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Shared Oncogenic Pathways Implicated in
Both Virus-Positive and UV-Induced Merkel
Cell Carcinomas

Marı́a del Carmen González-Vela1,2,17, Soraya Curiel-Olmo2,17, Sophia Derdak3,14, Sergi Beltran3,14,
Miguel Santibañez4, Nerea Martı́nez2, Alfredo Castillo-Trujillo5, Martha Gut3,14,
Roxana Sánchez-Pacheco1, Carmen Almaraz2, Laura Cereceda2, Beatriz Llombart6,
Antonio Agraz-Doblas7,16, José Revert-Arce2, José Antonio López Guerrero8, Manuela Mollejo9,
Pablo Isidro Marrón10, Pablo Ortiz-Romero11, Lynnette Fernandez-Cuesta12,15, Ignacio Varela7,
Ivo Gut3,14, Lorenzo Cerroni13, Miguel Ángel Piris1,2,18 and José Pedro Vaqué2,7,18
Merkel cell carcinoma (MCC) is a highly malignant neuroendocrine tumor of the skin whose molecular
pathogenesis is not completely understood, despite the role that Merkel cell polyomavirus can play in 55e90%
of cases. To study potential mechanisms driving this disease in clinically characterized cases, we searched for
somatic mutations using whole-exome sequencing, and extrapolated our findings to study functional
biomarkers reporting on the activity of the mutated pathways. Confirming previous results, Merkel cell
polyomavirus-negative tumors had higher mutational loads with UV signatures and more frequent mutations in
TP53 and RB compared with their Merkel cell polyomavirus-positive counterparts. Despite important genetic
differences, the two Merkel cell carcinoma etiologies both exhibited nuclear accumulation of oncogenic
transcription factors such as NFAT or nuclear factor of activated T cells (NFAT), P-CREB, and P-STAT3, indicating
commonly deregulated pathogenic mechanisms with the potential to serve as targets for therapy. A multi-
variable analysis identified phosphorylated CRE-binding protein as an independent survival factor with respect
to clinical variables and Merkel cell polyomavirus status in our cohort of Merkel cell carcinoma patients.
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INTRODUCTION
Merkel cell carcinoma (MCC) is a highly malignant neuro-
endocrine tumor of the skin, with an increasing number of
diagnosed cases and deaths attributable to the tumor. MCC
has a relatively low incidence, but the mortality rate of
diagnosed cases is 33%, which exceeds that of melanoma in
the skin (reviewed in Hughes et al., 2014). MCC primarily
affects older and immunosuppressed patients who, at the
time of diagnosis, frequently have advanced clinical stage
disease. This dramatically affects the 5-year survival rate,
which is 64% in patients with localized tumors, 39% in those
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with loco-regional metastasis, and 18% in those with distant
metastasis (Sarnaik et al., 2010).

The origin of MCC remains uncertain. The role of Merkel
and/or pluripotent epidermal cells is currently under discus-
sion (McCardle et al., 2010; Ratner et al., 1993). Recent
evidence suggests that clonal integration of Merkel cell
polyomavirus (MCPyV) is one of the main etiological mech-
anisms by which MCC develops. It has been found in
55e90% of the cases analyzed (Becker et al., 2009; Bhatia
et al., 2010; Duncavage et al., 2009; Feng et al., 2008;
Garneski et al., 2009). MCPyV expresses large, small, and
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Correspondence: José Pedro Vaqué, Instituto de Biomedicina y Biotecnologı́a
de Cantabria, PCTCAN, C/Albert Einstein 22, 39011 Santander, Spain. E-mail:
vaquej@unican.es

Abbreviations: IHC, immunohistochemistry; KEGG, Kyoto Encyclopedia of
Genes and Genomes; MCC, Merkel cell carcinoma; MCPyV, Merkel cell
polyomavirus; NFAT, nuclear factor of activated T cells; P-CREB, phosphor-
ylated CRE-binding protein; P-STAT, phosphorylated signal transducer and
activator of transcription; RB, retinoblastoma; RTK, receptor with tyrosine
kinase activity; SSM, somatic single-base mutation

Received 1 February 2016; revised 3 August 2016; accepted 4 August 2016;
accepted manuscript published online 1 September 2016; corrected proof
published online XXX

estigative Dermatology. This is an open access
-nc-nd/4.0/). www.jidonline.org 1

http://dx.doi.org/10.1016/j.jid.2016.08.015
mailto:vaquej@unican.es
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.jidonline.org
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57-kDa T antigens that have the potential to inhibit retino-
blastoma (RB) activity (by large T antigen) and promote MCC
tumorigenesis, although the mechanisms responsible are
poorly understood (Stakaityte et al., 2014). Along with
MCPyV, there is increasing evidence that sun exposure may
also be a major independent etiological factor. MCC most
commonly develops in areas of the skin exposed to the sun,
such as the head and neck, as in other malignant skin tumors
such as melanoma (Davies et al., 2002; Lunder and Stern,
1998; Rockville Merkel Cell Carcinoma Group, 2009). In
this regard, recent work by independent laboratories has
shown important genetic differences between MCPyVþ and
MCPyVe MCC tumors, the latter harboring higher mutational
burdens with UV signatures (Goh et al., 2015; Harms et al.,
2015; Wong et al., 2015).

