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Abstract: Vehicle detection is a fundamental task in Forward Collision Avoiding Systems (FACS).
Generally, vision-based vehicle detection methods consist of two stages: hypotheses generation and
hypotheses verification. In this paper, we focus on the former, presenting a feature-based method
for on-road vehicle detection in urban traffic. Hypotheses for vehicle candidates are generated
according to the shadow under the vehicles by comparing pixel properties across the vertical intensity
gradients caused by shadows on the road, and followed by intensity thresholding and morphological
discrimination. Unlike methods that identify the shadow under a vehicle as a road region with
intensity smaller than a coarse lower bound of the intensity for road, the thresholding strategy we
propose determines a coarse upper bound of the intensity for shadow which reduces false positives
rates. The experimental results are promising in terms of detection performance and robustness in
day time under different weather conditions and cluttered scenarios to enable validation for the first
stage of a complete FACS.

Keywords: driving assistance systems; forward collision avoidance systems; vehicle detection;
shadow detection

1. Introduction

Insufficient breaking distance is one of the leading causes of front-to-rear collisions in urban traffic.
Forward Collision Avoidance Systems (FCAS) aid drivers to maintain a safe stopping distance relative
to the vehicle ahead in order to avoid or at least reduce the number and severity of traffic accidents.
A fundamental task of FCAS is vehicle detection which strongly influences the reliability of the system.
Lately, vision-based vehicle detection systems are playing an important role in FCAS. Low cost cameras
compared to other sensors such as LIDAR or RADAR, together with increasingly, powerful computers
and advances in the fields of image processing and computer vision make vision-based systems
a growing segment in FCAS.

Vision-based vehicle detection systems generally consist of two main stages [1]: hypotheses
generation (HG) and hypotheses verification (HV). In the HG, regions in the image which potentially
contain a vehicle are identified by a fast analysis throughout the image based on vehicle features. In the
HV, hypotheses generated are further analysed (generally by a computationally-intensive machine
learning method) to verify whether the candidates are vehicles. Since the output of the HG stage is
the input of the HV, its reliability is important to ensure the detection of the image regions containing
vehicles with minimum false candidates.
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There are several factors that make hypotheses generation challenging. The size, shape and
colour of a vehicle depend on its make and model, so the vehicle detection procedure cannot focus
on a specific object. This together with changing scenarios, cluttered backgrounds and variable
illumination contribute to make vehicle detection difficult. A cluttered background typical of urban
traffic may cause apparent merging of background objects with the contour of the vehicle in the road
scene captured by a video camera, whereas outdoor illumination which depends on the weather
conditions, may modify the shape and colour of the vehicle ahead, resulting in poor vehicle detection.

Motivated by the aforementioned challenges, this paper focuses on the hypotheses generation,
presenting a feature-based method to detect vehicles ahead in the target path. Hypotheses are generated
according to the shadowed road region under the vehicles, which is a distinctive feature of a vehicle in
both overcast and sunny conditions.

The shadow under the vehicle occurs due to the vehicle occluding the ambient light which
comprises of skylight (on overcast days including cloudy and rainy conditions) or both skylight and
sunlight (on sunny days). Due to the shape of a vehicle, the gap between the underside of the vehicle
and the road surface is very small, thus occluding the road area under the vehicle from direct sunlight
and some skylight, and exposing it to only a little amount of lateral skylight in both sunny and overcast
conditions. This makes the road area very dark, with little texture and void of brightness. Even if the
vehicle is travelling in the shade, the road area under the vehicle is darker than its surroundings which
are illuminated by a higher amount of ambient light. Thus, as long as there is ambient light the shadow
under a vehicle is present on the road, making it a reliable cue for vehicle detection in daytime.

In this paper we propose a novel strategy for the detection of the shadow which overcomes
significant difficulties such as outdoors illumination as well as the presence of lateral shadows and
traffic markings on the road. The method is designed to work in day time under different weather
conditions in urban traffic, a challenging scenario characterized by cluttered backgrounds, and includes
highways and extraurban roads. The proposed HG method is intended to integrate a complete vehicle
detection system, i.e., HG followed by HV, to prevent front-to-rear collisions by detecting vehicles
ahead in the target path.

The remainder of this paper is organised as follows. In Section 2, we review the related work.
Section 3 presents the proposed HG method. Experimental results are presented in Section 4 and
finally, Section 5 concludes the paper.

2. Related Work

Hypotheses generation methods can be classified into three categories [1]: stereo-based,
motion-based and appearance-based. Stereo-based systems [2–4] involve finding correspondences
between the left and right images of the stereo image pair of a scene which is a complex and
time-consuming task. Motion-based methods exploit the optical flow of moving vehicles obtained
by matching pixels from consecutives frames of an image sequence [5,6]. The computational
cost of this method is expensive and requires the processing of several frames to detect a vehicle.
Appearance-based methods are the most used approaches which exploit common vehicle features
such as edges, symmetry, texture, colour, vehicle lights, shadows, etc. They are closely conditioned by
illumination and cluttered backgrounds. Edges are one of the most used features in vehicle detection.
Edge-based methods [7,8] build upon the rear view of a vehicle containing many horizontal and
vertical structures, e.g., contour of the vehicle, license plate, rear window, bumper, etc. that cause
high edge density in the image. Thus, a grouping of vertical and horizontal edges in the image has
been used to determine a vehicle candidate. However, the background strongly influences the correct
edge detection of the vehicle contour, causing merging of background objects with the contour of the
vehicle. In addition, a cluttered background can present regions with similar edge density than the
rear of the vehicle which may generate false positives. Symmetry-based methods [9,10] exploit the
symmetry with respect to a vertical centreline of the vehicle rear. Vehicle candidates are determined
by searching regions in the image with high horizontal symmetry. However the computation of
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symmetry is a time consuming procedure for real time applications. In addition, illumination can
cause bright regions on the vehicle, generating a loss of symmetry and therefore a loss of true positives.
Texture-based methods [11,12] assume the texture of vehicles is different from the texture of their
surrounding road. The texture of the asphalt is generally very homgeneous whereas the texture of
vehicles presents regions with a high intensity variation. However, this technique may generate a large
quantity of false positives, especially in urban environment, where the background of the image
may present elements with similar texture of vehicles. In colour-based methods [13,14], colour is
used for segmenting the vehicle from the background. However, these methods are very sensitive to
illumination changes and specular reflections that may cause the loss of true positives. Noting that
taillights are an important feature for vehicle detection at night time, in [15,16] vehicle hypotheses are
generated using a morphological filter to detect the taillight pair in a narrow horizontal search region.
However, this approach is only applicable for night time vehicle detection.

