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Abstract  1 

Long-term survival remains low for most patients with glioblastoma which reveals the 2 

need for markers of disease outcome and novel therapeutic targets. We describe that 3 

ODZ1 (also known as TENM1), a type II transmembrane protein involved in fetal brain 4 

development, plays a crucial role in the invasion of glioblastoma cells. Differentiation 5 

of glioblastoma stem-like cells drives the nuclear translocation of an intracellular 6 

fragment of ODZ1 through proteolytic cleavage by signal peptide peptidase-like 2a. The 7 

intracellular fragment of ODZ1 promotes cytoskeletal remodelling of glioblastoma cells 8 

and invasion of the surrounding environment both in vitro and in vivo. Absence of 9 

ODZ1 by gene deletion or downregulation of ODZ1 by small interfering RNAs 10 

drastically reduces the invasive capacity of glioblastoma cells. This activity is mediated 11 

by an ODZ1-triggered transcriptional pathway, through the E-box binding Myc protein, 12 

that promotes the expression and activation of Ras homolog family member A (RhoA) 13 

and subsequent activation of Rho-associated, coiled-coil containing protein kinase 14 

(ROCK). Overexpression of ODZ1 in glioblastoma cells reduced survival of 15 

xenografted mice. Consistently, analysis of 122 glioblastoma tumor samples revealed 16 

that the number of ODZ1-positive cells inversely correlated with overall and 17 

progression-free survival. Our findings establish a novel marker of invading 18 

glioblastoma cells and consequently a potential marker of disease progression and a 19 

therapeutic target in glioblastoma.  20 
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Introduction 1 

Glioblastoma (GBM) is the most common brain tumor in adults and is associated with 2 

reduced life expectancy, ranging between 12 and 15 months 1. This aggressiveness is 3 

mostly due to the rapid growth and the invasive capacity of tumor cells. Even after 4 

complete resection of the tumor, local invasiveness eventually leads to regrowth of a 5 

recurrent tumor 2. Current therapeutic regimens do not adequately address the 6 

disseminated disease burden and rapid growth associated with infiltrative GBMs. Thus, 7 

there is an urgent need to develop novel treatments to specifically target the invasive 8 

and proliferative capacities of this tumor. Gene expression profiling of GBMs identified 9 

molecular subclasses with prognostic value that were designated proneural, proliferative 10 

and mesenchymal 3. Kaplan-Meier plots showed that median survival of the proneural 11 

subclass was markedly longer than any of the other two subtypes. It has been 12 

demonstrated that GBM contains hierarchies with highly tumorigenic cells that display 13 

stem cell features 4. These GBM stem-like cells (GSCs) are governed by molecular 14 

mechanisms active in brain development, including Notch, Wnt, BMP, TGFβ and 15 

receptor tyrosine kinase pathways 5. Moreover, there are many examples of genes that 16 

play essential roles in embryonic development and are also involved in promoting or 17 

facilitating cancer in adult tissues 6-8. As a representative example, the Hedgehog family 18 

of proteins plays an instructional role during the development of many metazoans and is 19 

implicated in stem cell maintenance and tissue repair, but also confers growth 20 

promoting and survival capabilities to cancer cells 9. Teneurins are philogenetically 21 

conserved type II transmembrane proteins 10. ODZ1 (Teneurin-1, TNM1), which is 22 

located on the X-chromosome, is mainly expressed in the brain during the embryonic 23 

development 11. This transmembrane protein has an intracellular region with two 24 

nuclear localization signals, which may exert transcriptional regulation functions 12, 13. 25 
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So far, expression analyses by using a network of differentially expressed genes or 1 

oligo-based DNA arrays, have shown increased ODZ1 levels in prolactin pituitary 2 

tumor metastasis 14 and papillary thyroid carcinoma 15. However, no direct evidence 3 

exist that ODZ1 is involved in any process aimed at inducing tumorogenesis or 4 

facilitating tumor progression. The Drosophila ortholog of ODZ1 interacts with α-5 

spectrin, a cytoskeleton protein that binds to filamentous F-actin, suggesting a 6 

mechanism whereby ODZ1 organize the cytoskeleton 16. Recently, we showed that 7 

activation of Rho GTPases Rac and RhoA contributed to the invasive capacity of a 8 

subpopulation of GSCs isolated from the peritumoral tissue 17. Rho GTPases are key 9 

regulators of cytoskeleton dynamics and cell polarity, cell cycle progression, cell 10 

migration and metastasis 18, which indicates their potential use as therapeutic targets in 11 

cancer. Although there is little understanding on the activity of RhoA in primary GSCs, 12 

reduced activation of this GTPase correlates with decreased invasive capacity of GSCs 13 

19, 20. Targeting regulators of cytoskeleton dynamics and invasion might provide 14 

effective therapeutic opportunities in glioblastoma. 15 

In the current study, we found that ODZ1 is needed for GBM cells to migrate and 16 

invade the surrounding environment. Xenograft animal models and tumor specimens 17 

from GBM patients indicate that the presence of ODZ1 increases the spreading and 18 

growth of the tumor and reduces survival. We also showed that ODZ1 exerts these 19 

tumor-facilitating activities by inducing the expression of RhoA and activation of 20 

downstream ROCK kinases.  21 

 22 

Results 23 

Identification of ODZ1-deficient GSCs 24 
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We found that two GSC samples, G104 and G59, did not show the typical 1 

morphological changes when they were induced to differentiate (adhesion to the 2 

substrate, cytoplasmic projections) but remained forming neurospheres (Figure 1a). 3 

However, the expression pattern of differentiation was indistinguishable from other 4 

GSC cultures, as determined by analyzing the levels of both GSC and lineage markers 5 

(Supplementary Figures S1 and S2). GSCs and GBM tissue from the G104 sample 6 

carried a 6 Mb deletion of the long arm of chromosome X that included four genes, 7 

SH2D1A, ODZ1, SMARCA1 and BCORL (Figure 1b-d). Among those, ODZ1 8 

appeared to be the most interesting gene because it has been associated with 9 

cytoskeleton organization and cell shape. Data from the cBioPortal for cancer genomics 10 

21, 22 revealed a frequency of ODZ1 gene deletion lower than 1% in glioblastoma 11 

samples. Protein expression analyses confirmed the lack of ODZ1 in G104 but also 12 

showed very low levels of ODZ1 in G59 cells (Figure 1e). Since ODZ1 gene is not 13 

deleted in G59 GSCs (Figure 1d), we studied a potential repression by promoter 14 

methylation. Treatment of G59 with the demethylating agent 5-aza-2'-deoxycytidine 15 

increased more than 3-fold the expression of ODZ1 (Figure 1f). Although we did not 16 

find a canonical CpG island in the ODZ1 promoter, there were three CpG dinucleotides 17 

within a fragment of 60 nucleotides located 344 bp upstream of the transcription start 18 

site. Analysis of the methylation state at each CpG site in G59 and G63 cells (see Figure 19 

