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ABSTRACT

In this work we consider a two-channel passive detection problem,
in which there is a surveillance array where the presence/absence of
a target signal is to be detected, and a reference array that provides
a noise-contaminated version of the target signal. We assume that
the transmitted signal is an unknown rank-one signal, and that the
noises are uncorrelated between the two channels, but each one hav-
ing an unknown and arbitrary spatial covariance matrix. We show
that the generalized likelihood ratio test (GLRT) for this problem re-
jects the null hypothesis when the largest canonical correlation of the
sample coherence matrix between the surveillance and the reference
channels exceeds a threshold. Further, based on recent results from
random matrix theory, we provide an approximation for the null dis-
tribution of the test statistic.

Index Terms— Passive detection, generalized likelihood ratio
test, reduced-rank, canonical correlations, random matrix theory.

1. INTRODUCTION

In this work we consider a passive detection problem in whichthere
is a surveillance channel where the presence/absence of a target
signal is to be detected, and a reference channel that provides a
noise-contaminated version of the target signal, and henceassists
the surveillance channel in the detection process. This problem is
of interest in applications such as passive radar, passive sensing
or communications, among others. In passive radar, for instance,
commercial RF signals are used as non-cooperative transmitters
that illuminate potential targets of interest [1–3]. The reference
channel acquires a version of the transmitted signal through a direct
path (i.e., transmitter-receiver), whereas the surveillance channel
acquires a different version of the transmitted signal through a tar-
get path (i.e., transmitter-target-receiver). The signalpaths for the
reference and the surveillance channels are typically separated by
digital beamforming using directional antennas. In communications,
passive detection might have application in cognitive radio [4], or to
enhance the transmission opportunities of small cells in Heteroge-
neous Networks (HetNets) [5].

Passive target detection with a noisy reference channel hasre-
cently been considered in [1,6] for an unknown deterministic signal
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and single-antenna receivers. The multi-antena case, for determin-
istic signals and under spatially white noise ofknown variance, has
been addressed in [2]. In this paper, we address the passive detection
problem in a multivariate normal model when the surveillance and
reference channels are equipped withM antennas, the transmitted
signal is an unknown rank-one signal, and the noises at surveillance
and reference channels are uncorrelated between them, but each hav-
ing an unknown and arbitrary spatial covariance matrix. This a prob-
lem of testing the covariance structure in a two-channel multivariate
normal model. Detection of a rank-one signal under white noise of
unknown level has been addressed in [7], and extensions to diagonal
noise covariance matrices and rank-P signals can be found in[8],
and [9, 10], respectively. Other variants of this problem have been
considered in [11–16]. Differently from these single-channel detec-
tion, the model considered in this paper cannot be solved without the
assistance of a reference channel.

In this paper, we show that the generalized likelihood ratiotest
(GLRT) for our problem rejects the null hypothesis when the largest
canonical correlation of the sample coherence matrix between the
surveillance and the reference channels exceeds a threshold. Further,
we provide an approximation for the null distribution that allows us
to set the threshold for a given probability of false alarm.

1.1. Notation

The superscripts(⋅)T and(⋅)H denote transpose and Hermitian, re-
spectively. The determinant, trace and Frobenius norm of a matrix
A will be denoted, respectively, asdet(A), tr(A) and∣∣A∣∣F . IM
is the identity matrix of dimensionsM ×M , and0M denotes ei-
ther a column vector withM zeros, or the zero matrix of dimensions
M ×M (the difference should be clear from the context). We use
A1/2 (A−H/2) to denote the square root matrix of the Hermitian ma-
trix A (A−1). The expectation operator will be denoted byE[⋅], and
x ∼ CN(0,R) indicates thatx is a complex circular Gaussian ran-
dom vector of zero mean and covarianceR. Finally, diagM(A) is
a block-diagonal matrix formed byM ×M blocks on the diagonal.