From a molecular perspective, the main mechanisms of
transformation promoting MCCs are still partially unknown.
Mutations in TP53 have been observed in 14e33% of MCC
patients. They are considered a rare event in MCCs that are
mostly confined to MCPyVe cases (Harms et al., 2015;
Lassacher et al., 2008). Moreover, mutations affecting
PIK3CA and deregulated PI3K-mTOR activity have been
observed in patient samples and cell lines (Hafner et al.,
2012; Nardi et al., 2012), and alterations in NOTCH and
RAS/mitogen-activated protein kinase signaling pathways
(Harms et al., 2015) have been detected in MCCs. However,
these advances are not yet used to diagnose or treat the dis-
ease. Current treatment options mainly rely on surgical
excision combined with loco-regional adjuvant radiation
(Harring et al., 2011).

In this study, we examined a cohort of clinically charac-
terized MCC patients using a combination of whole-exome
sequencing approaches and a selection of biomarkers, cho-
sen on the basis of the mechanistic interpretation of the
genomic data. We characterized two main MCC etiologies in
our cohort: MCPyVþ tumors, which had few mutations and a
high survival rate, and MCPyVe tumors, which had more
genomic alterations and a worse clinical outcome. We
detected a number of signaling mechanisms with the poten-
tial to participate in the development of MCC and studied
these using specific endpoint immunohistochemical bio-
markers to examine their activity. We found that MCPyVþ

and MCPyVe tumors can share specific disease mechanisms,
as implied by the detection of positive nuclear factor of
activated T cells (NFAT), phosphorylated CRE-binding protein
(P-CREB), and phosphorylated signal transducer and activator
of transcription-3 (P-STAT) immunostaining in MCC samples.
In addition, MCPyVe tumors almost exclusively developed
alternative mechanisms of disease, as indicated by C-MYC
and LEF1 expression in our sample series with respect to their
MCPyVþ counterparts. Finally, we found a clinical correla-
tion between P-CREB nuclear expression and a worse prog-
nosis in MCC patients that was independent of sex, age,
clinical stage, and MCPyV status.

RESULTS
Inverse correlation between MCPyV and UV mutational
signature in MCC

We initially characterized the genomic variants in a series of
15 patients with MCC (henceforth referred to as the discovery
Journal of Investigative Dermatology (2016), Volume -
cohort; see the clinical data in Table 1, and see
Supplementary Table S1 online). The mean age of patients
was 75.5 years, and 53% of the study population were men.
All samples corresponded to primary tumors located in sun-
exposed areas in eight of the patients. We generated two
paired-end 101-base pair whole-exome sequencing libraries
and sequenced paired tumoral and nontumoral genomic
DNA for each patient. This allowed us to uniquely map an
average of approximately 86 million reads per sample, which
were analyzed for the presence of somatic mutations as
previously described (Martinez et al., 2014; Vaque et al.,
2015). Under these conditions, the mean coverage of the
target sequence was �105 (�53e170), with an average of
92% (range ¼ 71.25e97.07%) of the targeted bases having at
least �15 coverage (see Supplementary Table S2 online for a
detailed description of the genomic analysis). Finally, our
somatic mutation analyses detected 16,198 somatic single-
base mutations (SSMs) in tumor samples (range ¼
29e3,644 in the discovery cohort of samples), of which
4,913 (range ¼ 5e1,275) are responsible for amino-acid
changes (Table 1, and see Supplementary Tables S3 and S4
online).

