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Abstract

Microtubule-organizing centers recruit a- and b-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is
complex, requiring five specific cofactors, designated tubulin cofactors (TBCs) A–E, which contribute to various aspects of
microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD) is concentrated at the centrosome and
midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-
specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles
at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule
release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule
retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the
centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is
organized into ‘‘centriolar rosettes’’. These data suggest that TBCD participates in both canonical and de novo centriolar
assembly pathways.
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Introduction

Understanding how the centrosomal components function and

are organized during the cell cycle could shed light on many

human diseases, from ciliary syndromes to cancer. The centro-

some is the major microtubule-organizing center (MTOC) in

animal cells, consisting of two centrioles surrounded by protein-

aceous pericentriolar material (PCM), from which microtubules

nucleate and are released. Microtubules are built of ab-tubulin

heterodimers organized in a head-to-tail fashion. This confers

polarity on these polymers, with two different microtubule ends:

the plus end, which is more dynamic and oriented towards the

periphery of the cells, and the minus end, generally embedded in

the centrosome. At the centrosomal core, a centriole pair

organizes the surrounding PCM. Centrioles, which are required

to assemble the axonemes of cilia and flagella, are structurally very

complex. In mammals, they are 500 nm long cylinders with a

200 nm diameter consisting of nine blades arranged in a circle,

each containing three highly specialized microtubule segments.

Both the exact composition and the assembly of these peculiar

microtubules are still unknown. There is also imprecise informa-

tion regarding the composition and structure of the PCM, in

which recent studies have identified hundreds of proteins, most of

which play as yet unknown roles [1]. However, one of the most

widely accepted concepts is that MTOCs, and in particular the

centrosome, accumulate ab-tubulin polypeptides as part of the

PCM for microtubule nucleation. This suggests that there is some

tubulin supply at the MTOCs. Yet, the assembly of ab-tubulin

heterodimers is not a trivial matter. The process of association of

one a-tubulin with one b-tubulin molecule requires the co-

ordinated interaction of a series of tubulin-specific partners,

designated tubulin cofactors (TBCs) A–E [2–5]. TBCs also play

roles in tubulin dissociation [5–8], transitory tubulin storage

[5,9–12], and tubulin degradation processes [13–15], all of which

suggest that these proteins, in addition to their original role in

tubulin biogenesis, participate in microtubule dynamics by

controlling the amount of tubulin available for polymerization.

There is considerable evidence in the literature supporting a role

for TBCs in this centrosome. Mutations in TBCD, in particular,

have been shown to produce aberrations in chromosome numbers

in Saccharomyces cerevisiae [16], Schizosaccharomyces pombe

[17], Arabidopsis thaliana [18,19], and Caenorhabditis elegans

[20,21]. TBCD mutations also induce a G1/S blockage and

spindle pole body separation in S. pombe [22,23] and abnormal

cytokinesis [19]. In C. elegans, TBCD silencing results in a

reduced rate of microtubule nucleation and produces abnormal

spindle lengths [21]. Recently, human TBCD (HsTBCD) has been

shown to play a role in the organization of the mitotic spindle, and

has been hypothesized to recruit from among cytosolic centroso-

mal proteins, such as pericentrin or c-tubulin [24].

Our data show that TBCD accumulates in immature centrioles

and at the midbody ring during cytokinesis. We demonstrate

TBCD recruitment into ‘‘centriolar rosettes’’ during basal-body

assembly in a novel primary cell culture system of differentiating

ciliated cells, which we developed for this study. More interest-

ingly, we demonstrate that the manipulation of TBCD levels
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produces several abnormalities at the centrosome and midbody,

resulting in spindle and anaphase defects, G1 blockage, and cell

abscission failure. These findings indicate that TBCD is a

fundamental protein in cell division.

Results

TBCD Is Concentrated in Centrioles and Midbodies
TBCD has been reported in the centrosome and has been

shown to co-sediment with c-tubulin when overexpressed [24], but

the exact location of the protein has not been documented. To

investigate more precisely its centrosomal distribution, we first

produced and affinity purified several anti-TBCD antibodies

(Figure S1A), which we used to identify the sub-cellular locations

of this cofactor in HeLa cells, among other systems. We observed

that despite all the biochemical evidence suggesting that TBCD is

predominantly a cytoplasmic protein, TBCD accumulated prom-

inently at the centrosome (Figure 1A), as determined by double

immunostaining for standard markers, such as c-tubulin,

NEDD1/GCP-WD (Figure S1B), and others. Microtubule

depolymerization by nocodazole and cold treatment showed that

TBCD localization at the centrosome is not dependent on

microtubules, thus demonstrating that TBCD behaves as a

genuine centrosomal protein.