1e for comparing levels of ODZ1) revealed an inverse correlation between the level of 20 

methylation and the expression of ODZ1 (Supplementary Figure S3). Thus, it is likely 21 

that methylation contributes to downregulation of ODZ1 in these cells. Unless 22 

otherwise indicated, G104 and G59 cells, named here as ODZ1-deficient GSCs, were 23 

used as cell models. Results shown correspond to G104 and were all confirmed in G59 24 

cells.    25 
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ODZ1 expression promoted spreading of GSCs in vitro and in vivo 1 

Comparison between ODZ1-deficient cells before and after transfection with ODZ1 2 

(Figure 1g) by gene expression microarrays revealed that cell morphology and cellular 3 

assembly and organization are among the top network functions associated with the 4 

expression of ODZ1 (Supplementary Table S1). Interestingly, ODZ1-transfected cells 5 

recovered the phenotypic features of differentiated cells, showing adhesion to the 6 

substrate and protrusion formation with F-actin location at the edges of projections 7 

(Figure 1h-j). Similar pattern was observed in cells cultured on a laminin-coated surface 8 

(Supplementary Figure S4a). We also observed that cells were able to migrate out of 9 

neurosphere when they expressed ODZ1 (Supplementary Figure S4b). Then, we 10 

transfected ODZ1-expressing GSCs with shRNAs targeting this gene. One of them, 11 

shRNA-2, significantly downregulated the endogenous levels of ODZ1 protein (Figure 12 

2a,b) and promoted a 6-fold increase in the number of non-attached cells that formed 13 

neurospheres (Figure 2c,d). Similar effects were observed with the less efficient 14 

shRNA-3 (data not shown). Moreover, GSCs with downregulated levels of ODZ1 15 

tended to be less dispersed and more aggregated when injected into chicken embryos 16 

(Figure 2e). Conversely, ODZ1-deficient cells transfected with ODZ1 acquired the 17 

ability to propagate through the surrounding tissue in the embryo (Figure 2f). Consistent 18 

with this model, analysis of ODZ1 protein expression in tumor samples from GBM 19 

patients revealed the increase of ODZ1 levels in the invading area (Figure 2g,h). When 20 

sections of paraffin-embeded neurospheres were immunostained with anti-ODZ1, the 21 

staining was mainly localized in cells at the periphery of neurospheres (Figure 2i) likely 22 

revealing those cells with higher migratory capacity. Overall, these data strongly 23 

suggest that ODZ1 expression enables GBM cells to invade the surrounding 24 

environment.   25 
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ODZ1 expression in GBM tumors reduced survival in patients and xenografted 1 

mice.  2 

RG1 cell line is highly efficient in promoting rapid development of GBM tumors in 3 

xenografted mice 23, and we detected low expression levels of ODZ1 (Figure 3a). 4 

ODZ1-transfected RG1 cells promoted larger tumors than their control counterparts 5 

(Figure 3b), and the survival of these animals was significantly reduced (Figure 3c). In a 6 

second model, ODZ1-deficient GSCs were transfected with either the entire ODZ1 7 

(about 300 kDa) or its cytoplasmic fragment (Figure 3d,e), the 45 kDa N-terminal 8 

region of the protein (icODZ1). We showed that icODZ1 was sufficient to recover the 9 

morphology of differentiated GSCs (Figure 3f). These transfectants were xenografted 10 

into the brain of immunodeficient mice. Immunohistochemical analysis of brain slices 11 

confirmed larger tumors in mice grafted with ODZ1- and icODZ1-containing cells as 12 

determined by using different markers including vimentin that specifically stained 13 

human tissue, human GFAP that is expressed in tumor cells, and Ki67 as a proliferation 14 

marker (Figure 3g). Then, we analyzed the expression of ODZ1 in a tissue microarray 15 

that included 122 tumor samples from GBM patients (Supplementary Table S2). The 16 

anti-ODZ1 antibody that we generated clearly distinguished between tissues that 17 

express or do not express ODZ1 (Figure 3h,i). Interestingly, using 35% as a cutoff 18 

point, we found that the number of ODZ1-positive cells was inversely correlated with 19 

overall survival and disease-free (or progression-free) survival, defined as the time from 20 

resection to the first radiological recurrence (Figure 3j,k). The increase in estimated 21 

median disease-free survival for patients with lower proportion of ODZ1-positive cells 22 

(<35%) was about 45% compared with patients having higher levels of positive tumor 23 

cells (7 vs 3.9 months). The increase in median overall survival was 24% (12.5 vs 9.5 24 

months). These results were consistent with those determined by analysing data of the 25 
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Repository for Molecular Brain Neoplasia Database (Rembrandt) (Supplementary 1 

Figure S5a). Analysis of a public dataset 3 revealed that grade IV gliomas (GBMs) have 2 

significantly higher ODZ1 levels than grade III gliomas (Supplementary Figure S5b).  3 

Overall, animal models and patient studies demonstrate that ODZ1 expression in GBM 4 

tumors clearly correlates with poorer survival.   5 

The intracellular fragment of ODZ1 is released through proteolytic cleavage 6 

following differentiation of GSCs. 7 

The signals for cleavage and the proteases that release icODZ1 still remain to be 8 

identified. As shown in Figure 4a the expression of ODZ1 mRNA increased 3 to 4-fold 9 

after differentiation, and most of the produced protein was cleaved to generate icODZ1 10 

(Figure 4b). The increased levels of ODZ1 following differentiation was confirmed by 11 

immunofluorescence, which also revealed the nuclear translocation of icODZ1 (Figure 12 

4c). ODZ1-deficient cells were transfected with the full-length protein and most of the 13 

ODZ1 staining was localized within the nucleus in differentiated cells (Figure 4d). 14 

Then, we treated cells with (Z-LL)2 Ketone, an inhibitor of SPP and the homologous 15 

SPP-like (SPPL) proteases, that selectively cleave type II integral membrane proteins. 16 

(Z-LL)2 Ketone blocked the nuclear localization of icODZ1, giving an ER/Golgi and 17 

cell surface staining, similar to the reported distribution of full-length ODZ1 18 

overexpressed in HT1080 cells 12. However, L685,458, an inhibitor of γsecretase, which 19 

cleaves type I transmembrane proteins, even at a high concentration (10 μM), had no 20 

effect on ODZ1 nuclear localization (Figure 4d,e). Moreover, the SPP/SPPL inhibitor 21 

blocked ODZ1-mediated migration of GSCs in a Boyden chamber-based assay (Figure 22 

