 

Unlike index errors, eccentricity appears due to the displacement of the geometric cen-
ter of the gear with respect to the center of rotation of the shaft on which it is mounted. 
The inclusion of this type of error leads to a modification of the line of action which af-
fects the position where the teeth begin and finish the contact.  
 

The eccentricity is introduced in the model by changing the position of the gear i (i = 
1,2) in expression (2) by (4), taking into account the magnitude of the eccentricity ei and 
its angular position with respect to the centers line θei (according to the scheme present-
ed in Fig. 4) 
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Fig. 4.- Pitch error definition 

3 Application example: quasi-static analysis. 

The proposed procedures for including index and run out errors were applied on the 
simulation of a single stage spur gear transmission supported by a couple of ball bear-
ings. Data concerning gears were extracted from an experimental test bench described 
in literature (more details on ref. [7] and [2]) while a pair of 209 single-row radial deep-
groove where considered as bearing model [13]. ¡Error! No se encuentra el origen de 
la referencia. summarizes the main features for each component. More details about 
necessary dynamic parameters to carry out dynamic simulations can be found in [5].  

Table 1 Transmission data 

Parameter  Value Parameter Value 

Gear data 

Number of teeth (gear 1&2) 28 Rack tip rounding 0.25 m 

Module (m) 3.175 [mm] Rack dedendum 1 m 

Elasticity Modulus  210 [GPa] Gear face width  6.35  [mm] 

Poisson’s ratio 0.3 Gear shaft radius  20 [mm] 

Pressure angle  20 [degree] Gear tip rounding 0.05 m 

Rack addendum 1.25 m Oil viscosity 0.004 (Pa s) 

Bearing data 

Contact stiffness  1.2 1010(N/m3/2) Outer race diam.  77.706 (mm) 

Ball diameter 12.7(mm) Inner race diam. 52.291 (mm) 

Number of balls 9 Inner groove rad 6.6 (mm) 

Radial clearance 15(μm) Outer groove rad. 6.6 (mm) 

Dynamic parameters 

Output inertia 3.56 10-4 [Kg m2] Shaft flex. Stiff.  6.24 108 [N/m] 

Shaft Tor. Stiff.  4 105[Nm/rad] Coupling Stiff.  4.0 105 [Nm/rad] 

Shaft Tor. Damp. 0 [Nms/rad] Coupling Damp. 3.5761 [Nms/rad] 

Shaft Flex. Damp. 31.6 [Ns/m] Gear Mass 0.7999 [Kg] 

Bearing Mass 0.245[Kg] Gear Inertia 4.0 10-4 [Kgm2] 
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Fig. 5.- Cumulative index error for gear 1 

Index error was only considered in gear 1, adopting a single harmonic with amplitude of 
7 μm. Fig. 5 left, shows the index error considered in the simulations, that has been de-
fined taking as reference the contact corresponding to the pitch point in tooth No. 10 
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(see the amplitude is null for this tooth). However, initial conditions for dynamic simu-
lations were defined such that the first contact takes place at the pitch point in tooth No. 
1. 
 
On the other hand, run out was modelled with an eccentricity value of 7 μm and 270° as 
angular position.  
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Fig. 6.- LTE under several torque loads: a) (Upper side) Index error in gear 1; b) (Lower side) Run 
out in gear 1. 

In a first stage, quasi-static simulations were done considering only gear rotational dof 
under the assumption of rigid bearings. According Fig. 1, torque was applied at the out-
put and then it was obtained the rotation angle at the input in order to find the equilibri-
um. Then, LTE is obtained applying equation (5)  
 

2
1 1 2

2

( )
Z

LTE
Z

    (5) 



 
Negative or positive values for LTE are derived from equation (5) depending on the 
sign of applied torque and rotation angle used for gear 1 in the simulations. 
Moreover, LSR was calculated for the example transmission both in normal conditions 
as well as when index and run out errors were considered in simulations. For the sake of 
simplicity, in this paper only the LSR results are going to be presented. For more details 
about the procedure followed to obtain this feature, the reader is referred to the refer-
ences [2] and [5].  
  
With regard to LTE, both pitch and run out errors led to a once per turn superposed fluc-
tuation as can be appreciated in 
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Fig. 6 a) and b) respectively (where it was considered that gear 1 rotates counterclock-
wise). Both errors provided a similar LTE as only one harmonic was considered for 
modelling index error and the amplitude of eccentricity was properly chosen for this 
purpose. 
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Fig. 7.- Comparison of LTE for normal conditions, Index and Run out errors in gear 1: a) (Upper) 
10 Nm; b) (Lower) 100 Nm 

 
However, a detailed error analysis enabled the observation of the discrete nature of the 
index error, which had a step-like shape, while the eccentricity showed a continuous 
variation ( 
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Fig. 7 a) and b)). The increase of the torque level trended to eliminate the differences be-
tween the two phenomena, yielding to similar results in both cases (see  
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Fig. 7 b)).  
 