Using high-resolution confocal microscopy, we next investigated

the relationship of these TBCD spots with the centrioles and

primary cilium. For this purpose, we doubly/triply immunostained

cells with our antibodies and combinations of various markers,

including GT335, which is a broadly characterized antibody that

recognizes glutamylated tubulin and is typically used to label

centrioles and the primary cilium. We observed one TBCD spot

accompanying the primary cilium in cells at G1, which we

identified as occurring at the daughter centriole by double

immunostaining with an antibody that recognizes e-tubulin, which

did not co-localize with TBCD (Figure 1B–D). As mitosis

progressed, two stronger TBCD signals devoid of GT335 staining

arose immediately adjacent to the existing centrioles. This suggests

that TBCD is localized on developing procentrioles before tubulin

glutamylation.

During late G2, although often four GT335 spots were visible

(Figure 1B, C), only three TBCD spots of different intensities were

observed. Two intense spots were localized on developing

centrioles before tubulin glutamylation, and a weaker signal on

the former daughter centriole. Sometime after cilia disassembly,

the TBCD signal on the original daughter centriole weakened and

by the beginning of mitosis, in prophase, most dividing cells

already showed only two strong TBCD spots localized on the

newest centriole of each pair. Occasionally, a TBCD halo

surrounding older centrioles was also observed (Figure 1B, arrows),

suggesting that this protein connects both the old and the new

centrioles at this point. Partial co-localization of the TBCD signal

with c- and d-tubulin was observed during the cell cycle. TBCD

also appeared to co-localize with e-tubulin in cells at late S/G2

phase (Figure 1D), coinciding with the reported redistribution of

this tubulin [25]. By telophase, after centriole separation, only the

new centriole of each pair was labelled for TBCD. This

phenomenon coincided chronologically with the accumulation of

TBCD in a ring-like structure localized at the midbody at the

point of cell abscission (Figure 1A), where we also identified c- and

e-tubulin (Figure 1E).

Immuno-gold localization of TBCD revealed proximal centrio-

lar and procentriolar labelling, which was also conspicuous at the

proximal end of the basal bodies of the cilia (Figure 1F), a pattern

almost identical to that described for c-tubulin [26]. TBCD

labelling was also observed on ciliary microtubules. We further

confirmed TBCD localization at the proximal end of centrioles

immunostaining GFP-centrin1 transfected HeLa cells (Figure 1G).

The observed cell-cycle-specific pattern and the association of

TBCD with procentrioles implicate this tubulin cofactor in

centriologenesis. To explore this hypothesis further, we performed

additional experiments in different systems. First, we analysed

TBCD expression using immunofluorescence in Chinese hamster

ovary (CHO) cells arrested at G1/S phase by thymidine

treatment. This induces repeated cycles of centriole/centrosome

synthesis, thus providing a convenient assay with which to identify

the molecular components involved in centriologenesis. Our

results confirmed the TBCD immunostaining on developing

centrioles after G1 blockage (Figure S2A). An alternative method

used to trigger massive centriologenesis is the overexpression of

proteins such as PLK4 or SAS-6, which are among the first

proteins reported in the recruitment of centriolar components

[27,28]. Therefore, we overexpressed PLK4 on HeLa cells and

looked for TBCD clustering at the developing centrioles. This

system also confirmed TBCD accumulation at the centrosome

(Figure S2B).

TBCD Overexpression Releases Microtubules from the
Centrosome

Human TBCD (HsTBCD) has been reported to behave

differently when overexpressed to the bovine protein (BtTBCD)

[24], which was the first TBCD isolated and has therefore been

more often studied in vitro and in vivo [6,8]. Consequently, we

decided to investigate changes in the microtubule cytoskeleton

organization in cells overexpressing these two orthologues. We

observed that, compared with BtTBCD, HsTBCD was more

condensed at the centrosome and the microtubule cytoskeleton

took longer to depolymerise. Quantification of microtubule

depolymerisation in over-expressing cells at 15 and 30 hours

post-transfection revealed that although both proteins resulted in a

massive microtubule destruction at 30 hours post-transfection

(71% Hs Vs 83% Bt), HsTBCD overexpressing cells exhibited no

obvious microtubule depolymerisation signs at 15 hours (100%

cells contained microtubules) while 82% of cells overexpressing

BtTBCD displayed a complete microtubule destruction. More

interestingly, we found that HsTBCD accumulation appeared to

detach the microtubule minus ends from the centrosome

(Figure 2A). This finding can be understood in view of previous

observations that overexpressed HsTBCD removes c-tubulin from

the centrosome [24] and suggests that this tubulin cofactor could

play a role in microtubule release in c-tubulin-dependent

MTOCs.