As the hypotheses generation method proposed in this paper is a shadow-based vehicle detection
method, we review its particular related work more thoroughly.

The shadow under a vehicle was first used for vehicle detection in [17] where intensity ranges of
both the non-shadowed road and the region under the vehicle are established for sunny and overcast
days. The shadow detection is reduced to a search for image regions whose intensity values are within
the corresponding range. However, the intensity values differ for different types of asphalt, thus
this method may be valid for a specific road only. A second attempt uses a horizontal edge detector
applying brightness and correlation values constraints [18]. However the constraints and thresholding
method used are not specified in [18].

The intensities of the shadow under a vehicle and road highly illuminated by ambient light
depend on both asphalt and illumination (which is determined by the weather and time of day), thus
the intensity threshold which separates them is not a fixed value and requires a thresholding strategy.
In order to establish an intensity threshold, several approaches have assumed the shadow under
vehicles is always darker than the surrounding road [17], and determined an approximate image grey
level corresponding to the available (i.e., free) driving space in front of the ego-vehicle. Thus, regions in
the image whose intensity is smaller than the grey level are expected to be the shadow under vehicles.

In [19] several masks generated by combining luminance and colour information are used to
segment the image of a road scene into two classes: road and non-road. Dark areas with specific
constraints (i.e., minimum size, height and width) on the road class are considered vehicle candidates.
However, no thresholds either for the road or dark area detections are given in [19]. In [20] the free
driving space is determined by the local image entropy method, and the shadow detection is via
intensity thresholding, morphological filtering and region clustering stabilized over time. However,
the grey level threshold separating road and the shadow under a vehicle is not provided in [20].
An alternative solution is proposed in [21] and later used in [22–29], where a coarse approximation
of the free driving space is obtained by defining the lowest central region in the image delimited by
edges. A normal distribution is assumed for the grey levels of the free driving space, and the shadow
under a vehicle is defined as a region with intensity smaller than a threshold m − 3σ, where m and σ

are respectively the mean and standard deviation of the grey levels of road pixels. This thresholding
method has been demonstrated to be successful in certain scenarios (e.g., highways and extraurban
roads) and weather conditions (e.g., overcast days). However, the method has some drawbacks when
operating in urban traffic and sunny conditions. Firstly, the normal intensity distribution for the road
is not always true because illumination may cause a non-uniform grey level variation. Thus even
a well laid asphalted road can show zones where the intensity is significantly different. Moreover,
the threshold m − 3σ is not the upper bound intensity of the shadow under a vehicle but it is a lower
bound of the road intensity. This fact contributes to false positive detections as all elements darker than
the road as well as lateral shadows are considered vehicle candidates. Furthermore, in urban traffic
due to the permitted slower speed of vehicles the gap between a vehicle ahead and the ego-vehicle is
narrower than in highways, and the boundary of the shadow under a close vehicle may appear in the
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image as a gradual intensity transition where edge detection (e.g., using Canny and Sobel operators)
can easily fail to detect it. This may lead to inclusion of the shadow under the vehicle ahead as free
driving space.

Lastly, [30] proposed a thresholding strategy based on the greyscale histogram assessment of
only a region of interest (ROI) corresponding to a safety area (where collision is likely) in front of
the ego-vehicle. When a vehicle is in the safety area, the grey level histogram of the ROI displays
two intensity peaks. The lower peak corresponds to the shadow under a vehicle and the higher one to
the road. Depending on the illumination both peaks undergo grey level variation, so the threshold is
set according to the lower intensity peak as long as it is smaller than a fixed threshold. This approach
demonstrates good vehicle detection rates under different illumination. However, the short safety
distance between the two vehicles considered makes the method suitable only for urban traffic.

The method of detecting shadow under a vehicle proposed in this paper initially focuses on
distinguishing the intensity transitions on the road due to shadow under the vehicle from those due to
other elements by comparing pixel properties across them. From the set of upper pixels of the resulting
transitions and based on the fact that the shadow under a vehicle is a very dark road region, a coarse
intensity threshold is determined so that regions with intensity smaller than the threshold become
candidates of the shadow. For each candidate, a refined intensity threshold is applied to reject adjacent
transitions due to lateral shadows. Finally, after morphological filtering based on the knowledge of
the pose and size of the vehicle, a ROI covering the frontal road area of the ego-vehicle is established.
Only vehicles within the ROI are susceptible to a possible rear-end collision with the ego-vehicle,
therefore only candidates within the ROI are considered the final vehicle hypotheses.