The differences in LTE between index and run out were appreciated better in the fre-
quency domain which is represented in Fig. 8 a) and b). Particularly in Fig. 8 a), when 
torque load was 10 Nm, it was observed that index error led to a clear increment of the 
frequency amplitude in the vicinity of gear mesh harmonics (multiples of 28th gear or-
der), while this behavior was less evident when run out was considered. Nevertheless, 
these differences were not so evident when torque increased up to 100 Nm as can be ap-
preciated Fig. 8 b) where both index and run out provide similar resulting spectrums. 
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Fig. 8.- Comparison of LTE spectrum for Index and Run out errors in gear 1: a) (Upper side) 10 
Nm; b) (Lower side) 100 Nm 

 
A deeper analysis, having in mind the nature of each error, gave a better understanding 
of their consequences. Hence, whilst index error led to a change in the meshing starting 
and ending locations for each teeth couple as its angular position was modified, run out 
involved modifications of effective gear centers distance and therefore changes in effec-
tive pressure angle. 
 
Thus, the differences between index and run out were clearer when the meshing forces 
were considered, particularly in the way they were shared between the teeth in contact.  
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Fig. 9 and Fig. 10 shows the meshing forces (obtained from equation (2)) for each active 
contact over four meshing periods corresponding to two load conditions when index and 
run out errors were considered in simulations. As the magnitudes were normalized by 
the maximum value, this figure really shows the LSR for several meshing periods (see 
Fig. 2 to identify how the contacts were designated). When the transmitted torque was 
low, i. e. 10 Nm, see  
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Fig. 9 a), the index errors led to an asymmetric shape, while the eccentricity did not 
change regarding the original one. As the transmitted torque increased (100 Nm), the 
asymmetry for the index error LSR became less prominent but still appreciated (see 
¡Error! No se encuentra el origen de la referencia.). As only the first harmonic was 
considered for the formulation of index errors, real situations could differ as several 
harmonics should have been included. Nonetheless, an asymmetric shape was expected 
for the LSR, as demonstrated in this simplified example. Because, in general, when 
transmissions with different numbers of gear teeth are considered, the LSR is asymmet-
ric by nature. Moreover, in these cases, index errors affected the shape of the LSR over 
a fundamental period of each meshing gear but also the hunting periods were important 
to consider. As a consequence, complex interactions between gear indexing errors could 
be expected, affecting the transmission dynamics and therefore its life expectancy lead-
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ing to dangerous situations involving severe overloads and even contact loss in certain 
operation conditions. [9]. 
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Fig. 9.- Normalized meshing forces @ 10 Nm a) (upper) Index errors; b) (lower) Run out  
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Fig. 10.- Normalized meshing forces @ 100 Nm a) (upper) Index errors; b) (lower) Run out 

 
In contrast to index errors, run out did not lead to changes in the LSR but results in 
modifications of the resultant LOA were obtained, as can be appreciated in Fig. 11, 
where the error magnitude is deliberately exaggerated in order to facilitate the under-
standing. 
 
As consequence, run out errors led to fluctuations in the effective pressure angle along a 
gear turn as can be appreciated in  
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Fig. 12. This fluctuation was identified clearly a once per turn variation of the pressure 
angle when run out was considered in simulations. Moreover, the reader should be 
aware about the sudden changes in the pressure angle which appeared at certain angular 
locations. These peaks corresponded with contacts in the tip rounding arc considered at 
the top of the teeth in order to avoid corner contacts which resulted in forces out of the 
nominal LOA and therefore in instantaneous changes in the effective pressure angle. 
The amplitude of these peaks was modulated when index errors were considered due to 
the changes in the angular location of the teeth. Once more, higher transmitted torques 
masked the effect and complicated the identification of the modulation due to index er-
rors while run out was still clearly appreciated. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.- Scheme of the LOA direction changes due to Run out. 
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Fig. 12.- Comparison of effective pressure angle for normal conditions, Index and Run out errors in 
gear 1 (quasi-static) a) (Upper) 10 Nm; b) (Lower) 100 Nm.  

4 Dynamic simulations. 

In a second stage, dynamic simulations were carried out considering a (negative or 
counterclockwise) rotational speed of 1000 rpm and several loads. Dynamic equations 
were implemented in Simulink environment and integrated by a fixed step solver (ODE 
3 Bogacki-Shampine) using a sampling frequency of 75 kHz. In contrast with quasi-
static studies, dynamic simulations were performed considering the effect of variable 
bearing compliance. Initial position for gears and bearings was obtained by a previous 
quasi-static calculation considering contact in the pitch point of tooth number 1 (see 
Fig. 5) in order to reduce the transient period. 