We also observed that TBCD overexpression produced

aberrant mitotic figures, where supernumerary MTOCs contain-

ing c-tubulin, but no detectable centrioles, developed (Figure 2B).

These observations suggest that there is a delay at mitosis, which

we next investigated by flow cytometry in cells transfected with

constructs encoding HsTBCD–yellow fluorescent protein (YFP) or

H2B–YFP as the control. Flow cytometry analysis 15 h post-

transfection revealed that 65% of TBCD positive cells were found

at G1 compared to 45% of controls. Hence, we conclude that

TBCD overexpression results in G1 delay (Figure 2C). This

finding is consistent with those described in S. pombe, where

mutations in the TBCD orthologue, Alp1p, produced a G1/S

block [22–23]. In view of recent reports demonstrating that

centrosomal integrity is required for G1/S progression [29], these

findings support the notion that TBCD is a key centrosomal

protein.

TBCD Role in Centriologenesis
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Figure 1. TBCD is concentrated in centrioles and midbodies. (A) Confocal-microscopic images of a HeLa cell (ATCCR number: CCL-2TM)
immunostained for tubulin, TBCD, and GT335 (which labels glutamylated tubulin at the centrioles and primary cilium), where a single spot of TBCD is
observed close to the basal body of the cilium. HeLa cells in anaphase and undergoing cytokinesis display clear centrosomal labelling and
recruitment of TBCD to the midbody ring, respectively. (B) High-resolution confocal-microscopic section images of doubly immunostained
centrosomes of HeLa cells. The cells were photographed at different stages of the cell cycle, labelled with GT335 and anti-TBCD antibody. This tubulin
cofactor is observed at one of the centrioles during G1. Two stronger additional TBCD signals immediately adjacent to the existing centrioles, devoid
of GT335 staining, were stained at G1. By late S three TBCD spots were detected. By prophase, most dividing cells contained two strong TBCD spots,
one in each centrosome. Partial TBCD halos surrounding older centrioles were also observed (arrows). At the end of telophase, only one of the
centrioles in each daughter cell was labelled for TBCD. (C) Diagram of the distribution of TBCD during the centriolar cycle; centrioles, procentrioles,
and primary cilium are shown in red and TBCD is shown in green. (D) Partial co-localization of the TBCD signal with c- and d-tubulins was observed
throughout the cell cycle. The e-tubulin signal concentrated at the mother centriole during G1 did not co-localize with TBCD. Later in the cell cycle,
both proteins appeared to partially co-localize. (E) TBCD accumulated at the midbody, where c- and e-tubulins were also detected. Lateral and frontal
views of the structure correspond to different cells. (F) Immuno-electron-microscopic analysis of TBCD on murine epithelial cells. (Left) TBCD localises
on the proximal region of the basal body (the original mother centriole) during procentriole assembly (arrow) S stage. The former daughter centriole
is also observed in the section (gold particles are outlined with circles). (Right top) TBCD labelling was also detected at the proximal ends of basal
bodies and (Right bottom) at the outer microtubule doublets of motile tracheal cilia. (G) Immunostaining of HeLa cells transfected with GFP-centrin1
(red, pseudocolor) confirm TBCD localization at the proximal end of the daughter centriole.
doi:10.1371/journal.pone.0008846.g001
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TBCD Contains a Microtubule-Binding Region and Two
Centriolar-Targeting Regions

We next undertook to localize the centriolar-targeting region in

the TBCD polypeptide. Bio-informatic analysis of different TBCD

sequences revealed two segments in the polypeptide, extending

approximately from amino acids (aas) 350 to 550 and from aa

1000 to the C-terminus, with a significant degree of evolutionary

conservation (over 30% and 21% identity between mammals and

yeast, respectively, for the first region, and over 10% for the

second region in both organisms). We next generated constructs

encoding these TBCD segments (aas 377–545 and aas 1006–1200)

by PCR and cloned them for transitory transfection into HeLa

cells for in vivo study. This study was complemented with other

polypeptide segments, including aas 1–324, 325–1200, 324–887,

377–630, and 888–1200, of the BtTBCD sequence (Figure 3A).

