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ABSTRACT
In this work, we consider a two-channel multiple-input
multiple-output (MIMO) passive detection problem, in
which there is a surveillance array and a reference
array. The reference array is known to carry a lin-
ear combination of broadband noise and a subspace
signal of known dimension but unknown basis. The
question is whether the surveillance channel carries a
linear combination of broadband noise and a subspace
signal of unknown basis, which is correlated with the
subspace signal in the reference channel. We consider a
second-order detection problem where these subspace
signals are structured by an unknown, but common,
p-dimensional random vector of symbols transmitted
from sources of opportunity, and then received through
unknown M × p matrices at each of the M -element
arrays. The noises in each channel have arbitrary spatial
correlation. We derive the generalized likelihood ratio
test (GLRT) statistic and show it is a monotone func-
tion of canonical correlations between the reference
and surveillance channels.

Index Terms—Passive detection, MIMO channels, pas-
sive radar, generalized likelihood ratio, canonical coor-
dinates.

I. INTRODUCTION
This paper is motivated by a passive radar applica-

tion, where the problem is to determine if there are
complex demodulations and synchronizations in sev-
eral surveillance antennas (or antenna arrays) that bring
signals in the surveillance antennas into coherence
with signals in the reference antennas. This coherence
is manifested in the synchronous sharing of transmit
symbols from several opportunistic transmitters (e.g.
digital television, digital audio broadcast, or mobile

communication systems), and as a consequence there
is correlation between signals observed at the MIMO
surveillance array and the MIMO reference array. So
the problem is to detect correlated subspace signals of
dimension-p in two MIMO channels. In passive radar
the signal paths for the reference and the surveillance
channels are typically separated by digital beamform-
ing using directional antennas.

The conventional approach for passive detection uses
the cross-correlation (CC) between the data received
in the reference and surveillance channels as the
test statistic [1]. However, the noise in the reference
signal renders the CC detection scheme suboptimal,
especially in MIMO scenarios for which the inherent
low-dimensional subspace structure of the transmitted
signal can be exploited [2]. Passive MIMO target detec-
tion with a noisy reference channel has recently been
considered in [3], where the transmitted waveform is
considered as a deterministic unknown. The authors of
[3] derived the generalized likelihood ratio test (GLRT)
for this deterministic target model under spatially white
noise of known variance. The work in [4] derives
the GLRT in passive radar problem that models the
received signal as a deterministic waveform scaled by
an unknown single-input single-output (SISO) channel
and under white noise of either known or unknown
variance. A passive detector that exploits the low-rank
structure of the received signal has been proposed in
[5]. Instead of computing the cross-correlation between
the surveillance and reference channel measurements,
the ad-hoc detector proposed in [5] cross-correlates
the dominant left singular vectors of the matrices
containing the observations acquired at both channels.

Detection of a dimension-one subspace signal with a
single array of sensors under white noise of unknown



level has been addressed in [6], and extensions to
diagonal noise covariance matrices and dimension-p
subspace signals can be found in [7]. Other variants
of this problem, motivated by cognitive radio and
multi-static radar applications, and notably based on
averaging with respect to Haar measure on the space
of dimension-p subspaces, have been considered in
[8] and the references therein. These detection prob-
lems are solved with a single array of sensors at
the surveillance channel (for radar applications) or at
the secondary user (for cognitive radio applications).
The model considered in this paper is solved with
the assistance of an additional multi-antenna reference
channel which acquires a noisy and distorted version
of the transmitted signal.

In this paper, we address the MIMO passive de-
tection problem in a multivariate normal model when
the surveillance and reference channels are equipped
with M antennas, the transmitted signal is an un-
known rank-p signal, and the noises at surveillance
and reference channels are uncorrelated between them,
but each having different spatial correlation models.
It turns out that this is a problem in factor analysis
[9], where there are constraints on the factor loadings
and the factors. The problem may be viewed as a one-
channel factor analysis problem with constraints on the
factor loadings under the null hypothesis, or as a two-
channel factor analysis problem, with constraints on
the factor loadings under the null, and with common
factors under the alternative. We derive the generalized
likelihood ratio test (GLRT) as a ratio of determinants
of covariance matrices. In the general case when the
noise covariaces are unstructured, the test statistic is a
monotone function of canonical correlations between
the reference and surveillance channels.