4f). A search of our gene expression database of GSCs before and after differentiation 24 23 

revealed that SPPL2a showed the highest levels among members of this protease family 24 

and its expression was even increased in differentiated cells. Based on these data, we 25 
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knockdown SPPL2a by siRNA in GSCs (Figure 4g). As shown in Figure 4h,i the 1 

nuclear staining of icODZ1 observed in control cells or after knocking down another 2 

protease such as S2P, a zinc metalloprotease, was drastically reduced in the absence of 3 

SPPL2a.   4 

The intracellular fragment of ODZ1 is a key mediator in promoting changes in cell 5 

shape and invasion capacity of GSCs.  6 

ODZ1-deficient GSCs were transfected with ODZ1, icODZ1 or the extracellular plus 7 

the transmembrane regions (ecODZ1) (Figure 5a). As shown in Figure 5b, both ODZ1 8 

and icODZ1 promoted long actin-filled projections following differentiation, but cells 9 

transfected with ecODZ1 behaved as the control cells and showed little changes in 10 

morphology. icODZ1 also promotes localization of CAP/Ponsin to focal adhesions 11 

(Figure 5c), a protein that has been shown to interact with the intracellular region of 12 

ODZ1 12 and to reorganize F-actin at cell-extracellular matrix contacts 25. An epithelial-13 

to-mesenchymal-transition-like (EMT-like) program highlighted by a T-cadherin to N-14 

cadherin switch has been described in GBM cells associated with invasion and a worse 15 

prognosis 26. Interestingly, N-cadherin along with other mesenchymal markers such as 16 

Vimentin and Snail were upregulated whereas T-cadherin was downregulated in 17 

icODZ1-transfected GSCs (Figure 5d,e). Moreover, the acquisition of a mesenchymal 18 

gene expression pattern associated with a concomitant downregulation of genes that 19 

define the proneural GBM subtype 3 DLL3, OLIG2, ASCL1 and NCAM1 (Figure 5f). 20 

Consistent with the chemoresistance associated with the mesenchymal phenotype, cells 21 

expressing icODZ1 were more resistant to temozolomide, a nitrosourea commonly used 22 

in GBM patients (Figure 5g). Wound healing assays showed that cells expressing ODZ1 23 

or icODZ1 but not ecODZ1 efficiently repopulated the scratch area (Figure 6a,b). 24 

Moreover, invasion assays in 3D collagen matrices demonstrated that icODZ1 25 
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efficiently promoted migration of GSCs (more than 6-fold increase relative to control) 1 

(Figure 6c,d). Thus, these results suggest that icODZ1 provides a migration advantage 2 

for GSCs to invade the surrounding environment.  3 

The intracellular fragment of ODZ1 induces the transactivation of RhoA through 4 

E-box binding proteins.  5 

Rho GTPases, mainly Rac1, RhoA and Cdc42, regulate migration and invasion by 6 

controlling cytoskeletal dynamics 27. RhoA expression is upregulated at the mRNA and 7 

protein levels in a number of human malignancies28 and it has been associated with 8 

tumor progression29. We showed that induced expression of icODZ1 was followed by a 9 

specific increase in the mRNA levels of RhoA but not Rac1 or Cdc42 (Figure 7a). 10 

ODZ1-deficient cells transfected with icODZ1 translocates this protein fragment to the 11 

nucleus (Figure 7b), where it may regulate transcription 12, 13. In a RhoA promoter-12 

luciferase reporter assay, icODZ1 induced a 5-fold increase in luciferase activity (Figure 13 

7c). Total RhoA protein expression and RhoA GTPase activity were also upregulated by 14 

icODZ1 (Figure 7d,e). Activation of RhoA was further determined by analyzing 15 

phosphorylation of MLC2, a downstream mediator of RhoA-ROCK signaling. As 16 

shown in Figure 7f, icODZ1 and to a lesser extent ODZ1 but not ecODZ1 increased the 17 

level of pMLC2. It has been shown that Myc induces RhoA transcription by recruiting a 18 

transcription complex to the noncanonical E-boxes E5 and E6 in the RhoA promoter 30. 19 

Chromatin immunoprecipitation assays showed significant increases in the binding of 20 

Myc to RhoA promoter in the presence of ODZ1 (more than 2-fold) and icODZ1 (4-21 

fold) (Figure 7g). Moreover, as shown in Figure 7h, anti-Myc antibodies 22 

coimmunoprecipitated Myc and icODZ1 in cells transfected with entire ODZ1 or 23 

icODZ1, but no coimmunoprecipitation was obtained from cells transfected with 24 

ecODZ1. Luciferase reporter assays showed that overexpression of Myc increased the 25 
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RhoA promoter activity (Figure 7j), confirming previous data. Transfection of ODZ1-1 

containing cells with a Myc-specific shRNA that efficiently downregulated Myc mRNA 2 

(Figure 7i), reduced the RhoA promoter activity induced by icODZ1 (Figure 7j). In 3 

order to eliminate the risk of knocking down genes that are not intended for 4 

suppression, we have also used a Myc inhibitory mutant (dominant negative) carrying a 5 

deletion in the transactivation domain31. Consistently, this blockade strategy resulted in 6 

reduction of RhoA promoter activity triggered by icODZ1 (Figure 7k). In support of the 7 

role of E-boxes as key promoter elements for ODZ1-induced expression of RhoA, 8 

mutation of the E6 binding site abolished activation of the RhoA promoter by icODZ1 9 

(Figure 7l). In line with this, mobility shift assays confirmed that E6 efficiently bound 10 

E-box binding proteins and this protein-DNA complex was increased in the presence of 11 

icODZ1 (Figure 7m). These data show that icODZ1 induces the expression of RhoA 12 

through recruitment of Myc to the E6 box within the RhoA promoter.   13 

RhoA-ROCK pathway mediates the invasive and proliferative activities of ODZ1. 14 

The presence of ROCK inhibitor H1152 gave rise to a 4-fold decrease in the invasion 15 

capacity of icODZ1-expressing cells (Figure 8a,b). Moreover, we also analyzed the 16 

localization of Ponsin at focal adhesions, as a marker of cell-matrix contacts, in the 17 

presence of H1152, a RhoA inhibitor or by using siRNAs against ROCK1 and ROCK2 18 

(Supplementary Figure S6a-d). In all cases, Ponsin accumulation to projection tips was 19 

efficiently blocked by the inhibition strategies. 20 

We also described that the proliferation rate of icODZ1-expressing GSCs was about 21 

twice higher than control or ecODZ1-transfected cells. ODZ1 also promoted a clear 22 

increase in proliferation although at a slightly lower level than icODZ1 (Figure 8c). 23 