The study revealed that the two conserved TBCD protein

segments were directed to the centrosome, co-localizing with

various centrosomal markers (data not shown). Whereas none of

these constructs caused microtubule depolymerization, microtu-

bule pattern changes at the centrosome were frequently observed

(Figure 3B). Weakly TBCD-expressing cells showed two individual

green fluorescent protein (GFP) spots, which we localized to

regions on the centrioles at which c-tubulin was also more

abundant, presumably the proximal region [26] (Figure 3C).

Interestingly, we also noted that both the GFP–TBCD888–1200

and the longer GFP–TBCD324–1200 segments decorated the

microtubules 48 h after transfection (Figure 3D). This finding

suggests that these TBCD regions contain both a centriolar-

targeting sequence and a microtubule/tubulin-binding domain.

TBCD binding to microtubules has also been reported for Alp1p,

the S. pombe orthologue [17]. However, there is so far no

biochemical evidence that mammalian TBCD also binds poly-

merized tubulin. To investigate this point, we performed classical

biochemical microtubule polymerization binding assays with in-

vitro-synthesized radioactive HsTBCD and BtTBCD, but none of

these studies confirmed that TBCD binds to microtubules. We also

investigated this subject in vivo, using the transitory transfection of

TBCD-encoding constructs in taxol-treated HeLa cells. However,

we again failed to confirm that TBCD binds to microtubules. In

conclusion, these results suggest that although TBCD contains a

microtubule/tubulin-binding domain, it does not bind microtu-

bules. CPAP, a protein required for centriole duplication [30], has

also been reported to contain a microtubule-binding domain, but

as observed with TBCD, it does not bind microtubules [31].

Therefore, we hypothesize that this microtubule/tubulin-binding

region is necessary to drive TBCD and tubulins to the

procentriolar structures.

Finally, we also observed that the TBCD fragments discussed

above localized at the Fleming bodies (Figure 3D) during

cytokinesis, and aberrant midbodies with increased lengths and

decreased thicknesses were often observed (Figure 3E, open

arrow). Another frequent finding in weakly expressing cells was an

increased distance between centrioles (.2 mm; Figure 3E).

TBCD Is Required for Mitotic-Spindle Organization and
Spindle-Pole Cohesion

There is considerable evidence in the literature suggesting a role

for TBCD in mitosis at metaphase, but no mechanism has yet

Figure 2. TBCD overexpression resulted in microtubule detachment from the centrosome and spindle abnormalities. (A) Confocal-
microscopic projected images of a HeLa cell overexpressing HsTBCD doubly immunostained for tubulin and TBCD. (Top) Microtubule release from
the centrosome was clear in most cells 15 h after transfection (arrow). (Bottom) Microtubule network destruction occurred approximately 30 h after
transfection. Right panel shows a closer view of the microtubule pattern of the cell labelled with an arrow.(B) TBCD overexpression also produced
aberrant mitotic figures, where acentriolar supernumerary MTOCs containing c-tubulin were observed (arrow). (C) Flow-cytometric profiles of cells
(.10,000 cells per profile) labelled with Hoechst and transfected with HsTBCD–YFP or a control–YFP construct. Clear G1 arrest, typical of the loss of
centrosomal integrity, was observed in the cells analysed at both 15 and 30 h after transfection.
doi:10.1371/journal.pone.0008846.g002

TBCD Role in Centriologenesis
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been established. To understand the role of this cofactor in mitosis,

we silenced TBCD gene expression in HeLa cells with interference

RNA. We used a pool of four synthetic RNAs designed for the

knockdown of the HsTBCD gene, with guaranteed high specificity

and a reduced off-target effect. We investigated TBCD expression

by western blotting at 24, 48, and 72 h after interference. We

observed that by 72 h, there was almost complete depletion of this

protein in HeLa cell extracts, whereas both a- and b-tubulin levels

were apparently unaffected (Figure 4A).

We observed 25% of aberrant mitotic figures and several kinds

of spindle defects were common, such as unipolar, multipolar,

disorganized, and abnormally short spindles (Figure 4B). Acen-

triolar spindle poles and mislocalized centrioles were also often

observed (Figure 4C). We also noted that existing primary cilia

looked more developed in the TBCD-silenced cultures. We

quantified the pole-to-pole lengths of the mitotic spindles and

primary cilia on confocal-microscopic projected images. Statistical

analysis of the data confirmed a highly significant reduction in the

spindle size (degrees of freedom [DF] = 63; P = 561024) and a

significant increase in the lengths of cilia (DF = 147; P = 361023;

Figure 4E). Longer primary cilia might reflect a G1 mitotic block,

reported when changes resulted in centrosomal damage [29].