2. PROBLEM FORMULATION

We consider a passive network consisting of a reference channel and
a surveillance channel, both equipped withM antennas. Denoting
the signal transmitted by the non-cooperative transmitterass[n], the
detection problem can be formulated as follows:



H0 ∶ [xs[n]
xr[n]] = [0M

hr
] s[n] + [vs[n]

vr[n]] ,

H1 ∶ [xs[n]
xr[n]] = [hs

hr
] s[n] + [vs[n]

vr[n]] ;
(1)

wherexs[n] ∈ CM and xr[n] ∈ CM are the surveillance and
reference signals,hs and hr represent the channels, andvs[n],
vr[n] model the additive noise. For notational convenience,
the signal, noise, and channel vectors can be stacked asx[n] =[xs[n]T ,xr[n]T ]T ,v[n] = [vs[n]T ,v[n]Tr ]T andh = [hT

s ,h
T
r ]T ,

respectively.
In this work, we make the following assumptions:

(A1) The propagation delay difference between the surveillance
and reference channels, as well as the Doppler shift in the
case of moving targets, have been previously estimated and
compensated via cross-correlation processing, like in bistatic
radar systems [17].

(A2) The transmitted signal is modeled as a temporally whitecom-
plex Gaussian signal:s[n] ∼ CN(0,1).

(A3) The noise is modeled as a temporally white complex Gaus-
sian vector with a2M × 2M spatial noise covariance matrix
given by

Σ = E[v[n]v[n]H] = [Σss 0M

0M Σrr
] , (2)

whereΣss andΣrr are arbitrary full-rank positive definite
(pd) matrices.

With these assumptions, the detection problem (1) amounts to
testing between two different structures for the compositecovariance
matrix ofx[n] ∼ CN(02M ,R). More specifically,

H0 ∶ x[n] ∼ CN(02M ,R0),H1 ∶ x[n] ∼ CN(02M ,R1), (3)

where

R0 = [Σss 0M

0M Σrr + hrh
H
r

] , (4)

and

R1 = [Σss + hsh
H
s hsh

H
r

hrh
H
s Σrr + hrh

H
r

] . (5)

We now considerN consecutive array snapshots[x[1], . . . ,x[N]] =
X ∈ C2M×N , which are i.i.d. realizations ofx[n] ∼ CN(02M ,R).
The likelihood can be written as

f(X;R) = 1

π2MN det(R)N exp−{N tr (SR−1)} , (6)

whereS = 1

N
XXH is the sample covariance matrix, which can be

partitioned as

S = [Sss Ssr

S
H
sr Srr

] , (7)

whereSss is the sample covariance matrix of the surveillance chan-
nel and the other blocks are defined similarly.

Remark: Notice that it is not possible to solve the considered
detection problem using only the surveillance channel and exploiting
the rank-deficient structure of the transmitted signal as in[7–10,12].
The reason is that, sinceΣss is an arbitrary positive definite matrix,
both hypotheses have the same set of admissible covariance matrices
and the hypotheses are thus indistinguishable.

3. GLRT DETECTOR

3.1. Problem Invariances

Let us first consider the problem invariances.

Proposition 1. The detection problem (3) is invariant to the trans-
formation group

T = {T ∶T = [Ts 0M

0M Tr
] , det(T) ≠ 0} , (8)

with group action TRxxT
H .

Proof. If we apply an arbitrary block-diagonal transformationT to
the vector of observationsx, it is clear that the structure of the co-
variance matrices under each hypothesis remains unchangedafter
the transformation. As stated in [18], since the distributions remain
in the same family (zero-mean complex Gaussians) and the parame-
ter spaces are preserved, we can conclude that the detectionproblem
(3) is invariant to block-diagonal transformations.

Now, it is well-known that the canonical correlations between
the surveillance and the reference channels are a complete set of
invariants to block-diagonal transformations [19], [20].Therefore,
any invariant detector must be only a function of them. The sample
canonical correlations are the singular values of the sample coher-
ence matrix between the surveillance and reference channels C =

Sss
−1/2SsrSrr

−H/2. More specifically, from the singular value de-
composition (SVD)C = FKGH , the matrixK = diag (k1,⋯, kM )
contains the sample canonical correlations1 ≥ k1 ≥ ⋯ ≥ kM ≥ 0

along its diagonal.
In summary, any invariant detector for our problem must be a

function of the canonical correlations. This function, however, will
depend in general on the unknown parameters, and therefore the uni-
formly most powerful invariant (UMPI) test is unlikely to exist.