3. Hypotheses Generation Method

3.1. Searching Image Region

There are a wide variety of roads in a city, from narrow streets with a single lane to wide avenues
with several lanes. In order to simplify a captured road scene, the search space in the incoming colour
images is vertically shortened by using knowledge of the road scene perspective and assuming flat road
surface. The camera is installed beside the vehicle’s rear-view mirror and the search area considered is
a rectangular area covering the nearest road region ahead of the ego-vehicle, thus excluding image
areas corresponding to distances not affecting the movement of the ego-vehicle (see Figure 1a). For our
240 × 320 camera the search area covers 110 × 320 pixels.
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3.2. Vertical Intensity Gradients of Shadow

The detection of shadow under a vehicle ahead is initially based on the observation that shadows
darken a road [17]. We extract the vertical intensity transitions from grey values of the road illuminated
by ambient light to darker ones corresponding to the shadow (scanning the image bottom-up). Due to
the pose of the vehicle ahead, the upper pixels of the transitions correspond to the shadow and the
lower ones to the road which can be illuminated by skylight (on overcast days) or both skylight and
sunlight (on sunny days). Prior to the intensity transitions extraction, the RGB colour image of the
scene is converted to greyscale image I, and an averaging low pass filter with a 3 × 1 kernel is applied
to reduce noise.

Depending on both illumination and gap distance, the intensity transitions due to the shadow
under a vehicle can be sharp or gradual. Both direct sunlight and distant vehicles cause strong intensity
transitions in the image, whereas skylight (diffuse) and close vehicles tend to cause smooth ones.
In order to ensure the detection of both sharp and smooth transitions the process is carried out by
performing a simple vertical intensity gradient operator with no threshold, i.e.,

M(x, y) =

{
1, I(x, y)− I(x + 1, y) < 0
0, otherwise,

(1)

where x represents the rows and y the columns with respect to the top-left corner of the searched image
region. The resulting binary mask M(x, y) includes gradients due to the shadow and to any other
elements on the road such as asphalt noise, kerbs, lateral shadows, lane markings, etc. (see Figure 1b).
In order to identify the gradients that correspond to the shadow, we exploit the spectral and intensity
difference properties of the upper and lower pixels. The use of gradients instead of edges provides
better results when comparing pixel properties across shadow boundaries. Unlike edges, gradients
enclose the penumbra of shadows which is the transition region between the umbra and the road
fully illuminated by ambient light. Thus, the upper pixels correspond to the shadow that falls onto
the darker umbra, whereas the lower one falls onto the brighter road, avoiding pixels in penumbra.
Hypotheses for shadow candidates are generated according to the following four conditions:

1. We exploit the property that the intensity of each of the red, green and blue components
reflected off the road decreases across a shadow-road transition [31,32]. The analysis is performed for
each gradient i of M(x, y). Denote the position of the upper and lower pixels of the intensity gradient
Mi as (xU, y) and (xL, y), respectively. Thus, the gradient Mi becomes a candidate of the gradient of
shadow if the intensity of the upper pixel {Ri(xU, y), Gi(xU, y), Bi(xU, y)} is smaller than that of the
lower {Ri(xL, y), Gi(xL, y), Bi(xL, y)} for the three RGB colour channels. Otherwise Mi is rejected, i.e.,

M(xU xL, y) =



1, Ri(xU , y) < Ri(xL, y)
and Gi(xU , y) < Gi(xL, y)
and Bi(xU , y) < Bi(xL, y)

0, otherwise.

(2)

This constraint is effective for rejecting gradients caused by material changes and asphalt noise
with small intensity difference between their upper and lower pixels.

2. We take into account the lack of light under a vehicle which makes the road region beneath it
dark and colourless. The intensity is a linear combination of the R, G and B channels, thus the low
intensity level of the road under the vehicle implies low levels of the three RGB components. In the
Improved Hue Luminance Saturation (IHLS) space, saturation is defined as [33]

S(x, y) = max[R(x, y), G(x, y), B(x, y)]−min[R(x, y), G(x, y), B(x, y)]. (3)
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Accordingly, the saturation (the proximity of the three RGB components to a same value) decreases
when the light illuminating the road changes from the total ambient light to a little amount of lateral
skylight (road region under the vehicle). As the darkness under the vehicle increases the three RGB
components decrease, reaching values close to the greyscale regardless of the colour of the asphalt.
Thus, the perception of the road under the vehicle becomes close to the achromatic axis (R ≈ G ≈ B).
Generally, asphalt roads are neutral surfaces so their saturation is low. In this case, the significant
decrease in lighting under the vehicle makes the intensity difference between the RGB components
smaller or equal to the road fully illuminated by ambient light. Thus, the gradient Mi becomes
a candidate of the gradient of shadow if the saturation of the upper pixel Si(xU, y) is smaller or equal
to that of the lower Si(xL, y). Otherwise Mi is rejected, i.e.,

M(xU xL, y) =

{
1, Si(xU , y) ≤ Si(xL, y)
0, otherwise.

(4)

In the IHLS space, the saturation avoids the normalization by brightness of colour spaces such
as in HLS, HSI, HSV, etc. where the saturation involves division by intensity which is nearly null at
low brightness. Dark colourless (achromatic) regions in the image reach normalized saturation values
higher than the other more colourful (chromatic) regions. This problem is inherent to the normalisation
within the achromatic zone [34].

3. Constraint is imposed based on the observation that the shadow under a vehicle is an achromatic
region characterized by its low saturation whereas colourful (chromatic) regions are highly saturated.
Thus, gradients with achromatic upper pixels become candidates of gradient of shadow.