Consistent with our previous data, ROCK inhibitor reduced the proliferation promoted 24 

by icODZ1 and ODZ1 but had no effect on cells expressing ecODZ1 (Figure 8c). This 25 
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result was confirmed by using a Rho inhibitor which significantly reduced ODZ1-1 

mediated proliferation (Figure 8d). RhoA activation is crucial for the cell cycle G1-S 2 

progression through the regulation of CDKN/Cip family of CDK inhibitors. Our 3 

expression microarray data analysis showed that among members of this family 4 

CDKN1A (p21) and CDKN2C (p18) were downregulated in ODZ1-transfected cells 5 

(Figure 8e) which are both known to be modulated by RhoA 32. These results indicate 6 

that RhoA-ROCK axis plays a key role in mediating key activities of ODZ1, cell 7 

invasion and proliferation, in GSCs.  8 

 9 

Discussion 10 

We have focussed this work on ODZ1 gene, which is predominantly expressed in the 11 

developing brain. Two GSC samples with no or very little expression of ODZ1 were 12 

used as ODZ1-deficient GSCs in this work. GSCs grow in suspension forming 13 

neurospheres and in the presence of serum, they differentiate to proliferating 14 

intermediate precursors due, at least in part, to activation of the NFκB pathway 33. 15 

Morphological changes are driven by cytoskeletal reorganization, which is a key feature 16 

of cell migration. We showed that ODZ1 promotes actin cytoskeletal remodelling, 17 

migration and invasion of GSCs as determined by using 2D and 3D in vitro systems, a 18 

xenograft model of chicken embryo and tumor specimens, in which ODZ1-expressing 19 

GSCs efficiently invade the surrounding environment. Previous work in Drosophila 20 

suggested that the ODZ1 homolog Ten-m is involved in remodelling of the postsynaptic 21 

cytoskeleton, physically linking the synaptic membrane to the cytoskeleton 16. 22 

Moreover, it has been described that chicken ODZ1 interacts with ponsin, which in turn 23 

binds to vinculin that could anchor the intracellular region of ODZ1 to the actin 24 

cytoskeleton 12. Consistently, we found that ODZ1 promoted long actin-filled 25 
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protrusions and the localization of ponsin at projection tips in GSCs, which streghthen 1 

the role of ODZ1 as a regulator of cytoskeletal remodelling. Actin cytoskeleton has key 2 

roles in cell cycle progression 34. In line with this, ODZ1 increases the proliferative 3 

capacity of GSCs. Invasiveness and proliferation are two hallmarks of GBM and 4 

strategies aimed at targeting pathways that control these processes, mainly in GSCs, are 5 

the focus of intensive research 35-37. Rho GTPases are key players in controlling 6 

cytoskeleton dynamics, cell migration and cell division 18. Elevated levels of RhoA 7 

have been described in clinical samples of high-grade gliomas 38. Interestingly, the 8 

intracellular fragment of ODZ1 (icODZ1) is able to induce the expression and activation 9 

of RhoA in GSCs. We found that icODZ1 is released following differentiation of GSCs 10 

by a proteolytic mechanism triggered by SPPL2a, a type II transmembrane protein 11 

specific protease. SPPL2a is overexpressed in GBM compared with other brain tumors 12 

including oligodendrogliomas and low grade astrocytomas, as determined by searching 13 

the Rembrandt database. Consistent with the role of SPPL2a in ODZ1 processing, this 14 

protease has been shown to release the intracellular FasL domain, which translocates to 15 

the nucleus and regulates gene transcription39. Myc is a well known oncoprotein that 16 

control the expression of a variety of genes involved in cell proliferation and 17 

differentiation40, and it has been described that Myc stabilization may be linked to the 18 

pathogenesis of GBM41. Our data strengthen the role of Myc in GBM by showing that 19 

icODZ1 binds to Myc and recruits this transcription factor to an E-box site in the 20 

promoter region of RhoA, which is in line with previous results where it is 21 

demonstrated that Myc induces RhoA transcription by recruiting a transcription 22 

complex to E-boxes within the RhoA promoter30. By using different inhibition 23 

strategies, we demonstrated that RhoA signaling mediates the cytoskeletal remodelling 24 

and the increase in cell migration, invasion and proliferation promoted by ODZ1. In line 25 
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with our data, high levels of RhoA activity have been associated with protrusion 1 

formation in different cancer models 42, 43. The relevance of Rho-ROCK pathway in 2 

promoting migration and growth of GBM cells has been mostly described by using 3 

established cell lines 44, 45. However, other models have strengthened this functional 4 

correlation. Although it has been described that invading GBM cells have low RhoA 5 

activity by using a rat GBM cell line46, many studies using primary human tumor cells 6 

support the key role of RhoA to provide an invasive phenotype to GBM cells47, 48. 7 

Moreover, activation of RhoA in neural stem cells has also been shown to be key for 8 

cell migration and invasion49. Our data provides a novel ODZ1-RhoA-ROCK axis for 9 

therapeutic strategies against a pathway controlling key activities in GSCs. Blockade of 10 

RhoA expression or activation through its upstream regulator ODZ1 has the advantage 11 

that this protein is located at the cell membrane which facilitates inhibition strategies 12 

with small molecules or antibodies. Additionally, contrary to other integral membrane 13 

proteins associated with GBM such as EGFR that is widely expressed in a number of 14 

adult tissues, or RhoA which is ubiquitously expressed across tissues, ODZ1 expression 15 

is mostly restricted to fetal brain, which could make ODZ1-targeted therapies more 16 

tumor-specific limiting their side effects. 17 

In summary, our study shows for the first time that ODZ1, a protein that participates in 18 

the embryonic development of the brain, is also involved in cancer progression by 19 

promoting the growth and invasion capabilities of glioblastoma stem-like cells via a 20 

transcriptional pathway that induces the expression of RhoA and activation of 21 

downstream ROCK. Thus, these data provide a novel and promising target to develop 22 

therapeutic strategies aimed at blocking the two features that make glioblastoma so 23 

aggressive and lethal. 24 

 25 
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Materials and methods 1 

Primary cell cultures.  2 

Cells were maintained as neurospheres in serum-free DMEM/F12 medium (Invitrogen, 3 

Carlsbad, CA) as previously described 24, and plated at a density of 3x106 live cells/60-4 

mm plate. Neurospheres were dissociated every 4-5 days to facilitate cell growth. Cells 5 

were used between passages 10 and 20. To promote differentiation, neurospheres were 6 

cultured in the same medium but in the presence of 10% FCS for four days. Tumor 7 

samples were obtained from patients after informed written consent had been given, as 8 

approved by the Research Ethics Board at the Valdecilla Hospital. Established GBM 9 

cell line RG1 (L0627), kindly provided by Dr. Rosella Galli, was cultured as previously 10 

described 23. Cell proliferation and cell survival were evaluated with Alamar Blue 11 

bioassay (Life Technologies). Unless otherwise indicated, experiments were performed 12 

with undifferentiated GSCs. All cells used in this work were mycoplasma-free. 13 

When indicated, cells were treated with 5 μM ROCK inhibitor H1152 (Tocris 14 

Bioscience, Bristol, UK), 1 μg/ml Rho Inhibitor I (Cytoskeleton, Inc., Denver, CO), 100 15 