3.2. Derivation of the GLR test

A conventional approach when the UMPI test does not exist, isthe
generalized likelihood ratio test (GLRT), in which the unknown pa-
rameters are replaced by their maximum likelihood estimates under
each hypothesis

maxR1
f(X;R1)

maxR0
f(X;R0)

H1

≷
H0

η, (9)

whereR0 andR1 are matrices with the block structure shown in (4)
and (5), respectively. It is known that the GLRT is invariantto trans-
formations for which the detection problem itself is invariant [21].
This means that the GLRT must be also a function of the canonical
correlations. More specifically, we have the following result, which
is the main contribution of this paper.

Theorem 1. The GLRT for H0 ∶ R = R0 versus H1 ∶ R = R1 can
be written as follows

k
2

1

H1

≷
H0

η, (10)

where k1 is the maximum sample canonical correlation between the
surveillance and reference channels, and η is a suitable threshold.



Proof. UnderH0, the composite covarianceR0 in (4) has a block-
diagonal structure where the blocks have no particular structure apart
from being positive definite matrices. Then, it is well knownthat its
ML estimate isR̂0 = diagM(S), and the compressed likelihood
underH0 reduces to

f(X; R̂0) = e−2MN

π2MN det(Sss)N det(Srr)N . (11)

On the other hand, to find the ML estimate ofR1 amounts to
solving the following optimization problem

max
R̂1∈G

− log det R̂1 − tr (R̂−11 S) , (12)

whereG denotes the set of pd matrices with the required structure:
arbitrary positive definite blocks along the main diagonal and rank-
one blocks along the antidiagonal, as in (5). We can now applyblock
diagonal transformations toS andR̂1 such that

S = [Ls 0M

0M Lr
] [IM K

K IM
] [LH

s 0M

0M LH
r

] = LΛsL
H
, (13)

R̂1 = [Ts 0M

0M Tr
] [IM J

J IM
] [TH

s 0M

0M TH
r

] = TΛ1T
H
, (14)

whereK = diag (k1,⋯, kM ) contains the sample canonical corre-
lations, andJ = diag (σ1,0,⋯,0) is a diagonal matrix with a single
non-zero element on its diagonal satisfying0 < σ1 ≤ 1. Notice also
thatLs = S

1/2
ss F andLr = S

1/2
rr G, whereF andG contain the left

and right singular vectors ofC.
Substituting (13) and (14) into (12), we obtain the following

equivalent optimization problem

max
T∈T ,0<σ1≤1

− log det (TΛ1T
H) − tr (T−HΛ

−1
1 T

−1
LΛsL

H) ,
(15)

whereT is the transformation group defined in (8). DefiningPH =

T−1L, which also belongs to the transformation groupT , problem
(15) can be reformulated as

max
P∈T ,0<σ1≤1

log det (PH
Λ
−1
1 P) − tr (Λ−11 P

H
ΛsP) . (16)

After some algebra we find thatΛ−11 can be written as

Λ
−1
1 = [IM J

J IM
]−1 = I2M + [−σ1D D

D −σ1D
] , (17)

whereD = diag (− σ1

(1−σ2

1
)
,0,⋯,0). Plugging (17) into (16) yields

the following problem

max
P∈T ,0<σ1≤1

log det (PH
P) − tr(PH

P) − log(1 − σ2

1)+
σ1(1 − σ2

1
) (2Re(pH

s Kpr) − σ1∣∣ps∣∣2 − σ1∣∣pr ∣∣2) ,
(18)

whereps andpr are the first columns ofPs andPr, respectively.
Solving (18) with respect toPs andPr, it is easy to see that they
should be unitary matrices. The optimization with respect to σ1

shows that we have to takePs = Pr =IM andσ1 = k1, thus making
the last term in (18) zero.