MCPyV status was determined by immunohistochemistry
(IHC) for MCPyV T-antigen protein expression in all patients
(except patients 8 and 13), followed by a confirmatory PCR
analysis in a subset of cases that showed no discrepancies
(see Supplementary Materials online). From a genomic
perspective, we detected two clearly different subsets of pa-
tients. On one hand, those MCC lesions that tested positive
for the Merkel polyomavirus (MCPyVþ) had a low number of
somatic mutations, with an average mutational index of 0.75
amino acid-changing SSMs/megabase. On the other hand,
lesions that had negative test results for this virus (MCPyVe)
showed higher mutational indexes, averaging 19.81 amino
acid-changing SSMs/megabase, which is comparable to
values observed in cutaneous melanomas (Berger et al.,
2012). We found that all MCPyVe lesions, except that from
patient 13, harbored a UV signature defined by the detection
of more than 60% C>T transitions at dipyrimidine sites or
more than 5% CC>TT mutations of the total number of SSMs
in each case (Table 1 and Figure 1a) (Brash, 2015; The Cancer
Genome Atlas Network, 2015). In contrast, this UV signature
was not detected in MCPyVþ patients. Thus, we can
conclude that the presence of MCPyV in our discovery cohort
was inversely correlated with mutational indexes and the
presence of UV signatures.

Common and divergent mechanisms of disease in MCPyVD

and MCPyVe MCCs

Turning our attention to those somatic mutations that cause
amino acid changes, we detected a number of recurrently
mutated genes in our discovery cohort, including FAT4,
TP53, RYR2, RPTOR, APC, and RB1, among others, that
were found almost exclusively in MCPyVe MCC lesions. We
performed a validation panel over 279 positions, which
rendered 98% of validated SSMs (see Supplementary
Table S5 online). A list of the most recurrently detected
genes with mutations is provided in Supplementary Table S6
online. To gain a deeper insight into the functional relevance
of the mutations found in this study, we performed an



Table 1. Clinical and genomic characteristics of patients in the discovery cohort

Patient Sex
Age in
years

Lesion
Location Stage MCPyVa

Sample
Typeb

C>T
Dipyrimidinec

% C>T
Dipyrimidine CC>TT % CC>TT

Other
Substitutionsd

% Other
Substitutions Total SSMs

Total SSMs
AA Changee MIf

1 M 83 Leg IIIA Negative FF 1,875 83.71 6 0.27 365 16.03 2,240 722 24.07

2 M 94 Ear IV Negative FFPE 1,562 79.17 16 0.81 411 20.02 1,973 622 20.73

3 M 74 Nose IA Negative FFPE 296 70.14 3 0.71 126 29.15 422 132 4.40

4 M 81 Face IIA Negative FF 1,875 75.88 12 0.49 596 23.63 2,471 666 22.20

5 F 78 Face IV Negative FF 1,995 75.45 16 0.61 649 23.94 2,644 680 22.67

6 F 92 Leg IV Negative FF 1,306 72.72 8 0.45 490 26.84 1,796 588 19.60

7 F 75 Face IIA Negative FFPE 2,562 70.31 11 0.30 1,082 29.39 3,644 1,275 42.50

8 F 80 Leg IIIA Positive FF 11 37.93 0 0.00 18 62.07 29 7 0.23

9 M 72 Arm IIIA Positive FFPE 143 33.57 0 0.00 283 66.43 426 106 3.53

10 F 88 Thigh IIA Positive FF 12 21.05 0 0.00 45 78.95 57 13 0.43

11 M 86 Leg IIIB Positive FF 17 26.98 0 0.00 46 73.02 63 9 0.30

12 F 80 Face IV Positive FF 9 36.00 0 0.00 16 64.00 25 8 0.27

13 M 69 Lip IV Negative FFPE 71 21.91 0 0.00 253 78.09 324 71 2.37

14 F 80 Face IIA Positive FF 6 16.22 0 0.00 31 83.78 37 5 0.17

15 F 81 Leg IIB Positive FF 8 17.02 0 0.00 39 82.98 47 9 0.30

Note. Clinical data of 15 MCC cases, including sex, age at diagnosis, location of the lesion, and stage. The genomic data from each patient are also represented.