18 

0 5 10 15 20 25
-3

-2.5

-2

-1.5

-1

-0.5
x 10

-3

Meshing Cycle

L
T

E
 [

ra
d

]

Index Error @ 1000 rpm

 

 

10 Nm
20
30
40
50
60
70
80
90
100

0 5 10 15 20 25
-3

-2.5

-2

-1.5

-1

-0.5
x 10

-3

Meshing Cycle

L
T

E
 [

ra
d

]

Run out Error @ 1000 rpm

 

 

10 Nm
20
30
40
50
60
70
80
90
100

 

Fig. 13.- LTE under several torque loads @ 1000 rpm: a) (Upper side) Index error in gear 1 and 
gear 2; b) (Lower side) Run out on gear 1 

 
In dynamic simulations, index error was included in both gears considering only one 
harmonic with amplitude of 7 μm for gear 1 and 5 μm for gear 2. In both gears, tooth 
number 10 was used as reference but with a phase delay of 180 degrees in gear 2. Re-
garding run out, the same values used for quasi-static analysis were considered. LTE 
obtained in dynamic simulations Fig. 13 followed a similar pattern than in static analy-
sis as presented in Fig. 6. At this respect, the reader should have in mind that dynamic 
simulations were done considering clockwise rotation for gear 1. 
 
Nevertheless, in this case and unlike the quasi-static calculations it was not possible to 
discern what the origin of the LTE fluctuation is, even if transmitted torque is the low-
est. 
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Fig. 14.- Comparison of LTE spectrum without errors and with Index and Run out errors: a) 
(Upper side) 1000 rpm @ 10 Nm; b) (Lower side) 1000 rpm @ 100 Nm 

On the other hand, the index and run out roles were clearer in the frequency domain and 
therefore some differences were observed. For the sake of clarity, in Fig. 14 only the 
spectra corresponding to the minimum and maximum torque of the simulations carried 
out is presented. In contrast with the quasi-static simulations (where variable bearing 
compliance was not considered), additional peaks were identified in the low frequency 
range due to the bearing Ball Pass Frequency (BPF) which also modulated the LTE re-
sulting in lateral side bands around the Gear Mesh Frequency (GMF) harmonics. At this 
point the reader should realize that practical identification of BPF frequencies in the low 
frequency region is hardly possible due to unavoidable noise involved in experimental 
measurements. 
 
With regard to the differences between the consequences of each kind of error, index er-
rors resulted in a slight modulation around the GMF harmonics at the shaft rotation fre-
quency which is not properly seen in the figure due to the reduced spectra resolution. 
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Nonetheless, run out seems to be less evident, although certain modulation were ob-
served around some harmonics (i.e. the 7th, 8th and 9th). When torque increased, the 
modulation due to index errors was observed in the high order GMF harmonics, becom-
ing less evident in the low frequency region, while run out did not seem to have conse-
quences. However, slight changes were still observed for example around the 7th GMF 
harmonic as presented in  
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Fig. 15.- Comparison of LTE spectrum for Index and Run out errors (detail from the 7th to the 9th 
GMF harmonic) a) (Upper side) 1000 rpm @ 10 Nm; b) (Lower side) 1000 rpm @ 100 Nm 
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As expected, the resulting LSR presented in  
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Fig. 16 and  
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Fig. 17 became asymmetric when index errors were considered, particularly for low 
transmitted torque. The reader should be aware that the sequence of contacts seemed to 
be different from the quasi-static results presented in  
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F
ig. 9 and Fig. 10. This is due to the fact that dynamic simulations were carried out consid-
ering a negative value (clockwise) of rotational speed in gear 1, whilst for the sake of 
clarity, the absolute value of the angle was taken in  
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Fig. 17. 
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Fig. 16.- Normalized meshing forces 1000 rpm @ 10 Nm: a) (upper) Index errors; b) (lower) run 
out;  
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Fig. 17.- Normalized meshing forces 1000 rpm @ 100 Nm: a) (upper) Index errors; b) (lower) run 
out;  
 
In order to complete the comparison between each kind of error, the effective pressure 
angle is presented in  
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Fig. 18. In this figure, the same behavior described in quasi-static analysis can be ob-
served. The subtle change in the nominal pressure angle, which was shifted around 
20.85 degrees, was due to the bearing clearances and resulted in a largest gear center 
distance and therefore higher pressure angle. 
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Fig. 18.- Comparison of effective pressure angle for normal conditions, index and run out errors @ 
1000 rpm a) (Upper) 10 Nm; b) (Lower) 100 Nm.  
 