Several approaches have focused on chromatic/achromatic pixel classification which is usually
achieved by thresholding the pixel saturation and/or intensity with a fixed value. A first approach
was proposed in [35] and later used in [32] where a pixel is considered achromatic if the sum of its
RGB components is less than 30 on a range of 256. In [36] a pixel is classified as achromatic when its
RGB components fall within the sphere of radius 4σN centred at the origin of the RGB space, where
σN is the standard deviation of the sensor noise at low illumination. In [37,38] a pixel is considered
achromatic if its intensity is below 10 or above 90, or if its normalized saturation is under 10, where the
saturation and intensity values are normalized from 0 to 100. Finally, in [39] pixels are classified as
achromatic if their normalized saturation is below 20% of the maximum saturation.

The aim of the chromatic/achromatic pixel classification is to reject gradients with colourful upper
pixels which do not clearly correspond to the shadow underneath a vehicle. Therefore we propose
a coarse chromatic/achromatic pixel classification where a pixel is categorized as chromatic if its IHLS
saturation is higher than 25% of the maximun saturation i.e., 64 on a range of 256. This coarse threshold
was empirically established from a wide set of test images acquired on different asphalts and weather,
being very conservative at low intensity ensuring the classification of shadow pixels as achromatic.
However, as the intensity increases the threshold is less conservative, making it useful to reject upper
pixels of gradients onto colourful objects such as vehicles or elements on the pavement.

Thus, gradient Mi becomes a candidate of the gradient of shadow if the IHLS saturation of the
upper pixel Si(xU, y) is smaller or equal to 64. Otherwise, Mi is rejected, i.e.,

M(xU xL, y) =

{
1, Si(xU , y) ≤ 64
0, otherwise.

(5)

4. Finally, a constraint based on the intensity difference between the upper and lower pixels of
the gradients is proposed. Depending on the ambient illumination and type of asphalt, the intensities
of the road and the shadow vary, however their difference is significant even if the road is in the
shade. The intensity of the light reflected off a surface is the product of incident light and surface
reflectance [40]. Thus, on a sunny day the intensity of the reflected light Iroad(λ, p) at a point p on the
road for both sunlight Isun(λ, p) and skylight Isky(λ, p), and for some viewing geometry is [41]
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Iroad(λ, p) = (Isun(λ, p) + Isky(λ, p)) · ρroad(λ, p), (6)

where λ is the wavelength and ρroad(λ, p) is the reflectance of the road. In both overcast condition
and road in the shade, the ambient illumination is composed only of skylight, thus the reflected light
Iroad(λ, p) at a point p on the road becomes

Iroad(λ, p) = Isky(λ, p) · ρroad(λ, p). (7)

On the other hand, the road region under the vehicle is illuminated by a little amount of lateral
skylight. The reflected light at a point p on the road under the vehicle Ishadow(λ, p) in the three possible
cases, i.e., sunny and overcast conditions as well as on road in the shade, is

Ishadow(λ, p) = δ · Isky(λ, p) · ρroad(λ, p), (8)

where δ is a fraction of 1 denoting the amount of skylight reflected off the road under the vehicle and
depends on the height between the underside of the vehicle and the ground. As the reflectance of the
road is constant, the intensity difference between a point on the road illuminated by ambient light and
a point on the road region under the vehicle for both overcast condition and road in the shade is

Iroad(λ, p)− Ishadow(λ, p) = (1− δ) · Isky(λ, p) · ρroad(λ, p) = (1− δ) · Iroad(λ, p). (9)

The geometric factor δ is small so (1 − δ) is large, causing a strong intensity difference between
the road fully illuminated by skylight and the shadowed road under the vehicle. On a sunny day,
the road is in addition illuminated by sunlight which makes the intensity difference even stronger.
However, it is very difficult to obtain an accurate value of δ since the height between the underside of
the vehicle and the ground depends on the vehicle make and model. Therefore, a coarse factor δ is
considered not to accurately identify gradients due to shadow but reject gradients whose intensity
difference do not clearly correspond with the significant intensity difference across the former. From
the analysis of a set of different kind of vehicles (i.e., cars and vans) we propose a coarse factor δ of 0.5
so the amount of skylight reflected off the road under the vehicle is considered 50% of ambient light.
Hence the intensity difference between the upper and lower pixels of the gradient due to the shadow
under a vehicle satisfies

Iroad(λ, p)− Ishadow(λ, p) ≥ (1− δ) · Iroad(λ, p), (10)

where simplifying and replacing δ by 0.5 gives

Ishadow(λ, p) ≤ δ · Iroad(λ, p)⇒ Ishadow(λ, p)
Iroad(λ, p)

≤ 0.5. (11)

Thus the gradient Mi becomes a candidate of the gradient of shadow if the relationship between
the upper Ii(xU, y) and lower Ii(xL, y) pixels is lower or equal to 0.5. Otherwise, Mi is rejected, i.e.,

M(xU xL, y) =


1, Ii(xU ,y)

Ii(xL ,y) ≤ 0.5

0, otherwise.

(12)

Using a wide range of test images captured in shadowed and non-shadowed roads as well
as different types of vehicles ahead, we verified that the geometric factor δ is very conservative
(the illumination under the vehicle is quite lower than 50% of ambient light), ensuring the correct
classification of gradients due to shadow and contributing to the rejection of gradients due to soft
lateral shadows, asphalt noise, elements on the pavement, etc.
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Figure 2a show the resulting binary mask M(x, y) after application of the saturation and intensity
difference constraints, i.e., Equations (2), (4), (5) and (12). It can be observed that gradients due to the
shadow under vehicles satisfy the conditions whereas most of the gradients caused by other elements
in the scene are rejected from M(x, y). Nevertheless, the gradients due to colourless elements such
as lane markings, lateral shadows, kerbs and noisy elements still remain. In order to identify the
gradients due to shadow, intensity thresholding is performed.
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3.3. Intensity Threshold for Shadow

Unlike thresholding methods that determine a threshold which is a coarse lower bound of the
intensity for road [21], the thresholding strategy we propose determines a coarse upper bound of the
intensity for shadow under a vehicle from the upper pixels of the gradients remaining in the binary
mask M(x, y) after application of the saturation and intensity difference constraints.