Abbreviations: AA, amino acid; C, cytosine; F, female; FF, freshly frozen; FFPE, formaldehyde-fixed paraffin-embedded; M, male; MCPyV, Merkel cell polyomavirus; MI, mutational index; SSM, somatic single-
base mutation; T, thymine.
aDetection of MCPyV.
bTypes of samples from which genomic DNA was extracted.
cNumber of C>T transitions found at dipyrimidine sites.
dNumber of other single somatic single-base mutations.
eSingle somatic nucleotide variants that provoke amino acid changes.
fCalculated as the total number of single somatic nucleotide variants that cause an amino acid change per megabase.
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unbiased OncodriveFM analysis (described in the
Supplementary Materials and in Gonzalez-Perez and Lopez-
Bigas, 2012) using all the SSMs detected in this work (see
Supplementary Table S3). This enabled us to detect potential
driver genes like TP53, CDK5RAP1, FAT4, ADAM8,
GLB1L2, OGG1, HIVEP2, and RB1 with a significant P-value
(see Supplementary Table S7 online). Moreover, using this
approach we were also able to detect a number of significant
gene modules from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway that included TP53, small cell
lung carcinoma, non-small cell lung cancer, melanoma, and
basal cell carcinoma, to name but a few (see Supplementary
Table S8 online). We searched for the main biological and
biochemical mechanisms/signaling pathways associated with
each significant gene found in our analysis alongside those
included in the specific KEGG gene modules detected with
OncodriveFM (see Supplementary Tables S7 and S8). To
simplify the presentation of our findings, we grouped these
into functional categories. These included specific subsets of
KEGG gene sets (see Supplementary Table S8) with redun-
dant biological activities (points ievi as follow) or with
shared mechanisms (points viieix as follow): (i) focal adhe-
sion and extracellular matrix: including actin cytoskeleton,
extracellular matrix, axon guidance, cell adhesion proteins,
focal adhesion, and tight junction KEGG gene sets; (ii)
metabolism: valine isoleucine degradation, ether lipid
metabolism and propanoate metabolism; (iii) transcriptional
regulation: transcriptional misregulation in cancer; (iv) RAS/
mitogen-activated protein kinase: mitogen-activated protein
kinase signaling; (v) PI3K/mTOR: PI3K-AKT and mTOR; (vi)
WNT; (vii) receptors with tyrosine kinase activity (RTKs): with
many RTKs and associated downstream signaling included in
multiple KEGG gene sets such as, for example, neurotrophin
signaling, pathways in cancer, non-small cell lung cancer or,
ErbB signaling, to name but a few; (viii) cAMP/CRE-binding
protein: included in alcoholism and amphetamine addic-
tion; (ix) calcium: vascular smooth muscle contraction or
glutaminergic signaling, and (x) other. According to our data,
these might act as disease mechanisms in MCC (Figure 1c,
and see Supplementary Table S8).

We next studied the expression of specific MCC bio-
markers, such as MCPyV, p63, RB, and TP53, in conjunc-
tion with specific transcription factors such as activated
surrogate IHC markers corresponding to the signaling
pathways described earlier. For this purpose, we considered
48 clinically characterized MCC patients (henceforth
referred to as the validation cohort), of whom 15 had been
included in the genomic study (see the clinical character-
istics in Supplementary Table S1). Along with the afore-
mentioned biomarkers, we analyzed the nuclear expression
of b-catenin and LEF-1 (WNT pathway), P-CREB (cAMP/
Figure 1. Inverse correlation between MCPyV expression and UV mutational sig

left to right. (a) Mutation spectra for each sample, showing the percentage of C>

(purple) and other substitutions (orange); (b) mutational index (MI) calculated as

presence (black boxes) or absence (white boxes). (c) Mutated genes (written ver

sample (colored box). Mutation type is highlighted in a colored box: missense (red

protein; EXTRAC., extracellular; F., focal; MAPK, mitogen-activated protein kina

phosphatidylinositol 3 kinase; REGUL., regulation; RTK, receptor with tyrosine k

mutation; T, thymine; TRANSCR., transcription; UTR, untranslated region.
CRE-binding protein), NFAT (calcium), C-MYC, and P-STAT
(RTKs) in our validation cohort of samples (Table 2). Our
results showed that MCPyVþ lesions had a homogeneous
expression landscape, with a uniform staining pattern for
specific markers, such as b-catenin (positive in the mem-
brane) and RB (positive) and C-MYC and LEF-1 (negative),
and heterogeneous staining for TP53, p63, P-CREB, and
NFAT. P-STAT was detected in only four of the 26 MCPyVþ

patients. On the other hand, MCPyVe lesions showed het-
erogeneous biomarker expression. In total, 50% of the pa-
tients had a loss of RB expression, whereas for C-MYC and
LEF-1, expression was detected almost exclusively in
MCPyVe patients but was limited to about half of these
patients (Table 2). A representation of IHC markers for a
representative MCPyVþ and MCPyVe patient is shown in
Figure 2. Despite the different genomic characteristics
observed between MCPyVþ and MCPyVe lesions, it is
possible that the two MCC etiologies share common dis-
ease mechanisms (TP53, RB, NFAT, P-STAT, and P-CREB),
with MCPyVe lesions developing additional molecular
features.