However, this finding could also indicate that TBCD plays a role

in cilia disassembly, for instance by microtubule depolymerization.

TBCD Participates in Microtubule Retraction at the
Midbody and Cell Abscission

TBCD silencing also resulted in anaphase defects and aberrant

microtubule arrays at the midzone (Figure 4B). However, more

importantly, we observed that at cytokinesis, the midbodies were

more persistent in the TBCD-silenced cells than in the controls.

We observed cells, apparently at interphase, that were still

connected to sister cells by long, narrow, and continuous

cytoplasmic bridges containing acetylated microtubules

(Figure 4D). We measured the sizes of the midbodies on

confocal-microscopic projected images and confirmed by statistical

analysis that there was a significant difference in the average

lengths of these structures in cultures where TBCD had been

silenced (DF = 174; P = 0.1). This finding demonstrates that the

localization of TBCD at the midbody is genuine. However, more

interestingly, persistent microtubules at the midbody suggest that

TBCD plays a role in microtubule retraction during cell

abscission, probably by involvement in tubulin heterodimer

dissociation.

TBCD Is Recruited into ‘‘Centriolar Rosettes’’ during
Ciliogenesis

The biogenesis of nascent centrioles is tightly coupled to the cell

cycle and is precisely co-ordinated with DNA replication [32].

However, in differentiating ciliated cells, this finely tuned

mechanism controlling the one-mother-one-daughter centriole

ratio is overcome to allow the assembly of the masses of centrioles

that become basal bodies. During early ciliated-cell differentiation,

up to nine daughter centrioles assemble simultaneously, either

around one maternal template or in association with a matrix of

electron-dense fibrous granules, called a ‘‘deuterosome’’ [33,34].

These pre-centriolar structures have been called ‘‘centriolar

rosettes’’ because of their peculiar flower-petal configuration

[32,35,36]. After assembly, the centrioles migrate towards the

apical pole of the epithelial cell and become basal bodies. In

mammals, ciliated epithelium is found in the airways, the oviduct,

and in the ependymal layer of the brain. It is widely accepted that

the centrioles formed in ciliated cells and the centrosomes in

dividing cells have similar protein constituents [37]. Therefore, we

investigated the function of TBCD during ciliogenesis, using the

ependymal epithelium of the brain as a model system.

To confirm the presence of detectable amounts of TBCD and to

study the pattern of protein expression during neurogenesis, we

Figure 3. TBCD contains a microtubule-binding region and two
centriolar-targeting regions. (A) Diagram of the full-length TBCD
polypeptide and the truncation mutants produced for this study. The
degree of evolutionary conservation of the polypeptide is shown in
relative shades of grey. (B) Confocal images of HeLa cells transfected
with constructs encoding GFP-fusion TBCD truncation mutants and
immunostained for tubulin. The constructs shown correspond to those
labelled with an asterisk in A. The GFP labelling at the centrosomal
region is shown in the inset. (C) High-resolution confocal images of
triply labelled centrioles in weakly expressing cells show the co-
localization of these two TBCD truncation mutants with c-tubulin in the
proximal region of both centrioles. (D) TBCD contains a microtubule-
binding region. GFP–TBCD888–1200-decorated microtubules 48 h after
transfection. (Left) TBCD centrosomal-binding truncation mutants were
also recruited to the Fleming bodies of cells at the end of mitosis. (E)
Phenotypes observed for TBCD centrosomal-binding truncation mu-
tants. Aberrant midbodies with increased lengths and reduced
thicknesses were common (right, open arrow). Centriolar separation
was increased (.2 mm) in many of the transfected cells (centrosomes 1,
2 versus 3, 4).
doi:10.1371/journal.pone.0008846.g003

TBCD Role in Centriologenesis
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first investigated TBCD expression by western blotting in total

murine brain extracts obtained at different ages (Figure 5A). The

region of the brain in which TBCD was most expressed was

localized by immunohistochemistry. As shown in Figure 5B,

TBCD immunostaining was identified at the ependymal epithelia.

In neonates, the signal was localized in large aggregates within the

cytoplasm of differentiating ependymal cells, whereas in adults,

small TBCD spots were concentrated at the apical borders of these

cells, apparently co-localizing with the basal bodies. TBCD

immunostaining was also observed at the centrosomes of

surrounding parenchymal cells (Figure 5B, solid arrows).