The upper pixels of the gradients remaining in M(x, y) correspond to the darkest pixels of the
shadow, kerbs, asphalt noise, lateral shadows, lane markings, oil stains, etc. However, two observations
can be made:

1. The shadow is darker than the road illuminated by ambient light, and thus darker than the upper
pixels of the gradients due to lane markings, asphalt noise and lateral shadows.

2. The shadow is generally darker than any asphalt stain [17,21,30] and kerb (where the vertical
side of a kerb is shadowed owing to the occlusion of a half hemisphere of skylight).

Therefore, of all the upper pixels of the remaining gradients in M(x, y), those corresponding
to shadow under a vehicle are generally the darkest. Hence, the mean intensity value m of the set
composed of the upper pixels of all the gradients in M(x, y) is a coarse upper bound for the shadow
under a vehicle, i.e.,

m =
1

np
·

np

∑
i=1

Ii(xU , y), (13)

where np is the total number of upper pixels of the gradients. Thus, gradients whose upper pixel
intensity is lower that m become candidates of gradient due to shadow.

Nevertheless, in road scenes without gradients whose upper pixels have high intensity values
(corresponding to lane markings, lateral shadows, etc.), the mean intensity of the pixels is not a reliable
upper bound for the shadow. Let us consider a binary mask M(x, y) of a road scene where there is
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only the cluster of gradients due to shadow under a vehicle. In this case, the upper intensity bound is
given by the largest intensity value of the upper pixels of the cluster so the mean value m would be
an incorrect threshold for shadow. In this case no intensity thresholding is required.

In order to determine if M(x, y) includes gradients due to elements whose upper pixels present
high intensity, we compute the standard deviation σ of the set of upper pixels, which indicates the
data dispersion with respect to the mean value m. We consider the case of small standard deviation
which denotes gradients where the intensities of the upper pixels are close to the mean, and apply the
intensity threshold m if the standard deviation is greater than one third of the mean value, i.e., σ > m/3.
Otherwise, no intensity threshold is applied.

The gradient Mi becomes a candidate of gradient of shadow for low standard deviation or for
high standard deviation if the intensity of its upper pixel Ii(xU, y) is smaller than the mean intensity
value m of the set. Otherwise, Mi is rejected, i.e.,

Mi(xU xL, y) =


1, σ ≤ m

3
or (σ > m

3 and Ii(xU , y) < m)

0, otherwise,

(14)

where

σ =

√√√√ 1
np
·

np

∑
i=1

(Ii(xU , y)−m)2. (15)

Figure 2b show the effectiveness of the mean value as intensity threshold for rejecting gradients
due to lane markings, asphalt noise and most lateral shadows. On overcast days, vehicles do not cast
lateral shadows thus the intensity thresholding usually leads to the retention of clusters of gradients
composed only of those corresponding to shadows under vehicles (see Figure 2b left and center).
However, on sunny days some gradients corresponding to dark lateral shadows adjacent to the
gradients due to shadow under a vehicle may satisfy the intensity threshold and thus remain in M(x, y)
(see Figure 2b right). In order to identify them, a further refined intensity threshold is applied to each
resulting cluster. The binary mask M(x, y) of the road scene in Figure 2a center is basically composed
of clusters of gradients due to shadow under a vehicle thus obtaining a low standard deviation value,
σ < m/3. In this case, no intensity thresholding is applied (see Figure 2b center).

In a cluster composed of gradients due to both shadow under a vehicle and a lateral shadow
(see Figures 2b right and 3b, the intensities of the upper pixels of the former are very similar to each
other and significantly smaller than those of the latter which are illuminated by a higher amount of
skylight (see Figure 3c).

The standard deviation of the set of upper pixels of the gradients comprising the cluster is of high
value whereas that of a cluster comprising only of gradients due to shadow under a vehicle is small.
Therefore, the standard deviation σ (i.e., Equation (15)) is computed and for gradient values smaller
than one third of the mean value, no adjacent gradient due to a lateral shadow is considered, and no
threshold is applied to the cluster. Otherwise, an intensity threshold is computed using Equation (13),
where in this case, np is the number of upper pixels of the cluster under evaluation. Gradients of the
cluster whose upper pixels are greater than the intensity threshold are rejected as gradients due to
shadow under a vehicle.

Figures 2c right and 3d show the resulting binary mask M(x, y) after thresholding and rejecting
adjacent gradients due to the lateral shadow cast by the vehicle. Clusters composed of gradients due to
shadows under the vehicles in Figure 2b left and center do not include adjacent gradients due to lateral
shadows, giving small standard deviation values and thus they are not thresholded (see Figure 2c left
and center).
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Figure 3. Intensity thresholding of the cluster of gradients under a vehicle in Figure 2 right. (a) Incoming
image; (b) cluster of gradients due to both shadow under the vehicle and lateral shadow; (c) intensity
of upper pixels of the cluster; and (d) resulting cluster after refined intensity thresholding.