Biological relevance derived from the characterization of
MCC tumors

To explore the clinical implications of the molecular
mechanisms (biomarkers) identified in this work, we studied
their association with the clinical outcome of the patients in
our validation cohort. The clinical data for each patient are
summarized in Supplementary Table S1. We analyzed the
death events caused by MCC in different sets of patient
tumors characterized with respect to the positive or nega-
tive expression of each biomarker depicted as follows: (i)
biomarkers already studied by other groups in different
cohorts of patients, that is, MCPyV, TP53, RB, and p63 and
(ii) biomarkers expressed in both MCPyVþ and MCPyVe

tumors: NFAT, P-CREB, and P-STAT. We could not include
biomarkers in this study that were mainly expressed in
MCPyVe tumors (C-MYC and LEF1) alone because of the
limited cohort size. As expected, and in accordance with
previous observations by other laboratories (Carson et al.,
1998; Nardi et al., 2012; Sihto et al., 2011; Waltari et al.,
2011), MCC patients with tumors that were negative for
the expression of MCPyV and RB tended to have a poorer
clinical outcome, whereas, at least in our hands, TP53, p63,
and NFAT did not show this tendency (see Supplementary
Figure S1 online).

Those cancers that tested positive for the expression of
P-CREB or P-STAT showed significantly shorter survival than
their negative counterparts (P ¼ 0.011 and P ¼ 0.024,
respectively), with a crude hazard ratio of 3.89 for P-CREB
and 3.37 for P-STAT (Figure 3). We decided to perform
nature in MCC. Tumor samples from the discovery cohort are presented from

T transitions in dipyrimidine sites (red), the percentage of CC>TT mutations

the number of amino-acid-changing mutations per megabase and MCPyV

tically on the left side and grouped into gene-sets) are represented for each

), nonsense (purple) and UTR region (orange). C, cytosine; CREB, CRE-binding

se; MCPyV, Merkel cell polyomavirus; MI, mutational index; PI3K,

inase activity; SNV, single nucleotide variation; SSM, somatic single-base
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Table 2. Immunohistochemical detection of specific MCC biomarkers in patients characterized in the validation
cohort