Now, recalling thatPs = T
−1
s Ls, we see thatPs = IM implies

Ts = Ls = S
1/2
ss F, and similarlyTr = Lr = S

1/2
rr G. Substitut-

ing these values into (14), the ML estimate of the covariancematrix
underH1 is finally given by

R̂1 = [ Sss S
1/2
ss f1 k1 g

H
1 S

1/2
rr

S
1/2
rr g1 k1 f

H
1 S

1/2
ss Srr

] . (19)

It is now easy to check that the compressed likelihood underH1

reduces to

f(X; R̂1) = e−2MN

π2MN (det(Sss)det(Srr)(1 − k2

1
))N , (20)

and, finally, the likelihood ratio is

f(X; R̂1)
f(X; R̂0) =

1

(1 − k2

1
)N , (21)

which proves Theorem 11.

In comparison to previous works on detecting correlation in
multi-channel time series, the main difference of our work lies on
the fact that the anti-diagonal blocks of the composite matrix under
the alternative for our model,̂Rsr andR̂rs, are rank-one matrices.
Otherwise, if the covariance matrix underH1 were an arbitrary
pd matrix, the GLR statistic would be the following generalized
Hadamard ratio [23], [24]

H =
det(S)

det(Sss)det(Srr) =
M∏
i=1

(1 − k2

i ) (22)

Notice also that1 − H is in fact the Generalized Coherence (GC)
originally defined in [25], and widely applied to multi-channel de-
tection problems since then.

3.3. Distribution under the null hypothesis

UnderH0, the joint density of the squared canonical correlations
was derived in 1939 by Hsu, [26]. However, to obtain the marginal
distribution ofk2

1 from the joint density is not an easy task in gen-
eral, and no simple closed-form expression exists. In this work, we
exploit recent results from random matrix theory that provide the
asymptotic distribution of the largest squared canonical correlation
whenN →∞, M →∞ with M/N → p. Specifically, we have the
following result adapted from [27].

Theorem 2. Let l1 = log(k2

1/(1−k2

1)), be the logit transform of the
largest squared canonical correlation. Then, as N →∞, M →∞,
M/N → p, we have the limiting distribution

P { l1 − µN,M

σN,M

≤ x}→ F2(x), (23)

where F2(x) is the distribution function for the Tracy-Widom law of
order 2. The centering and scaling constants are given by

µN,M =
σ−11 u1 + σ

−1
2 u2

σ−1
1
+ σ−1

2

, and σ
−1
N,M =

1

2
(σ−11 + σ−12 ) , (24)

1After the submission of this paper, it was brought to our attention that a
different proof of this result was given in [22].
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Fig. 1. Empirical histogram and unitary Tracy-Widom distribution
(solid line) forM = 4 antennas andN = 20 snapshots.

where u1 = 2 log tan(2α), u2 = 2 log tan(2β), and

σ
3

1 =
16

(N + 1)2 sin2(4α) sin2(2α) ,
σ
3

2 =
16

(N − 1)2 sin2(4β) sin2(2β) ,
with

sin
2(α) = M + 1/2

N + 1
, and sin

2(β) = M − 1/2
N − 1

.

Proof. See Theorem 2 in [27].

The accuracy of the Tracy-Widom approximation is verified in
Fig. 1, which shows the normalized histogram of105 realizations of
the random variable

l1−µN,M

σN,M
under the null, and the unitary Tracy-

Widom distributionF2(x) in solid line. In this example the number
of antennas isM = 4 and the number of snapshots isN = 20. The
centering and scaling parameters obtained from (24) areµN,M =

0.5729 andσN,M = 0.4091, respectively. Notice also that these pa-
rameters only depend on the number of antennas,M , and the number
of snapshots,N . Therefore, the proposed GLR test has the constant
false alarm rate (CFAR) property with respect to the reference chan-
nel SNR.

4. SIMULATION RESULTS

In this section we evaluate the performance of the GLR detector by
means of Monte Carlo simulations. According to our model, the ad-
ditive noise follows a Gaussian distribution with arbitrary, randomly
generated, covariance matrices(Σss,Σrr). For each realization we
scale the channels so that the signal-to-noise-ratio (SNR), defined
asSNRi = 10 log

10
(hH

i hi/ tr(Σii)), i = {s, r}, is constant. For
comparison, we have also included the performance of three other
detectors:

1. Generalized Coherence (GC) detector [23]- [25].

2. Covariance matching detector: this detector uses structured
estimates forR0 andR1 that minimize the Frobenius norm
between the sample covariance and the estimate:∣∣S −R∣∣2F .
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Fig. 2. Pd curves versusSNR for an scenario withM = 4 antennas
andN = 100 snapshots,Pfa = 1e − 3.