3.4. Morphological Filter and Region of Interest

After intensity thresholding, a morphological filter based on the knowledge of the pose and width
of the vehicle in the image is applied to obtain the final vehicle hypotheses. From the rear view of
the vehicle ahead, the upper edge of the cluster of gradients due to the shadow under a vehicle is
horizontal and its width matches with the width of the vehicle. Thus the width of the clusters of
gradients in the binary mask M(x, y) is compared to that of a vehicle. Nevertheless, the width of
a vehicle varies slightly depending on the make and model, thus an ideal vehicle width is assumed
equal to the width of the ego-vehicle. Due to perspective projection, the width (in pixels) of the
vehicle ahead varies linearly with respect to its vertical location x (in pixels) in the image (as illustrated
in Figure 4).
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This relationship is determined by two frames of an image sequence where the vehicle ahead is at
different distances away from the ego-vehicle. For our camera setting, in the first frame the vehicle ideal
width va is 30 pixels and the bottom of the vehicle xa is located at 15 x-coordinate, whereas in the second
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frame the vehicle ideal width vb is 178 pixels and its bottom xb is located at 100 x-coordinate (where
x-coordinate represents the row with respect to the top of the searched image region). Thus, the linear
relationship between the ideal width vwidth of the vehicle ahead and its vertical location x in the image is

vwidth − va

va − vb
=

x− xa

xa − xb
⇒ vwidth = 3.9 + 1.74 · x. (16)

This relationship is specific to the resolution of the image as well as to the elevation and tilt of the
camera installed in the ego-vehicle.

The filtering is as follows. First, horizontal clusters in M(x, y) are extracted by an opening
operation using a structuring element based on the minimun ideal vehicle width, i.e., the width of
the vehicle placed furthest. The proposed system is intended for urban traffic and it is designed to
detect vehicles at a distance up to 20 m from the ego-vehicle. Thus the size of the structuring element
corresponds to the width of the vehicle at 20 m which is obtained experimentally by placing a vehicle
at this distance. This morphological operation focuses on eliminating vertical and inclined parts of
clusters in M(x, y) such as those corresponding to kerbs and lateral sides of both a parked vehicle and
a vehicle travelling in parallel lanes (see Figure 5a).
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Figure 5. (a) Binary mask M(x, y) of Figure 2 after horizontal clusters extraction (b) M(x, y) after
morphological thresholding and ROI establishment; and (c) vehicle hypotheses including those out of
the ROI.

Second, a size filter is applied. Clusters of M(x, y) whose width is larger than 0.8·vwidth and shorter
than 1.2·vwidth at the vertical location are finally considered candidates of gradients of shadow under
a vehicle (see Figure 5b). To compute the vertical location of a cluster we consider the vertical location
of its upper pixels which correspond with the bottom part of the vehicle.

After size filtering, for each candidate a bounding box containing the vehicle hypothesis is
generated. In order to correctly frame the rear of the vehicle, the width of the cluster is horizontally
lengthened by 5% of its width to both the right and left. To encompass all kinds of vehicles, i.e., cars
and vans, a standard aspect ratio of the rear of the vehicle is assumed as in [30] where based on a set of
hypotheses containing different vehicle models the height of the box is set equal to 130% of its width,
ensuring the correct frame of tall vehicles, i.e., vans. Bounding boxes containing vehicle hypotheses
are shown in Figure 5c.
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Finally, a ROI is established focusing on the area at risk of a rear-end collision (see Figure 5b,c).
The ROI is considered to comprise of a safety area, i.e., the stretch of the road up to 20 m in front of
the ego-vehicle (15 x-coordinate) with a width equal to the width of the ego-vehicle. Only vehicles
within the safety area are susceptible to a rear-end collision, thus only these vehicles are the target of
the system. In this way, candidates detected within the ROI, either in whole or in part, are considered
the final vehicle hypotheses (see Figure 5c).

4. Experimental Results

Experiments were carried out on image sequences acquired using an onboard camera which
provided 240 × 320 colour frames with an 8-bit pixel depth. A total of 13,200 road images were
captured in real traffic under sunny and cloudy conditions. The data consists of a large variety of
urban traffic scenes composed of narrow and wide roads. We also used the publicly available Caltech
dataset [42,43] for driving assistance systems which consists of 526 road frames of 240 × 360. In the
Caltech dataset the image resolution, elevation and tilt of the camera in the ego-vehicle differ from
those of our dataset, thus parameters of the searched image region, morphological filter and ROI are
adapted. The searched area considered for Caltech dataset is an image region of 130 × 360 pixels
covering the road region ahead of the ego-vehicle. The relationship between the width of the vehicle
ahead and its vertical location in the image is determined by two frames of an image sequence of the
dataset where a same vehicle ahead is at different distances away from the ego-vehicle and its width is
assumed the ideal vehicle width, obtaining va = 80, xa = 22, vb = 240, xb = 115, and from Equation (16),
vwidth = 42.1 + 1.72x, where x is its vertical location. Finally, it is not possible to determine the vertical
location in the image corresponding to 20 m away, thus the ROI is considered to comprise of the
searched image region with a width equal to the ideal vehicle width.

Figure 6 shows some example results of the HG stage in scenes of our dataset (top and middle
rows) and the Caltech dataset (bottom row) where in order to better show the performance of the
method, the hypotheses generated both inside and outside of the ROI are illustrated.
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The method demonstrates high reliability as it correctly detects the clusters of gradients due
to shadows under the different lighting conditions. The proposed thresholding strategy makes the
method robust to lateral shadows and traffic markings on the road, minimizing the number of missed
vehicles and false detections.

A remarkable feature of the method is its ability to correctly frame vehicle hypotheses on sunny
days in which the sun is in front of the ego-vehicle. In this situation, the vehicle ahead casts a rear
lateral shadow (see right column of Figure 6) which makes difficult the correct framing of the vehicle’s
rear when shadow boundaries are hypothesized by edges as in [21]. However, the proposed method
exploits gradients which enclose the total intensity transition from the brightest road region to the
darkest one which corresponds to the bottom of the vehicle, and thus result in a more accurate framing
of the rear of the vehicle ahead.