Patient b-Catenin p63 NF-ATC1 P-CREB P-STAT-3 TP53 RB MYC LEF1-L MCPyV

9 Membrane Positive Positive Positive Negative Negative Positive Negative Negative Positive

10 Membrane Negative Positive Positive Positive Negative Loss Negative Negative Positive

11 Membrane Negative Positive Negative Negative Positive Positive Negative Negative Positive

12 Membrane Positive Positive Positive Negative Negative Positive Negative Negative Positive

14 Membrane Positive Positive Negative Negative Negative Positive Negative Negative Positive

15 Membrane Positive Negative Negative Negative Positive Positive Positive Negative Positive

16 Membrane Negative Negative Negative Negative Negative Positive Negative Negative Positive

17 Negative Negative Negative Negative Negative Negative Positive Negative Negative Positive

18 Membrane Negative Negative Negative Negative Negative Loss Negative Negative Positive

19 Membrane Positive Negative Negative Positive Negative Positive Negative Negative Positive

20 Membrane Positive Positive Negative Negative Positive Positive Negative Negative Positive

21 Membrane Positive Negative Positive Negative Positive Positive Negative Negative Positive

22 Membrane Negative Negative Negative Negative Negative Positive Negative Negative Positive

23 Membrane Negative Negative Positive Negative Negative Positive Negative Negative Positive

24 Membrane Positive Positive Negative Positive Negative Positive Negative Negative Positive

25 Membrane Negative Negative Negative Negative Negative Positive Negative Negative Positive

26 Negative Negative Negative Negative Negative Negative Positive Negative Negative Positive

27 Membrane Negative Negative Negative Negative Negative Positive Negative Negative Positive

8 N/D N/D N/D N/D N/D N/D N/D N/D N/D Positive

28 Membrane N/D Negative Positive Negative Positive Positive Negative Negative Positive

29 Membrane Negative Negative Negative Negative Positive Positive Negative Negative Positive

30 Membrane Negative Positive Negative Negative Negative Positive Negative Negative Positive

31 Membrane Positive Positive Negative Negative Negative Positive Negative Negative Positive

32 Membrane Positive Positive Positive Negative Positive Positive Negative Positive Positive

33 Membrane Positive Negative Positive Negative Positive Positive Negative Negative Positive

34 Membrane Positive Positive Positive Negative Positive Positive Negative Negative Positive

35 Membrane Positive Positive Negative Positive Positive Positive Negative Negative Positive

1 Negative Positive Negative Positive Positive Negative Positive Positive Positive Negative

2 Negative Negative Negative Negative Negative Positive Loss Negative Positive Negative

3 Membrane Positive Negative Positive Positive Positive Positive Positive Negative Negative

4 Negative Positive Negative Positive Negative Positive Loss Negative Negative Negative

5 Membrane Positive Positive Negative Negative Positive Loss Positive Negative Negative

6 Membrane Positive Negative Negative Positive Positive Positive Positive Negative Negative

7 Negative Positive Negative Positive Negative Positive Positive Negative Negative Negative

13 N/D N/D Negative N/D N/D N/D N/D N/D N/D Negative

36 Membrane Positive Positive Negative Negative Positive Loss Negative Negative Negative

37 Membrane Positive Negative Positive Positive Positive Loss Positive Positive Negative

38 Membrane Positive Negative Positive Positive Positive Loss Negative Negative Negative

39 Membrane Positive Positive Positive Negative Positive Loss Negative Negative Negative

40 Negative Positive Negative Positive Positive Negative Loss Negative Negative Negative

41 Membrane Negative Negative Negative Positive Negative Positive Positive Negative Negative

42 Membrane Positive Negative Positive Negative Negative Positive Negative Positive Negative

43 Membrane Negative Negative Negative Negative Positive Loss Positive Negative Negative

44 Negative Negative Positive Negative Positive Positive Loss Negative Negative Negative

45 Membrane Negative Negative Negative Negative Negative Loss Negative Negative Negative

46 Membrane Positive Positive Positive Positive Negative Positive Positive Negative Negative

47 Negative Negative Positive Positive Positive Negative Positive Negative Positive Negative

48 Membrane Positive Positive Positive Positive Negative Positive Positive Positive Negative

Note. Assessment of the expression of specific markers by immunohistochemistry. All these markers are related to pathways detected by an unbiased
approach as being especially altered in tumor samples. Boldface type indicate potentially pathogenic markers.

Abbreviations: P-CREB, phosphorylated CRE-binding protein; P-STAT, phosphorylated signal transducer and activator of transcription; RB, retinoblastoma;
MCPyV, Merkel cell polyomavirus.
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multivariable analyses of P-CREB and P-STAT including
clinical data (age, sex, and stage) with MCPyV status and
detected stage as a confounding variable (not shown). After
including all of these variables in the same multivariable
Journal of Investigative Dermatology (2016), Volume -
model, only P-CREBepositive status remained as an
independent predictor of mortality: adjusted HR for
P-CREB ¼ 5.56; 95% confidence interval ¼ 1.22e25.33
(Figure 3).



Figure 2. Pathway characterization of MCPyVD and MCPyVe MCC tumors. Immunohistochemical analyses of two representative cases of MCPyVþ (left,

patient 19) and MCPyVe (right, patient 37). The immunohistochemical analyses show staining for the indicated marker in each case. In patient 37 staining for

NFAT is negative in the nucleus of the tumoral cell, but there are some positive lymphocytes. Staining for P-CREB shows nuclear positivity in tumor cells. Scale

bar ¼ 100 mm. H&E, hematoxylin and eosin; MCC, Merkel cell carcinoma; MCPyV, Merkel cell polyomavirus; NFAT, nuclear factor of activated T cells; P-CREB,

phosphorylated CRE-binding protein; RB, retinoblastoma.

MC González-Vela et al.
Shared Mechanisms of Disease in MCC
DISCUSSION
MCC is a type of cancer with increasing incidence and a high
mortality rate. Despite recent advances in our understanding
of the main biological mechanisms involved in its clinical
evolution, we still know little about the molecular biology of
this disease, as is reflected by the current lack of any specific
therapy (Becker, 2010; Hughes et al., 2014).

In this study, we used a combination of genomic tech-
niques and clinical data to mechanistically and biologically
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Hazard Ratios for P-CREB and STAT markers, in relation to mortality

Vital status
Death
N=15

Survival
N=33 HRca (95% CI)

P-CREB

Negative

Positive 11.87

5

9

20

12

1

3.89

--

1.28

P-STAT

Negative

Positive 10.3

7

7

24

8

1

3.37

--

1.1

a HRc = Crude Hazard Ratio.
b HRa=Hazard Ratio adjusted for P-CREB, P-STAT, MCPyV status, sex, age
characterize MCC tumors. These methods included deep-
sequencing approaches (whole-exome sequencing) in sam-
ples from 15 patients (the discovery cohort) and a selection of
immunohistochemical markers in 48 samples from MCC
patients (the validation cohort).

First, we found different genetic patterns of disease
mechanisms in our cohort of patients with MCPyVþ and
MCPyVe MCC tumors. Consistent with previous observa-
tions, our cohort of patients with MCPyVe tumors
P-STAT negativeTAT positive

P-STAT

p=0.024

00 2000 3000 4000 5000

time (days)

HRab (95% CI)

1

5.56

--

1.22 25.33

1

1.65

--

0.22 12.35

 and stage.