μM Temozolomide (Merck, Whitehouse Station, NJ), 50 μM (Z-LL)2-Ketone 16 

(Calbiochem, MA) or 10 μM L685,458 (Tocris Bioscience, Bristol, UK). 17 

DNA copy number changes were evaluated using Affymetrix GeneChip 250-NspI/StyI 18 

SNP microarrays as previously described 17. DNA methylation was analyzed by a 19 

pyrosequencing method 50 which accurately measures the degree of methylation at 20 

several CpGs in close proximity with high quantitative resolution. 21 

In vivo models.  22 

Tumor xenografts in chicken  and mice 51 were established as previously described. 23 

Stereotactically guided intracranial injections in athymic Nude-Foxn-1nu male mice, 24 

aged 8-9 weeks, were performed injecting 50.000 cells resuspended in 2 μl of culture 25 
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medium. Survival of mice was analyzed by the Kaplan-Meier method. No 1 

randomization was used. Images in chicken embryos are the integration of all Z-stacks 2 

taken along the dorsal-ventral plane at 15 μm intervals to cover the whole limb. The 3 

model of tumor xenografts in mice was reviewed and approved by the Research Ethics 4 

and Animal Welfare Committee at the Instituto de Salud Carlos III, Madrid. Magnetic 5 

resonance imaging analysis was performed in mice injected IP with Gd-DOTA 6 

(Dotarem, Bloomington, IN) by using a 4.7 TBiospec BMT 47/40 spectrometer (Bruker, 7 

Billerica, MA). No blinding experiments were done. 8 

Immunofluorescence analysis.  9 

GSCs were grown on glass cover slips previously coated with 10 μg/ml fibronectin 10 

(Sigma- Aldrich, St Louis, MO), or 10 μg/ml laminin (Sigma). Cells were incubated 11 

with antibodies against phospho-myosin light chain 2 (pMLC2) (#3671, Cell Signaling, 12 

Danvers, MA), Ponsin (SC-25496, Santa Cruz Biotechnology, Santa Cruz, CA), Sox2 13 

(MAB2018, R&D Systems, Minneapolis, MN), GFAP (Z0334, DAKO, Glostrup, 14 

Denmark) or Tuj1 (T-8660, Sigma). Then, the cells were incubated with Texas red-15 

conjugated or fluorescein isothiocyanate-conjugated goat anti-rabbit secondary 16 

antibodies (#111-035-144, Jackson ImmunoResearch, Cambridgeshire, UK). Actin 17 

cytoskeleton was stained with tetramethylrhodamine isothiocyanate- or fluorescein 18 

isothiocyanate-conjugated Phalloidin (Sigma) and nuclei visualized with 4',6-19 

diamidino-2-phenylindole (Life Technologies). Confocal images were taken with a Ti-20 

Eclipse microscope (Nikon, Tokyo, Japan). When indicated, fluorescence intensity was 21 

determined by measuring pixel intensity in a defined area (nucleus or the entire cell) 22 

using ImageJ software. Single plane confocal images were acquired with the same 23 

settings for each experiment. 24 

Tissue Microarray.  25 
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Demographic, clinical and therapeutic data of patients included in the tissue microarray 1 

are presented in Supplementary Table S2. Replicate formalin-fixed paraffin-embedded 2 

tissue samples of representative tumor regions from 122 patients with GBM were 3 

collected for the preparation of 4 tissue microarrays. No samples were excluded from 4 

the analysis. Tissue microarrays were reviewed by an expert pathologist (NTV) blinded 5 

to all sample identifiers. A semiquantitative scoring system for the percentage of 6 

positive cells was used . Patients were divided into two groups of low (<35%) and high 7 

(>35%) number of ODZ1-positive cells. Differences in overall and disease-free survival 8 

between both groups were estimated by a Kaplan-Meier survival plot. 9 

Immunohistochemical staining.  10 

Vibratome sections (200 μm thick) of mouse brains were paraffin-embedded and then 11 

consecutive semithin sections were processed and incubated with primary antibodies 12 

against Vimentin, glial fibrillary acidic protein (GFAP) and Ki67 (M7248, DAKO) 13 

followed by horseradish peroxidase-conjugated secondary antibodies (K4065, K5007, 14 

DAKO) and visualized by a chromogen or stained with hematoxilin-eosin. Slides 15 

containing tumor tissue from GBM patients or neurospheres from GSC cultures 16 

embedded in paraffin were stained with antibodies against the N-terminal region of 17 

ODZ1.  18 

Expression analyses.  19 

To assess the expression of individual genes, a cDNA was generated and amplified 20 

using the following primers: CD133, Tuj1, glial fibrillary acidic protein (GFAP), β-21 

Actin (16),  22 

T-Cadherin (5’TTCTGTGCGTTCTCCTGTCC3’ and 23 

5’TCTCAGAGCAACTAAGCCGC3’) ,  24 
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N-Cadherin (5’GACAATGCCCCTCAAGTGTT3’ and 1 

5’CCATTAAGCCGAGTGATGGT3’),  2 

Vimentin (5’TCGGCGGGACAGCAGG3’ and 5’GGTGGACGTAGTCACGTAGC3’), 3 

Snail (5’TAGCGAGTGGTTCTTCTGCG3’ and 5’AGGGCTGCTGGAAGGTAAAC3’), 4 

RhoA (5’ACCCGCCTTCGTCTCCGAGT3’ and 5 

5’GGCAGCCATTGCTCAGGCAAC3’),  6 

Rac1 (5’AGGCCATCAAGTGTGTGGTG3’ and 5’CTTGTCCAGCTGTGTCCCAT3’), 7 

Cdc42 (5’GCCTATTACTCCAGAGACTGC3’ and 8 

5’GTTCATAGCAGCACACACCTG3’),  9 

icODZ1 (5’ACTCAAGAGATGGAATTCTGTG3’ and 10 

5’CTTAGTGCATGGTCAGGTG3’),  11 

ecODZ1 (5’ACAATGATGGACGGTGCCTT3’ and 5’GTGTCCCTCCCCTCTATGGT3’) 12 

ODZ1 exon 1 (5’GGACCAATTGTGAATCTGCC3’ and 13 

5’CCTACAACCTCAGCTGGGC3’),  14 

ODZ1 exon 20 (5’GGGAAGGTTTTGCAGGC3’ and 15 

5’CCACTGTGCTAGAGGCTGG3’),  16 

ODZ1 exon 32 (5’CTTGCAAGCCTGTCCTTTCC3’ and 17 

5’CCCAGTGTTACCGATGAGC3’),  18 

Stag2 (5’CACGCCTGGCTAATTTTTGT3’ and 5’CAATACAGGGCAGGTGTGCT3’), 19 

S2P (5’GTTGCTGAGGACTCTCCTGC3’ and 5’AGCACACATCTGTGAGGCTG3’), 20 

SPPL2a (5’ATGAAGACAGGTGGGCTTGG3’ and 21 

5’AGCTGCGAGTTCAACCATGA3’), SMARCA1 22 

(5’CGTGGTCATAGAGGACGAGC3’ and 5’TAGGCGCTTTAGCAGCAAGT3’), 23 

BCORL1 (5’GCATGTGTGGCATCAACGAG3’ and 24 

5’GGGATCGTCAGGCTTGTCTT3’), SH2D1A (5’TACCGAGTGTCCCAGACAGA3’ 25 
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and 5’TCAGGATCTTCTCTTATCCCTGT3’). Quantitative real-time PCR was 1 