Notation: The superscripts (·)T and (·)H denote
transpose and Hermitian, respectively. The determinant,
trace and Frobenius norm of a matrix A will be
denoted, respectively, as det(A), tr(A) and ||A||F . IM
is the identity matrix of dimensions M×M , and 0 de-
notes either a column vector with M zeros, or the zero
matrix of appropriate dimensions (the difference should
be clear from the context). We use A1/2 (A−1/2)
to denote the square root matrix of the Hermitian
matrix A (A−1); diagM (A) is a block-diagonal matrix
formed by M × M blocks on the diagonal of A.
The expectation operator will be denoted by E[·], and
x ∼ CNM (0,R) indicates that x is an M -dimensional

complex circular Gaussian random vector of zero mean
and covariance R.

II. PROBLEM FORMULATION
Our two-channel measurement model is[
xs[n]
xr[n]

]
=

[
θHs

Hr

]
s[n] +

[
vs[n]
vr[n]

]
; n = 1, 2, . . . , N

(1)
where xs[n] ∈ CM and xr[n] ∈ CM are the surveil-
lance and reference measurements; s[n] ∈ Cp contains
the signal transmitted by p opportunistic illuminators,
Hs ∈ CM×p and Hr ∈ CM×p represent the M × p
channels from the transmitter(s) to the surveillance
and reference multiantenna receivers, respectively. The
parameter θ ∈ {0, 1} determines whether or not there
is a signal Hss[n] in the surveillance channel.

We treat the symbol sequence as a sequence of
circular, Gaussian random vectors with unknown co-
variance E[s[n]s[m]H ] = Cδ[n − m]. The factor
loadings Hs and Hr are unknown, to be identified
in a maximum likelihood procedure. Without loss of
generality, the symbol covariance may be absorbed into
these factor loadings and thus we assume C = Ip. The
vectors vs[n] and vr[n] model the additive noise. For
notational convenience, the signal, noise, and channel
vectors can be stacked as x[n] = [xs[n]T ,xr[n]T ]T ,
v[n] = [vs[n]T ,vr[n]T ]T and H = [HT

s ,H
T
r ]T ,

respectively. The additive noise is assumed to be
temporally white, zero-mean Gaussian distributed, and
uncorrelated between the surveillance and reference
channels. The noise covariance matrix can then be
written as

E[v[n]v[m]H ] =

[
Σss 0
0 Σrr

]
δ[m− n] (2)

where Σss and Σrr are arbitrary psd matrices:
The passive detection problem is to test the hypoth-

esis that the surveillance channel contains no signal,
versus the alternative that it does:

H0 : θ = 0
H1 : θ = 1

(3)

Denote by R0 and R1 the set of measurement covari-
ance matrices under the null hypothesis and alternative
hypothesis, respectively. We have

R0 =

{[
0 0
0 HrH

H
r

]
+

[
Σss 0
0 Σrr

]}
(4)

R1 =

{[
HsH

H
s HsH

H
r

HrH
H
s HrH

H
r

]
+

[
Σss 0
0 Σrr

]}
. (5)



This detection problem essentially amounts to testing
between two different structures for the composite
covariance matrix under the null hypothesis and alter-
native hypothesis. It can be written as

H0 : x[n] ∼ CN 2M (0,R), R ∈ R0

H1 : x[n] ∼ CN 2M (0,R), R ∈ R1.
(6)

There are two possible interpretations of this model:
(1) it is a one-channel factor model with special con-
straint on the loadings under H0; or (2) it is a two
channel factor model with constraint under H0 and
common factors in the two channels.

III. THE GENERALIZED LIKELIHOOD
RATIO

Let us now consider N consecutive array snapshots
under a model with generic covariance matrix R[

x[1] . . . x[N ]
]

= X ∈ C2M×N , (7)

which are i.i.d. realizations of x[n] ∼ CN 2M (0,R). As
there are unknown parameters under both hypotheses,
the Neyman-Pearson detector is not implementable for
this composite test. Therefore, we adopt a generalized
likelihood ratio test (GLRT), which usually results
in simple detectors with good performance [9]. The
likelihood may be written as

f(X; R) =
1

π2MN det(R)N
exp

{
−N tr

(
SR−1

)}
,

(8)
where S = 1

N XXH is the sample covariance matrix,
partitioned as

S =

[
Sss Ssr

SH
sr Srr

]
. (9)

Here Sss is the sample covariance matrix of the
surveillance channel and the other blocks are defined
similarly. The generalized likelihood ratio (GLR) is

Λ =
f(X; R̂1)

f(X; R̂0)
,

where R̂0 and R̂1 are, respectively, the maximum
likelihood (ML) estimates of the covariance matrix for
model j under H0 and H1. They maximize the log-
likelihood function

L(R) = logdet(SR−1)− tr
(
SR−1

)
, (10)

The GLRT for noise model j reduces to

log(Λ) = log

(
det(R̂0)

det(R̂1)

)
−tr

(
S
(
R̂−1

1 − R̂−1
0

))H1

≷
H0

η,

(11)
with η a suitable threshold.