Figure 3. Association of survival of

MCC patients with specific

characterization. Kaplan-Meier

curves showing percentage of survival

from patients with positive (red) or

negative (black) expression of the

indicated biomarkers and their

respective P-values: (a) P-CREB (P ¼
0.011) and (b) P-STAT (P ¼ 0.024). (c)

Crude hazard ratio and hazard ratio

adjusted for P-STAT3, P-CREB, MCPyV

status, sex, age, and stage, with 95%

confidence intervals. CI, confidence

interval; HRa, adjusted hazard ratio;

HRc, crude hazard ratio; MCC,

Merkel cell carcinoma; P-CREB,

phosphorylated CRE-binding protein;

P-STAT, phosphorylated signal

transducer and activator of

transcription.
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accumulated most of the detected somatic mutations, giving
an average mutational index of 20 amino acid-changing
mutations/megabase and a UV signature comparable to that
of malignant melanoma (C>T at dipyrimidine sites above
60% of the total SSMs) (The Cancer Genome Atlas Network,
2015; Goh et al., 2015; Harms et al., 2015; Wong et al.,
2015). By contrast, MCPyVþ tumors had lower mutational
indexes (average mutational index ¼ 0.75 amino acid-
changing mutations/megabase) that are similar to those
observed for small B-cell lymphomas (Vaque et al., 2014). To
provide our mutational data with a functional interpretation
we used an unbiased approach (OncodriveFM), which
enabled us to identify specific genes and pathways that were
significantly altered in our MCC samples, presumably with
the potential to participate as disease mechanisms in MCC.
We explored this possibility by focusing on the expression of
a group of transcription factors as endpoint surrogates for the
activity of the genes and signaling pathways identified in this
study. These included b-catenin and LEF-1 (WNT pathway
[Duchartre et al., 2016]), NFAT (calcium, reviewed in
Mognol et al., 2016), P-CREB (cAMP/CRE-binding protein
signaling [Rodriguez and Setaluri, 2014]), P-STAT (RTKs
signaling, reviewed in Yu et al., 2014) and C-MYC (RAS/
mitogen-activated protein kinase, PI3K, and RTKs signaling
pathways [Kress et al., 2015]), along with MCPyV, TP53, p63,
and RB (previously identified MCC biomarkers [Zager et al.,
2011]) (Figures 1 and 4).

Our data enabled a number of MCC mutations (with a
previous identification number in the Catalogue of Somatic
Mutations in Cancer identification, as shown in
Supplementary Table S3) to be associated with specific
biomarker expression in MCC samples from the validation
cohort (Table 2 and Figure 1). For example, in patient 5 we
detected two potentially inactivating TP53 mutations pro-
voking amino-acid changes, R280K (COSM129830) and
H47Y (COSM129851), and a truncating RB1 mutation
(W195*, COSM214151) with positive (TP53) and negative
Figure 4. Deregulated mechanisms of

disease in MCC. Schematic

representation of the main signaling

pathways found to be altered in MCC.

Pink boxes indicate recurrently

mutated genes in our discovery

cohort. Percentage of expression for

each biomarker in our validation

cohort is represented in maroon

(MCPyVþ) or yellow (MCPyVe) boxes.

EM, extracellular matrix; GPCR, G

protein-coupled receptor; MCPyV,

Merkel cell polyomavirus; NFAT,

nuclear factor of activated T cells; P-

CREB, phosphorylated CRE-binding

protein; MAPK, mitogen-activated

protein kinase; P-STAT,

phosphorylated signal transducer and

activator transcription; PI3K,

phosphatidylinositol 3 kinase; RTK,

receptor with tyrosine kinase activity.
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(RB) protein expression. These can be due to a direct effect on
a specific gene, but we cannot rule out potential indirect
effects of specific gene mutations on the activity of its asso-
ciated signaling pathway (see Figure 4). In this regard and to
serve as an example, HIVEP2 (also known as Myc intron
binding protein 1, MIBP1) is a significantly mutated gene in
our analysis, detected in patients 1, 3, 7 (missense mutations),
and 6 (a truncating mutation). In our work, IHC data showed
positive results for C-MYC in patients 1, 3, and 6, suggesting a
potential correlation between MIBP1 mutations (presumably
inactivating) and C-MYC expression. Furthermore, it has
been shown that MIBP1 can inhibit transcription of C-MYC
(Iwashita et al., 2012), and the expression of both genes has
been shown to be inversely correlated in human cells (Zajac-
Kaye et al., 2000). Also, ERBB4 mutations in patients 1 (two
missense mutations) and 6 (R711C, COSM160827) could
contribute to activating c-MYC and STAT (see also Figure 4).
On the other hand, we detected a large number of mutations
in adenylate cyclases and G-protein coupled receptors that
could participate in cAMP/CRE-binding protein activation,
for example ADCY10-P241H (COSM899133) and GRM3-
E538K (COSM229505), which were found in patient 1 (P-
CREBepositive). In our study, perhaps with the exception of
TP53, we did not detect hotspot mutations with functional
validation to predict activation or repression of a specific
signaling pathway. It is possible that pursuing the study of
inactivating mutations in MIBP1 or presumably activating
mutations such as ERBB4-R711C could improve our ability to
understand important MCC oncogenic mechanisms. Never-
theless, it is conceivable that by analyzing the expression of a
specific subset of biomarkers in MCC samples, we could
detect deregulated mechanisms of disease, as might be ex-
pected given the mutational data. From a mechanistic
perspective, and despite substantial differences in the num-
ber of mutations, the MCPyVþ and MCPyVe tumors exam-
ined here unexpectedly shared several deregulated signaling
mechanisms, as indicated by the detection of specific
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biomarkers such as P-STAT, P-CREB, and NFAT in samples
from our validation cohort of MCC patients. On the other
hand, we also found that C-MYC and LEF1 were expressed
almost exclusively in MCPyVe patients. At first glance, this
could be due to nothing more than the accumulation of so-
matic mutations in this type of MCC tumor. However,
MCPyVþ patients showed activated P-STATe, P-CREBe, and
NFATeassociated signaling in the absence of specific muta-
tions, resulting in the mechanistic mimicry of MCPyVe tu-
mors. In our opinion, these findings suggest that MCPyVe