performed in a 7000 sequence detection System (Life Technologies).   2 

Transfections, Gene Silencing and Gene Reporter Assays.  3 

ODZ1-deficient GSCs were transfected with the entire ODZ1 cDNA, the extracellular 4 

(plus transmembrane) fragment (both from Origene, Rockville, MD) or the intracellular 5 

fragment, that was PCR-amplified from ODZ1 cDNA and cloned into pCMV6. Stable 6 

transfectants were selected with 500 μg/ml geneticin (Life Technologies). icODZ1 was 7 

subcloned in a tetracycline-regulated retroviral vector 52. Cells were transiently 8 

transfected with this vector and the expression of ODZ1 was induced in the presence of 9 

2 μg/ml doxycycline (Sigma).  10 

GSCs were transfected with ODZ1-specific shRNAs (Thermo Fisher Scientific, 11 

Waltham, MA) by using nucleofection or with ROCK1, ROCK2, S2P or SPPL2a 12 

siRNAs (Dharmacon's SmartPools, Thermo Fisher Scientific) by Lipofectamine 13 

RNAiMax (Life Technologies). Knockdown of Myc was achieved by using specific 14 

shRNAs cloned in lentiviral pLKO (Sigma) and retroviral pRS 53 vectors. For functional 15 

inactivation of Myc, a construct containing mutant c-Myc (pMLV-D106-143) that 16 

carries a deletion in the transactivation domain31, was used. 17 

Cells were co-transfected with 1 μg of human RhoA promoter cloned into pGL3 vector 18 

30 and 50 ng of pRSV-β-galactosidase by nucleofection. When indicated, site-directed 19 

mutagenesis of E5 and E6 boxes, CA(C>A)(G>T)CG, of the RhoA promoter was 20 

conducted by using the QuickChange mutagenesis kit (Stratagene, La Jolla, CA) as 21 

previously described 54. 22 

Expression Microarray.  23 

Total RNA from empty vector- and ODZ1-transfected cells was extracted using the 24 

RNeasy mini kit (Qiagen, Valencia, CA) and microarray gene expression analysis was 25 
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performed with the Human Genome U133 Plus 2.0 array (Affymetrix, Santa Clara, 1 

CA). The selection of those genes differentially expressed was performed using a 2 

criteria based on the fold-change value. Probe sets were selected as significant using a 3 

logFC cut-off of 1.5. The raw data have been deposited in a MIAME compliant 4 

database (GEO accession number, GSE65526). 5 

Chromatin Immunoprecipitation (ChIP) 6 

Purification of sonicated nuclear lysates and immunoprecipitation were performed as 7 

described . Precipitates using anti-Myc (SC-40, Santa Cruz Biotechnology) or irrelevant 8 

IgG were heated at 65oC to reverse the cross-linking. Quantitative PCR was performed 9 

using primers (5’CGTGAAGAGTTGGCAGTTCG3’ and 10 

5’ACGCCCTAAAAGCAAAACC3’) specific for a region (187 bp) of the RhoA 11 

promoter containing the functional cMyc binding sites 30, or primers 12 

(5’CAACCGACCAGTCACATCC3’ and 5’ATGTTGTTGAGGGCTTCCAG3’) that 13 

generate a fragment from exon 5 of SKP2, used as a negative control. 14 

Electrophoretic mobility shift assay.  15 

Nuclear extracts (10 μg of total protein) were incubated with a 32p-labeled double-16 

stranded DNA probe corresponding to E-boxes E5 (5'CCGCGCACGCGCACCTAA3') 17 

and E6 (5'ATGCCCCACGCGGCTGCA3'). Samples were run on a 5% non-denaturing 18 

polyacrylamide gel. Gels were dried and visualized by autoradiography. 19 

Western Blot, Immunoprecipitation and Pulldown assays.  20 

Total protein extracts were separated on 8 or 12% polyacrilamide gels or 4-20% 21 

gradient gels (BioRad, Hercules, CA) and transferred to nitrocellulose. Blots were 22 

incubated with antibodies against α-Tubulin (SC-23948, Santa Cruz Biotechnology, 23 

Santa Cruz, CA), RhoA (#2117, Cell Signaling Technology, Danvers, MA), ODZ1 24 

(AF6324, R&D Systems) and N-Cadherin (C-2542, Sigma) followed by incubation with 25 



 21

secondary anti-rabbit, anti-mouse or anti-sheep antibodies conjugated to horseradish 1 

peroxidase (SC-2004, SC2005, SC-2473, Santa Cruz Biotechnology). For protein 2 

immunoprecipitation, cells were treated as previously described 54. Cleared lysates were 3 

incubated with anti-cMyc antibodies and proteinA/G conjugated to agarose beads 4 

(Santa Cruz Biotechnology). Proteins were then electrophoresed, transferred to 5 

nitrocellulose membranes and incubated with anti-ODZ1 antibodies. For pulldown 6 

experiments, glutathione S-transferase-conjugated Rhotekin was expressed from pGEX-7 

Rhotekin and assays were performed as described 17. Protein band quantification was 8 

carried out using ImageJ software. 9 

Migration and Invasion Assays.  10 

For the wound-healing assay, cells were seeded into collagen I coated 24-well plates 11 

and grown to confluence. The cell monolayers were scratched with a pipette tip. Cell 12 

migration was expressed by the percentage of wound closure. For 3D assays, cells were 13 

included in collagen-based matrices and processed as previously described17. The effect 14 

of protease inhibitors on the migration capacity of GSCs was analysed by using a 15 

modified Boyden chamber assay in 24-well plates (Transwell, Corning Incorporated, 16 

NY). Cells were placed in the upper compartment and following 24 h of incubation, 17 

migratory cells in the lower face of the membrane were fixed and stained.   18 

Statistical analysis.  19 

All statistics were calculated with the SPSS statistical package (version 13.0). Data are 20 

presented as mean ± S.D. of at least three independent experiments. Differences 21 

between groups were tested for statistical significance using the unpaired 2-tailed 22 