Hence, it can be concluded from the previous paragraphs that the analysis of LTE, LSR 
and pressure angle could be used to identify the presence of index or run out errors. 
Nevertheless, in practical applications, it is not possible to derive these magnitudes from 
conventional measurements. Instead, the most common technique used for this purpose 
is the analysis of vibrations recorded by seismic accelerometers in the transmission case 
(near the gear shaft bearing). These vibrations will be the result of the excitation forces 
at bearings and the dynamic response of the case. For the sake of simplicity, in this 
work, the case dynamic was neglected and the attention was focused on the bearing 
forces which in fact contained the information regarding index and run out errors. 
 
With this aim, the forces obtained in the LOA at bearings, designated as 1b1 (see Fig. 
1), are presented in  
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Fig. 19, corresponding to a complete revolution of gear 1 for the extreme values of 
torque considered in simulations (10 Nm and 100 Nm). When the applied torque was 10 
Nm, the differences between the resultant forces obtained with (in red) and without (in 
blue and cyan) index errors can be distinguished easily, while the consequences of index 
errors are less evident when torque was 100 Nm. Furthermore, comparing run out and 
without error signals of bearing force, it can be appreciated that is not easy to identify 
discrepancies between signals in both torque values (happened the same for all the 
torque values). Moreover, the reader could appreciate the consequences of bearing vari-
able compliance which is the responsible of the force fluctuation around 3.5 times per 
turn that is much more evident for lower torque. 
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Fig. 19.- Bearing force in the so-called bearing 1b1 for normal, index and run out errors: a) 1000 
rpm @ 10 Nm; b) 1000 rpm @ 100 Nm.   
 
In Fig. 20, it is presented the frequency spectrum corresponding to the bearing force time 
signals described above. It can be observed a similar pattern to that obtained in the case 
of LTE. Low torque provided a better scenario for identification of index errors while 
run out were not clearly distinguish, although it was possible to discern how it results in 
slightly wider GMF harmonics as a consequence of modulation by the shaft frequency. 
This modulation cannot be appreciated better since the spectra resolution was reduced 
because only five turns of the driven gear were simulated.  
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Fig. 20.- Spectrum of the transmitted force in the LOA on the so-called bearing 1b1 without er-
rors, index error and Run out; a) (Upper) 1000 rpm @ 10Nm; b) (Lower) 1000 rpm @ 100 Nm 

 
Much more interesting were the results obtained when bearing forces were deeper pro-
cessed by Amplitude and Phase demodulation (AM and PM). Fig. 21; Fig. 22 and Fig. 23 
show the force record filtered around the 2th GMF harmonic corresponding to a trans-
mitted torque of 20 Nm for each case considered. In absence of defects, it can be appre-
ciated some peaks at the ball pass frequency and its harmonics (in this case around 
61.04 Hz due to the spectral resolution). In contrast, when index or run out errors were 
considered, additional peaks appeared at the shaft rotation frequency 16.6 Hz (corre-
sponding to the bin at 18.31 due to the spectra resolution). The amplitude of the peaks at 
the rotation frequency was higher for index errors than for run out, although the LTE 
was similar in all the cases. When other torques or GMF were chosen, a similar pattern 
appeared in the spectra always with lower amplitudes at the shaft rotation in the case of 
run out with respect the index errors. 
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Fig. 21.- AM (Upper) and PM (Lower) demodulation of LOA force at so-called bearing 1b1 1000 
rpm @ 20 Nm without errors. Left Column Angle, Right Column Frequency spectra. 
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Fig. 22.- AM (Upper) and PM (Lower) demodulation of LOA force at so-called bearing 1b1 1000 
rpm @ 20 Nm with Index errors. Left Column Angle, Right Column Frequency spectra. 
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Fig. 23.- AM (Upper) and PM (Lower) demodulation of LOA force at so-called bearing 1b1 1000 
rpm @ 20 Nm with Run out. Left Column Angle, Right Column Frequency spectra. 

5 Conclusions 

An enhanced model for the study of dynamic behavior of gear transmissions in presence 
of index and run out errors has been presented in this paper. An example of application 
has been assessed in static and dynamic regimes, showing the differences among the 
gears parameters, such as LSR, LTE and forces, with run out, index error and in absence 
of errors. These results have been illustrated not only in the time domain but in the fre-
quency domain using some demodulation techniques which made easier the comprehen-
sion of the outcomes. From the results, some differences were appreciated particularly 
on the LSR which should be considered in the design stage as they will result in an in-
crement of the tooth root stress. This means that index errors become critical not only 
from the point of view of final noise and vibration behavior but because they may lead 
to high overloads which could decrease the transmission life expectancy. Moreover, 
demodulation techniques have shown higher amplitudes at the shaft rotation when index 
errors were considered while run out lead to lower values. This fact could be used to 
discern the origin of the modulation by assessment of experimental measurements. 
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