tumors with high mutational loads can acquire specific bio-
logical properties through the activation of alternative
oncogenic pathways including, but not restricted to, those
detected in this work: C-MYC and LEF1. Our results strongly
suggest a need for further studies that would determine their
contribution to the biology and targeted therapy of this
disease.

From a biological perspective, the ability of a range of
markers to predict a worse clinical evolution of MCC patients
has been examined. Of these, MCPyVe tumors (Nardi et al.,
2012), p63 expression (Asioli et al., 2007), and the percent-
age of MCC cells expressing Ki67 (Llombart et al., 2005) have
been proposed as factors associated with bad prognosis. We
found a tendency toward worse survival in patients charac-
terized with specific biomarkers used individually: MCPyVe

and RBe. Under these circumstances, it is possible that more
significant results could be obtained from additional methods
that attempt to better determine the status of specific bio-
markers such as TP53, or from increasing the cohort size.
Two mechanisms shared by MCPyVþ and MCPyVe MCC
tumors were highly significant predictors of survival: P-CREB
and P-STAT. A multivariable analysis detected P-CREB as
being a strong predictor of mortality independent of sex, age,
stage, MCPyV status, and P-STAT. Thus, our findings argue for
a potential role for these disease mechanisms in the biolog-
ical evolution of both types of MCC lesions. Further efforts
should be made to explore the biological role of these
markers in larger series of samples from clinically charac-
terized MCC patients. Our results also suggest that a better
characterization of the molecular mechanisms that can
control CREB activation in MCC cancers with different
MCPyV status could be useful for developing tools for diag-
nosis, prognosis, and treatment of this disease.

In summary, we characterized a cohort of MCC patients
using an original combination of genomic and IHC
approaches applied to this field. Confirming previous data, we
found two distinct etiologies with clearly divergent mutational
signatures. Despite these differences, the data arising from our
work show that MCPyVþ and MCPyVe MCC tumors can
develop similar mechanisms of disease with clinical impli-
cations for patient survival and potential to serve as targets for
therapy. Moreover, a subset of MCC patients with CRE-binding
protein and/or signal transducer and activator of transcription
activation developed a more aggressive disease that was
associated with worse survival. In fact, within our patient
cohort, we found P-CREB to be a strong independent survival
factor for this disease. Thus, in the current MCC clinical
setting, upon mechanistic characterization of MCC tumors at
diagnosis, we may be able to predict poorer outcomes and
explore approaches for specific therapy.
MATERIALS AND METHODS
Ethics statement

All human samples used in this study were collected following the

Declaration of Helsinki protocols after obtaining written informed

consent from each patient and the doctors involved, as required by

the Comité Ético de Investigación Clı́nica, Cantabria (CEIC). We kept

the original records under specific restricted conditions to fulfill the

current legal requirements. All processes were approved and con-

ducted in adherence with the specific recommendations of the CEIC.

Patient samples

Samples from 48 clinically characterized MCC patients were used

(validationcohort; seeSupplementaryTableS1). From these, 15patients

(discovery cohort; Table 1, and see Supplementary Table S1)with a total

of 30 paired (nontumoral and tumoral) formalin-fixed, paraffin-

embedded and freshly frozen samples were selected for whole-exome

sequencing analysis. Patients were included consecutively.

Additional methods

See Supplementary Materials online. Supplementary data is also

included, since it is a single file with additional methods and sup-

plementary information.
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