On the other hand, the use of shadow under vehicles may lead to hypotheses of vehicles which are
out of the scope of the system such as vehicles travelling in parallel lanes (in both directions), vehicles
parked by the lane or vehicles whose rear is occluded to some extent (generally by other vehicles).
However, as the system focuses on vehicles travelling within the ROI, the number of final vehicle
hypotheses is significantly reduced. Special mention must be made of vehicles travelling transversely
to the ego-vehicle trajectory, i.e., in crossroads (see Figure 7) and roundabouts. The clusters of gradients
due to their shadows can satisfy the morphological filter, thus providing hypotheses of vehicles out of
the scope of the system.
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Figure 7. Hypotheses generated by vehicles travelling transversely on crossroads.

The use of shadow under vehicles makes the method limited to day time under natural
illumination conditions. Most of the vehicle features commonly used for vehicle detection in day
time, i.e., edges, corners, texture, shadows, etc. are difficult or impossible to detect in darkness or
night time [15], thus vision-based vehicle detection systems for night time are ad-hoc systems that are
limited to the night time lighting conditions.

Artificial illumination, i.e., used during night time and in tunnels, is direct light which depending
on the light source location relative to the vehicle, may cause shadow under vehicles (e.g., for light
source on ceiling) or outside the vehicles’ vertical projection on the ground (e.g., for light source close
to ground level). Thus the presence of the shadow under a vehicle at night or in a tunnel is not assured,
making the vehicle detection method unreliable. Night time and in tunnels are scenarios that are
outside the scope of the proposed method.

Quantitative results of the HG are presented in Table 1 where a hypothesis is considered positive
P if the rear of the vehicle is correctly framed (see Figure 8a).

Hypotheses corresponding to vehicles whose rears are incorrectly framed FNVIF (see Figure 8b)
are included as false positives FP together with missed vehicles FNVM. The detection rates PR and
FPR are defined as

PR(%) =
P
V
· 100, FPR(%) =

FP
H
· 100, (17)

where V is the total number of vehicles within ROI, and H is total number of hypotheses generated.
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Table 1. Results of Hypotheses Generation.

Cloudy Sunny

Total number of frames 7920 5806
Total number of vehicles within the ROI (V) 7303 5115
Total number of hypotheses generated (H) 7830 5555

Positives: Vehicle hypotheses correctly framed (P) 7160 4998
False positives: hypotheses of non-vehicle (FP) 532 449
Vehicle hypotheses incorrectly framed (FNVIF) 138 108

False negatives: vehicles missed (FNVM) 5 9
Positive rate (PR) 98.04% 97.71%

False positive rate (FPR) 6.79% 8.08%
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Figure 8. Example results: (a) positive hypotheses, (b) hypotheses corresponing to vehicles incorrectly
framed; and (c) false positives corresponding to non-vehicles or vehicles out of system’s scope.

The results show high rates in positive detection PR, achieving 98.04% and 97.71% on cloudy and
sunny conditions, respectively. The loss in positives detection rate is not mainly due to vehicles missed
but vehicles detected which are incorrectly framed. In both weather conditions, the number of missed
vehicles is very low which demonstrates the HG method is very reliable. The number of hypotheses
containing a non-vehicle FP (see Figure 8c) is relatively low for a HG stage, achieving rates FPR of
6.79% and 8.08% for cloudy and sunny conditions, respectively.

The morphological filter and the consideration only of hypotheses within the ROI strongly
contributes to the low rate of FP.

Finally, the performance of the HG method is compared to the well known method in [21] where
the shadow under a vehicle is defined as the upper region of edges with intensity smaller than the
threshold m − 3σ, where m and σ are the mean and standard deviation of the free driving road
delimited by edges (extracted using Sobel operator). After morphological filtering, edges due to
adjacent lateral shadows are removed. Since the specifications of the morphological filter, the lateral
shadows removal method and experimental results are not given in [21], a quantitative comparison
is not possible. Therefore, we focus on comparing the intensity threshold Th1 proposed in [21] and
Th2 proposed in this paper by means of two examples. The comparison of both thresholds is very
indicative of the performance of the two methods being compared. This is because the result of the
intensity thresholding is a binary mask where only the shadows under vehicles are supposed to remain.
An ideal intensity thresholding will provide a binary mask where only pixels corresponding to shadow
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under vehicles remain. No lateral shadow removal or morphological filter should be necessary. Thus,
the more accurate the threshold is, the better is the detection of the shadow under vehicles. A method
which establishes a very conservative threshold will include as shadow other elements of the image
that are not shadow, thus providing false positives. Conversely, as the accuracy in the threshold
increases, fewer elements of the image which are not shadow will be included as shadows, therefore
the method will be better as it will generate fewer false positives.

Figure 9a shows the searched image region of a road with vehicles in overcast weather and
Figure 9b shows its greyscale histogram with two main intensity peaks. The large peak corresponds to
the road pixels and the peak to its left corresponds to pixels of shadows under the vehicles. Pixels of
lane markings and regions brighter than the road are on the right of the road peak whereas pixels of
asphalt stains and noise as well as kerbs fall between the two main peaks.
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free driving road (see Figure 9e), giving m1 = 105.87, σ1 = 15.27 and Th1 = 60.04 (see Figure 9g). Edges 
whose upper region intensity is smaller than Th1 are candidates of edges of shadow under a vehicle 
(see Figure 9i). The intensity threshold Th2 we proposed is established by considering the upper 
pixels of the gradients remaining in M(x,y) after application of the saturation and intensity difference 

Figure 9. Road scene on cloudy day. (a) Searched image area; (b) its greyscale histogram. Left column
(method proposed in [21]): (c) edge map, (e) free driving road, (g) histogram of the free driving road
and (i) edge map after intensity thresholding. Righ column (our method): (d) vertical intensity gradients,
(f) M(x, y) after application of saturation and intensity constraints, (h) histogram of set of upper pixels
of the gradients and (j) M(x, y) after intensity thresholding.