The ML estimate of the covariance matrix under the
null is given by

R̂0 = diagM (S) =

[
Sss 0
0 Srr

]
. (12)

Under the alternative, the ML estimate has been derived
for p = 1 in [2].To present the result for general p, let
C = Sss

−1/2SsrSrr
−H/2 be the sample coherence ma-

trix between the surveillance and reference channels,
and let C = FKGH be its singular value decomposi-
tion (SVD), where the matrix K = diag (k1, · · · , kM )
contains the sample canonical correlations 1 ≥ k1 ≥
· · · ≥ kM ≥ 0 along its diagonal. The ML estimate is

R̂1 =

[
Sss S

1/2
ss CpS

1/2
rr

S
1/2
rr CH

p S
1/2
ss Srr

]
(13)

where Cp = FKpG
H and Kp =

diag (k1, · · · , kp, 0, . . . , 0) is a rank-p truncation of
K. As a result, the GLRT is

Λ = det(I−K2
p)

−1 =

p∏
i=1

1

(1− k2i )

H1

≷
H0

η, (14)

where ki is the i-th sample canonical correlation be-
tween the surveillance and reference channels, and η
is a suitable threshold. This formula was also derived
in [10] for a different problem. Equation (14) has an
interesting interpretation: 1 − Λ4

−1 is the coherence
statistic, 0 ≤ 1−

∏p
i=1(1− k2i ) ≤ 1.

Remark 1: Connection to Generalized Coherence.
If the covariance matrix under H0 were assumed only
block diagonal and under H1 it were assumed an
arbitrary PSD matrix, the GLRT statistic would be the
following generalized Hadamard ratio:

H =
det(S)

det(Sss) det(Srr)
=

M∏
i=1

(1− k2i ) (15)

Notice also that 1 − H is the Generalized Coherence
(GC) originally defined in [11], and widely applied to
multi-channel detection problems. So the net of prior
knowledge of rank p is to replace M by p in the
coherence statistic.



Remark 2: The detection problem and its GLRT
are invariant to the transformation group G = {G |
G(X) = TXQ}, where the 2M × 2M matrix T is
a diagonal matrix of nonsingular M × M matrices
T1,T2, and Q is an N × N unitary matrix. As a
special case of this general invariance, the coherence
detector is CFAR against unknown noise power in
the surveillance chanel and unknown signal-plus-noise
power in the reference channel. This is quite obviously
a desirable property.

IV. SIMULATION STUDIES

In this section we evaluate the performance of the
GLR detectors by means of Monte Carlo simulations.
The input signal-to-noise-ratio (SNR) for both the
surveillance and reference channels is defined as

SNRi = 10 log10
tr(HH

i Hi)

tr(Σii)
, i = {s, r}.

For given values of SNRs and SNRr, the probability of
detection, Pd, and probability of false alarm, Pfa, are
estimated by averaging 104 independent simulations,
where at each simulation a different realization of the
unknowns (Hr,Hs,Σss,Σrr) is generated.

Fig. 1 depicts the ROC for the coherence detector
for p = 1 (dimension-one subspace signal), M = 5
antennas and N = 100 snapshots. The curves around
the chance line are ROCs for detectors, not discussed
here, which are mis-matched to the assumed noise
model.
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Fig. 1. ROC for coherence (or canonical correlation)
detector, with M = 5 antennas, p = 1, N = 100
snapshots and SNRs = SNRr = −4 dB.

V. CONCLUSION
In this paper we have addressed a problem motivated

by passive radar. The problem is to detect a common
subspace signal in two MIMO channels. It turns out
that the problem is a problem in factor analysis, where
there are constraints on the factor loadings and the
factors. The problem may be viewed as a one-channel
factor analysis problem with constraints on the factor
loadings under the null hypothesis, or as a two-channel
factor analysis problem, with constraints on the factor
loadings under the null, and with common factors
under the alternative. The GLRT compares the product∏p

1(1− k2i ) to a threshold, where the ki’s are squared
canonical coordinates of the two channel sample co-
variance matrix. The product may be replaced by
1−
∏p

1(1−k2i ), which is coherence, so that the detector
is a coherence detector.
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