3. Cross-correlation (CC) detector, which uses∣ tr(SH
srSsr)∣ as

statistic. This is an extension to the multiantenna case of the
CC detector typically used in passive radar systems [3].

For the considered scenario, the entries ofhs andhr are ran-
domly drawn from a zero-mean Gaussian distribution with unit vari-
ance, and scaled to achieve the desiredSNR. The probability of false
alarm for all detectors is fixed toPfa = 1e−3. The threshold for the
GLRT that achieves the requiredPfa is obtained using the Tracy-
Widom approximation described in subsection 3.3, whereas for the
GC detector we use the null distribution derived in [24]. Forthe co-
variance matching and the cross-correlation detectors thethreshold
is determined empirically using105 random realizations underH0.
Moreover, for eachSNR and for each realization of the unknowns(hs,hr ,Σss,Σrr), the probability of detection is estimated from
2000 independent simulations.

The first example involves a scenario withM = 4 antennas and
N = 100 snapshots. Fig. 2 depicts the probability of detectionPd

versus theSNR (we assume that theSNR is the same for both chan-
nels) for the considered detectors. The GLRT performs slightly bet-
ter than the GC detector, and both clearly improve on the covariance
matching and the CC detectors. Fig. 3 shows the results obtained
for a scenario withM = 8 antennas andN = 250 snapshots, where
we can observe that the relative advantage of the GLRT, whichex-
ploits the rank-one structure of the covariance matrix, with respect to
the GC detector becomes more important as the number of antennas
increases.

5. CONCLUSIONS

This paper addressed the problem of detecting a rank-one signal in
a two-channel passive network when the noise covariance matrices
at both the surveillance and the reference channels are arbitrary pos-
itive definite matrices. The GLRT for this problem is given bythe
largest empirical canonical correlation between the surveillance and
the reference channels. Recent results from random matrix theory
show that the limiting distribution of the test statistic under the null
converges to a Tracy-Widom law of order 2, which allowed us toset
the threshold for a given false alarm probability.
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[4] Tevfik Yücek and H. Arslan, “A survey of spectrum sensing
algorithms for cognitive radio applications,”IEEE Comm. Sur-
veys & Tutorials, vol. 11, no. 1, pp. 116-130, 2009.

[5] L. Li, G. Zhao, X. Zhou, “Enhancing small cell transmission
opportunity through passive receiver detection in two-tier het-
erogeneous networks,”IEEE Trans. Signal Process., vol. 63,
no. 13, pp. 3461-3473, July 2015.

[6] G. Cui, J. Liu, H. Li, B. Himed “Signal detection with noisy
reference for passive sensing,”Signal Processing, vol. 108, pp.
389-399, 2015.

[7] O. Besson, S. Kraut, L. Scharf, “Detection of an unknown
rank-one component in white noise,”IEEE Trans. Signal Pro-
cess., vol. 54, no. 7, pp. 2835-2839, July 2006.

[8] D. Hack, L. Patton, B. Himed “Multichannel detection of an
unknown rank-one signal with uncalibrated receivers,”IEEE
Int. Conf. Acoust., Speech and Signal Proc. (ICASSP), Flo-
rence, Italy, May 2014.

[9] D. E. Hack, C. W. Rossler, L. K. Patton, “Multichannel de-
tection of an unknown rank-N signal using uncalibrated re-
ceivers,” IEEE Signal Process. Lett., vol. 21, no. 8, pp. 998-
1002, Aug. 2014.

[10] D. Ramirez, G. Vazquez-Vilar, R. Lopez-Valcarce, J. Via, I.
Santamaria, “Detection of rank-P signals in cognitive radio
networks with uncalibrated multiple antennas,”IEEE Trans.
Signal Process., vol. 59, no. 8, pp. 3764-3774, Aug. 2011.