The method in [21] establishes the intensity threshold Th1 as the lower bound intensity of the
free driving road (see Figure 9e), giving m1 = 105.87, σ1 = 15.27 and Th1 = 60.04 (see Figure 9g). Edges
whose upper region intensity is smaller than Th1 are candidates of edges of shadow under a vehicle
(see Figure 9i). The intensity threshold Th2 we proposed is established by considering the upper
pixels of the gradients remaining in M(x, y) after application of the saturation and intensity difference
constraints (see Figure 9f). We obtain m2 = 34.85, σ2 = 28.81, and as σ2 > 1/3·m2, Th2 = 34.85 (see
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Figure 9h). Gradients whose upper pixel intensity is smaller than Th2 are candidates of gradients of
shadow under a vehicle (see Figure 9j).

As stated above, the intensities of upper pixels of the remaining gradients are smaller than that of
the road so the threshold Th2 is smaller than Th1. Comparing both thresholds (see Figure 9b), Th2 is
closer to the intensity level of shadows under vehicles, thus the thresholding performed with Th2 is
more effective, rejecting a higher number of gradients that are not due to the shadow under a vehicle
(see Figure 9i,j). However, this fact becomes more significant in road scenes with lateral shadows or
alphalt stains and patches.
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higher than the intensity level of lateral shadows, so the edges of the latter are classified as those due 
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Figure 10. Road scene on a sunny day. (a) searched image area, (b) its greyscale histogram. Left column
(method proposed in [21]): (c) edge map, (e) free driving road, (g) histogram of the free driving road
and (i) edge map after intensity thresholding. Righ column (our method): (d) vertical intensity gradients,
(f) M(x, y) after application of saturation and intensity constraints, (h) histogram of set of upper pixels
of the gradients and (j) M(x, y) after intensity thresholding.

Figure 10a shows the searched image region of a road in sunny weather with lateral shadows and
Figure 10b shows its greyscale histogram. The intensity level of lateral shadows is higher than that of
shadow under vehicles and smaller than that of the road (see Figure 10b). According to [21], from the
free driving road pixels we obtain m1 = 170.87, σ1 = 15.43 and Th1 = 124.67 (see Figure 10g). As can be
observed in Figure 10b, the lower bound intensity of the road pixels that is Th1 is much higher than
the intensity level of lateral shadows, so the edges of the latter are classified as those due to shadow
under a vehicle (see Figure 10i). On the other hand the proposed method provides values of m2 = 45.61,
σ2 = 18.06 and as σ2 > 1/3m2, Th2 = 45.61 (see Figure 10h). The threshold Th2 is determined as the
mean value of pixels corresponding to shadows under vehicles and lateral shadows, thus it is smaller
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than the intensity level of most of the latter, rejecting their corresponding gradients from M(x, y) (see
Figure 10j). The different performance of Th1 and Th2 can be noticed in Figure 10i,j.

Comparing both thresholds (see Figure 10b), Th2 is closer to the intensity level of shadows under
vehicles and thus, more effective than Th1, rejecting a higher number of gradients that are not due to
the shadow under a vehicle including most of those due to lateral shadows.

Using a wide range of test images we verified that the proposed thresholding strategy is more
restrictive than that proposed in [21], producing better thresholding results especially on sunny days
with lateral shadows and with asphalt patches and stains on the road regardless of the weather.

5. Conclusions

This paper presents a new vision-based HG method to detect vehicles ahead in order to avoid
front-to-rear collisions. Hypotheses are generated according to the shadow under vehicles and these
are reliable cues for vehicle detection in daytime regardless of weather conditions. The proposed
strategy overcomes significant difficulties such as the presence of lateral shadows, asphalt stains and
traffic markings on the road. The establishment of very conservative thresholds makes the method
robust, giving high rates in positive detection on overcast and sunny days. The use of intensity
gradients instead of edges to detect shadow boundaries offers three advantages:

1. Gradients ensure the detection of gradual shadow boundaries whose edge detection can easily
fail, thus minimizing the number of missed vehicles.

2. Gradients enclose the penumbra of shadows. Thus, pixel properties comparison avoids pixels in
penumbra which is partially illuminated by ambient light.

3. The upper pixels of gradients correspond to the bottom of the vehicle making a more accurate framing
of its rear especially on sunny days when the sun is in front and the vehicle cast a rear lateral shadow.

Regarding false positives, the rates for overcast and sunny conditions are relatively low for a HG
stage. The morphological filter and the consideration only of hypotheses within the ROI strongly
contribute to the low rate of false positives which have to be addressed in the hypotheses verification
stage. The most frequent error is that vehicles travelling transversely to the ego-vehicle trajectory may
satisfy the morphological filter providing hypotheses of vehicles out of the scope of the system.

The proposed method achieves better performance in the intensity thresholding than the method
compared, rejecting a higher number of gradients that are not due to the shadow under a vehicle,
especially on sunny days with lateral shadows and with asphalt patches and stains on the road
regardless of the weather.

As future work, we will first address the incorrect detection of vehicles out of the scope of a system
for avoiding front-to-rear collision. Second, we will focus on a hypotheses verification stage in order to
develop a complete on-board vehicle detection system. The HV will consist on a learning method based
on Support Vector Machine to classify feature vectors extracted from hypotheses to verify whether
those hypotheses including false positives, are vehicles.
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