Student’s t test. The significance level was set at p<0.05.   23 
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 7 

Figure legends 8 

Figure 1. Transfection of ODZ1-deficient GSCs with ODZ1 restores the 9 

morphology of differentiating cells. (a) Neurospheres were disgregated and cultured 10 

in the presence of FBS. Morphological changes of differentiating cells were visualized 11 

after 4 days of culture. Scale bar: 30 μm. (b) Representation of the X-Chromosome 12 

showing the size of the deleted genomic fragment and the deleted genes in G104 GSCs. 13 

(c) Amplification of genes included in the chromosomal deletion found in G104 cells. 14 

Actin is included as a positive amplification control. (d) Amplification of different 15 

exons of the ODZ1 gene from GSC-derived genomic DNA. Stag2 was used as a 16 

positive control of amplification. (e) ODZ1 protein expression in undifferentiated GSC 17 

samples. αTubulin was used to assure equal loading.  (f) G59 GSCs were treated with 18 

the DNA demethylating agent 5-aza-2'-deoxycytidine (3 μM 5-Aza) for 3 days and the 19 

ODZ1 expression was determined by quantitative RT-PCR. Histograms show the 20 

mean+S.D. *p<0.01, Student's t test. Data representative of 3 separate experiments. (g) 21 

ODZ1 protein levels in ODZ1-transfected GSCs. The levels of α-tubulin were analysed 22 

to assure equal loading. Transfected cells were cultured in differentiation medium and 4 23 

days later their morphology (h) and the distribution of F-actin (i) were assessed by 24 

using phase contrast or fluorescence microscopy respectively. (h, Scale bar: 50 μm; i, 25 
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Scale bar: 5 μm). (j) GSC transfectants cultured in differentiation medium were counted 1 

as a function of their morphology. NP, no protrusions; SP, small protrusions; LP, long 2 

protrusions. Histograms show the mean + S.D. *p<0.01, **p<0.05, Student's t test. Data 3 

representative of 3 separate experiments counting at least 100 cells per condition each 4 

time.   5 

Figure 2. ODZ1 expression is sufficient to induce cell spreading in vitro and in 6 

vivo. (a,b) Western blot and quantification of ODZ1 after transfection of G63 GSCs 7 

with specific shRNAs. The levels of α-tubulin were analysed to assure equal loading. 8 

*p<0.001, Student's t test. Data representative of 3 separate experiments. (c) GSCs were 9 

transfected with ODZ1-specific shRNA (sh-2) and the number of nonattached living 10 

cells were quantitated. sh-C, irrelevant shRNA. Histograms show the mean+S.D. 11 

*p<0.001, Student's t test. Data representative of 3 independent experiments. (d) GSCs 12 

transfected with ODZ1-specific shRNA-2 and EGFP formed neurospheres under 13 

differentiation conditions. (e) CFDA SE-labeled GSCs with downregulated levels of 14 

ODZ1 were injected into the chicken embryo limb and 24 h later cell spreading was 15 

determined by confocal microscopy. (f) ODZ1-deficient GSCs were transfected with 16 

ODZ1 or empty vector and xenografted in chicken embryo as above. Dotted lines 17 

delimitate the area of tumor cell spreading. Paraffin sections from ODZ1-deficient (g) 18 

and ODZ1-expressing (h) GBM tissue specimens were immunostained with anti-ODZ1 19 

antibodies. The following histological areas were identified: the tumor core, with many 20 

ODZ1(-) cells; the tumor border, with a similar cellular density but a higher proportion 21 

of ODZ1(+) cells and the infiltrated parenchyma, with low cellularity but most cells 22 

showing a faint staining for ODZ1. (i) Sections of paraffin-embeded neurospheres were 23 

immunostained with anti-ODZ1. Note that immunostaining is mainly localized at the 24 

periphery of neurospheres.   25 
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Figure 3. ODZ1-expressing tumors are more aggressive and reduce survival. (a) 1 

ODZ1 mRNA levels in different GBM cell lines by RT-PCR. βActin expression was 2 

used for signal normalization. (b) Representative T2-weighted nuclear magnetic 3 

resonance (NMR) images showing tumors in the brain of mice xenografted with ODZ1-4 

transfected RG1 GBM cells. (c) Kaplan-Meier survival curves of mice harboring RG1-5 

derived tumors with high or low levels of ODZ1. (d) Expression of ODZ1 and icODZ1 6 

in transfected GSCs. The levels of α-tubulin were analyzed to assure equal loading. (e) 7 

Schematic representation of the ODZ1 protein showing the intracellular (IC) 8 

transmembrane (TM) and extracellular (EC) parts of the protein. NLS, nuclear 9 

localization signal. (f) ODZ1-deficient cells were transfected with icODZ1 and cultured 10 

under differentiation conditions. Cell morphology was assessed after 4 days of culture. 11 

Scale bar: 50 μm. (g) ODZ1-deficient GSCs transfected with ODZ1 or icODZ1 were 12 

xenografted in mice and brain sections were obtained for immunohistochemical analysis 13 

Note the intracranial tumor staining (brown) by using markers that reveal the presence 14 

of tumor cells. HE: hematoxylin-eosin staining. (h) Anti-ODZ1 antibodies identify 15 

negative or positive staining in GBM specimens. (i) Representative examples showing 16 

different levels of ODZ1 staining on a tissue microarray with specimens from 122 17 

patients with GBM. Kaplan-Meier curves comparing overall survival (j) and disease-18 

free survival (k) between two groups of patients with low and high proportion of 19 

ODZ1-positive GBM cells.  20 

Figure 4. icODZ1 is translocated to the nucleus following differentiation of GSCs. 21 

(a) RNA was obtained from two GSC cultures before and after differentiation, and the 22 

expression of ODZ1 was determined by qRT-PCR. Values show the mean+S.D. 23 

*p<0.01, Student's t test. (b) ODZ1 protein expression in GSCs before and after 24 

differentiation. Note the increase in the levels of the intracellular fragment. α-tubulin 25 
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was analyzed to assure equal loading. (c) Immunofluorescence of GSCs and 1 

differentiated GSCs with anti-ODZ1 antibodies. Scale bar, 5 μm. (d) 2 

Immunofluorescence of differentiated ODZ1-deficient cells overexpressing full-length 3 

ODZ1 in the absence or in the presence of protease inhibitors by using anti-ODZ1. 4 