[11] A. Taherpour, M. Nasiri-Kenari, S. Gazor, “Multiple antenna
spectrum sensing in cognitive radios,”IEEE Trans. on Wireless
Comm., vol. 9, no. 2, pp. 814-823, 2010.

[12] J. Sala-Alvarez, G. Vazquez-Vilar, R. Lopez-Valcarce“Mul-
tiantenna GLR detection of rank-one signals with unknown
power spectrum in white noise with unknown spatial correla-
tion,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 3065-
3078, June 2012.

[13] S. Sirianunpiboon, S. D. Howard, D. Cochran, “Multiple-
channel detection of signals having known rank,”IEEE Int.
Conf. Acoust., Speech and Signal Proc. (ICASSP), pp. 6536-
6540, Vancouver, Canada, 2013.

[14] J. K. Tugnait, “On multiple antenna spectrum sensing under
noise variance uncertainty and flat fading,”IEEE Trans. Signal
Process., vol. 60, no. 4, pp. 1823-1832, 2012.

[15] A. Leshem, A.-J. Van der Veen, “Multichannel detectionof
Gaussian signals with uncalibrated receivers,”IEEE Signal
Process. Letters, vol. 8, no. 4, pp. 120122, 2001.

[16] R. Zhang, T. Lim, Y.-C. Liang, Y. Zeng, “Multi-antenna based
spectrum sensing for cognitive radios: A GLRT approach,”
IEEE Trans. on Comm., vol. 58, no. 1, pp. 8488, 2010.

[17] P. E. Howland, D. Maksimiuk, G. Reitsma “FM radio based
bistatic radar,”IEE Proc. of Radar, Sonar and Navigation, vol.
152, no. 3, pp. 107-115, June 2005.

[18] E. L. Lehmann, J. P. RomanoTesting Statistical Hypotheses,
Third Ed., New York, Springer-Verlag, 2005.

[19] A. Pezeshki, L. L. Scharf, J. K. Thomas, B. D. Van Veen,
“Canonical coordinates are the right coordinates for the low-
rank Gauss-Gauss detection and estimation,”IEEE Trans. Sig-
nal Process., vol. 54, no. 12, pp. 4817-4820, Dec. 2006.

[20] P. J. Schreier, L. L. Scharf, A. Hanssen, “A generalizedlike-
lihood ratio test for impropriety of complex signals,”IEEE
Signal Process. Letters, vol. 13, no. 7, pp. 433-436, July 2006.

[21] S. M. Kay, J. R. Gabriel “An invariance property of the gener-
alized likelihood ratio test,”IEEE Signal Process. Letters, vol.
10, no. 12, pp. 352-355, Dec 2003.

[22] P. Stoica, K. M. Wong, Q. Wu “On a nonparametric detection
method for array signal processing in correlated noise fields,”
IEEE Trans. Signal Process., vol. 44, no. 4, pp. 1030-1032,
Apr. 1996.

[23] D. Ramirez, J. Via, I. Santamaria, L. L. Scharf, “Detection of
spatially correlated Gaussian time series,”IEEE Trans. Signal
Process., vol. 58, no. 10, pp. 5006-5015, Oct. 2010.

[24] N. Klausner, M. R. Azimi-Sadjadi, L. L. Scharf, “Detection
of spatially correlated time series from a network of sensorar-
rays,” IEEE Trans. Signal Process., vol. 62, no. 6, pp. 1396-
1407, March 2014.

[25] D. Cochran, H. Gish, D. Sinno, “A geometric approach to mul-
tiple channel signal detection,”IEEE Trans. Signal Process.,
vol. 43, pp. 2049-2057, Sep. 1995.

[26] P. L. Hsu, “On the distribution of roots of certain determinantal
equations,”Ann. Eugenics, vol. 9, pp. 250-258, 1939.

[27] I. M. Johnstone, “Multivariate analysis and Jacobi ensembles:
Largest eigenvalue, Tracy-Widom limits and rates of conver-
gence,”Ann. Statist., vol. 36, no.6, pp. 2638-2716, 2008.