Scale bar, 10 μm. NOTE: morphological changes following treatment with the inhibitor 5 

were observed in some GSC models but not in others, whereas reduction of nuclear 6 

levels of ODZ1 was always detected.  (e) Quantification of the fluorescence intensities 7 

of immunofluorescence images exemplified in (d) by using ImageJ software. RFI, 8 

relative fluorescence intensity. (f) The same cells as in (d) were analyzed for their 9 

capacity to migrate with or without the protease inhibitor (ZLL)2-Ketone by using a 10 

modified Boyden chamber. (g) mRNA expression levels of SPPL2a and S2P proteases 11 

following transfection with specific siRNAs. C, irrelevant siRNA. Values show the 12 

mean+S.D. *p<0.01, Student's t test. (h) Subcellular localization of ODZ1 in 13 

differentiated GSCs transfected with the indicated siRNAs. Scale bar, 10 μm. (i) 14 

Quantification of the fluorescence intensities of immunofluorescence images 15 

exemplified in (h).  16 

Figure 5. ODZ1 promotes actin cytoskeleton remodeling and induces a 17 

chemotherapy resistant mesenchymal-like phenotype. (a) RT-PCR showing the 18 

expression of ODZ1 in ODZ1-deficient GSCs transfected the intracellular fragment 19 

(icODZ1), the extracellular plus transmembrane fragment (ecODZ1) or the entire ODZ1 20 

with oligonucleotides specific for the ic or ec regions of the cDNA. βActin expression 21 

was used for signal normalization. (b) Representative confocal images of the different 22 

GSC transfectants showing F-actin staining. Scale bar, 10 μm. (c) ODZ1-deficient 23 

GSCs expressing icODZ1 accumulates the focal adhesion protein ponsin at projection 24 

tips as determined by immunofluroescence. Scale bar: 10 μm. (d) icODZ1-dependent 25 
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mRNA expression levels of the epithelial-like marker T-Cadherin (T-Cad) and the  1 

mesenchymal specific markers N-Cadherin (N-Cad), Vimentin (Vim) and Snail as 2 

determined by qRT-PCR. Histograms show the mean+S.D. *p<0.01, **p<0.001, 3 

Student's t test. Data representative of 3 separate experiments. (e) N-Cadherin protein 4 

expression in transfectant GSCs. The levels of α-tubulin were analyzed to assure equal 5 

loading. (f) Fold-change (FC) in the expression of genes associated with the proneural 6 

GBM subtype in icODZ1-transfected cells relative to control transfected cells. Data 7 

from the expression microarray. logFC indicates the log2 of FC. (g) icODZ1-transfected 8 

GSCs were treated with 100μM Temozolomide (TMZ) and 48 h later cell viability was 9 

determined by using alamarBlue bioassay. Values show the mean+S.D. *p<0.001, 10 

Student's t test. Data representative of 3 independent experiments.  11 

Figure 6. ODZ1 promotes cell migration and invasion. (a) Micrographs of a wound-12 

healing assay showing the migration of different transfectant GSCs towards the 13 

scratched area. (b) Quantification of migration as percentage of wound closure (marked 14 

by the dashed lines). Histograms show the mean+S.D. *p=0.01 compared with pCMV6 15 

control, Student's t test. Data representative of 3 separate experiments. (c) 16 

Representative images of a cell invasion assay in a 3D collagen matrix. Nuclei were 17 

stained with DAPI. (d) Quantification of the invasion assay as percentage of cells 18 

detected at 30 μm from the bottom. Histograms show the mean+S.D. *p<0.05, 19 

**p<0.001 compared with pCMV6 control, Student's t test. Data representative of 3 20 

separate experiments. 21 

Figure 7. ODZ1 triggers the transcriptional activation of RhoA. (a) The mRNA 22 

levels of Rho GTPases were analyzed by qRT-PCR in GSCs transfected with an 23 

icODZ1-containing doxycycline-inducible construct. *p<0.01. (b) Nuclear localization 24 

of the intracellular fragment of ODZ1 protein after transfection, as determined by 25 
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immunofluorescence. Scale bar: 5 μm. (c) ODZ1-deficient GSCs were cotransfected 1 

with a RhoA promoter-luciferase reporter construct and icODZ1 and luciferase activity 2 

was determined 48 h later. *p<0.01. (d,e) GTP-bound RhoA and total RhoA protein 3 

expression were determined in ODZ1-deficient cells transfected with icODZ1. C, empty 4 

vector; IC, icODZ1. *p<0.01, **p<0.001. (f) ODZ1 transfectants were analyzed for the 5 

expression of phosphorylated MLC2 by immunofluorescence. Scale bar: 10 μm. Cell 6 

fluorescence intensities (mean+S.D.) were determined by analyzing 12 cells for each of 7 

three independent experiments. (g). A ChIP assay was performed to study the ODZ1-8 

mediated binding of Myc to the promoter of RhoA. Immunoprecipitates were analyzed 9 

by qPCR using primers specific to the target site or an irrelevant region. *p<0.01. (h). 10 

ODZ1-Myc binding complexes were assessed in ODZ1-transfectants by 11 

immunoprecipitation with anti-Myc antibodies and subsequent blotting with anti-ODZ1 12 

antibodies. The input represents the starting material. (i) Downregulation of Myc in 13 

cells transfected with shRNAs as determined by qRT-PCR. *p<0.01. (j) RhoA 14 

promoter-luciferase activity in the presence of Myc-specific shRNAs. *p<0.001. (k) 15 

RhoA promoter-luciferase activity in the presence of a dominant negative form of Myc. 16 

*p<0.001.  (l) Activity of the RhoA promoter carrying mutated E5 or E6 binding sites. 17 

*p<0.02. (m) Mobility shift assay using E-boxes, E5 and E6 from the RhoA promoter, 18 

as DNA probes. All histograms show the mean+S.D., and statistical significance is 19 

determined by using the Student’s t test. All data are representative of 3 separate 20 

experiments.   21 

Figure 8. ODZ1 promotes invasion and proliferation through RhoA-ROCK axis. 22 

(a) Invasion assay of GSC transfectants in a 3D collagen matrix with or without ROCK 23 

inhibitor H1152. DAPI-stained cells were visualized by confocal microscopy at 24 

different focal planes. (b) Quantification of the invasion assay as percentage of cells 25 
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detected at 20 μm from the bottom.  Histograms show the mean+S.D. *p=0.0005, 1 

Student's t test. Data representative of 3 separate experiments. (c) GSC transfectants 2 

were cultured with or without H1152 and proliferation was assessed by Alamar Blue 3 

assay. Histograms show the mean+S.D. *p=0.001 compared with untreated control, 4 

Student's t test. Data representative of 3 independent experiments. (d) GSC transfectants 5 

were cultured with or without Rho inhibitor I and proliferation was assessed as above. 6 

Histograms show the mean values+SD. *p=0.005 compared with untreated control, 7 

Student's t test. Data representative of 3 separate experiments. (e) Gene expression 8 

microarray data showing the fold change of CDKN/Cip family of CDK inhibitors in 9 

ODZ1-transfected cells compared with control cells. Dashed line marks the fold change 10 

cut-off (log2FC>0.5) used in the analysis.   11 
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