These results led us to develop a primary cell culture method

that would allow the detailed study of the full differentiation

process of ependymal cells in vitro (Materials and Methods;

Figure 5C, Figure 6). A similar culture model developed by Vladar

and Stearns [37] describes four stages (I–IV) of tracheal epithelial

cell differentiation. In stage I, centrosomal proteins accumulate at

the centrosome; in stage II, primary cilia are removed and

centrosomal proteins accumulate in clusters; finally, in stages III

and IV, the centrioles move towards the plasma membrane for the

assembly of ciliary axonemes. Although the cells in our culture

system were not synchronized, we observed a perfect correlation

between these stages and the differentiation processes of individual

ependymal cells.

The examination of immunostained ependymal cell cultures

(stages III–IV) revealed that TBCD expression was more

abundant in undifferentiated and differentiating ependymal cells

(Figure 5C, solid arrow). In differentiated multiciliated cells,

TBCD was restricted to small dots of approximately 0.3 mm in

diameter that were localized at the base of each cilium (Figure 5D,

Figure 4. TBCD depletion resulted in microtubule spindle abnormalities and failure of cell abscission. (A) Western blot confirmation of
TBCD silencing 72 h after siRNA treatment. Whole cell lysates (50 mg/lane) were loaded and analysed by immunoblotting with antibodies directed
against CoD and the a- and b-tubulins. TBCD depletion did not affect a- or b-tubulin levels. (B) Confocal-microscopic projected images of different
mitotic spindle defects observed after TBCD interference in HeLa cell cultures. Mitotic aberrations included abnormally short spindles, abnormal
anaphase figures, and multipolar spindle defects, among others. (C) Acentriolar spindle poles were also observed (arrow). (D) TBCD silencing resulted
in cell abscission failure. The maintenance of cytoplasmic bridges containing microtubules is shown (1, 2). These abnormally long midbodies are
characterized by their content of acetylated microtubules (2). (E) Statistical analysis of the length of the primary cilia (DF = 147; P = 361023) and
midbodies (DF = 174; P = 0.1) confirmed significant increases in the lengths of these two structures after TBCD depletion. A highly significant
reduction in the spindle pole-to-pole distance (DF = 63; P = 561024) was also detected (*).
doi:10.1371/journal.pone.0008846.g004

TBCD Role in Centriologenesis
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arrow). Co-localization with c-tubulin was only partial in the basal

bodies, thus confirming previous electron-microscopic observa-

tions (Figure 1D). Interestingly, we found that differentiating cells

in these cultures displayed cytoplasmic TBCD clusters of

approximately 0.3 mm in diameter (stage II), consistent with the

size of centrioles, which were frequently organized into C-like or

ring-like structures of approximately 1 mm in diameter (Figure 5E).

Double immunostaining of these cultures with anti-c-tubulin

antibody revealed that some of these conformations contained a

single central spot of c-tubulin of approximately 0.3 mm in

diameter, surrounded by several (4–6) TBCD aggregates. This

structure, with a flower-petal configuration, is identical to the so-

called procentriolar ‘‘rosettes’’ described in other systems, in which

massive centriologenesis is triggered by different means. There-

fore, we believe that these results constitute a solid argument

supporting a role for TBCD in centriologenesis under physiolog-

ical conditions.

This culture system served to further support findings on HeLa

cells confirming TBCD localization at the base of the primary

cilium in undifferentiated neuroepithelial cells (stages I–II;

Figure 6).

Discussion

Since the discovery of TBCs, research into them has largely

focused on tubulin biogenesis. This study implicates TBCD in

several crucial cell processes. We have shown that TBCD is

concentrated at the centrioles and basal bodies, where it plays

roles in centriologenesis, ciliogenesis, and spindle organization.

TBCD is also found at the Fleming bodies, ring-like structures

localized at the midbody during cytokinesis, where it is

implicated in cell abscission. In view of all the existing

biochemical data, these findings must be interpreted in the

context of tubulin-related processes, such as tubulin supply or

dissociation.

This study demonstrates for the first time TBCD accumulation

in developing centrioles during physiological or induced cen-

triologenesis in different systems. TBCD accumulates in procen-

trioles and is gradually lost during the maturation process,

coinciding with microtubule glutamylation, a post-translational

modification of tubulin leading to greater microtubule stability.

Therefore, we hypothesize that TBCD participates in the supply

of tubulin to procentrioles, while binding and protecting the

developing centriolar blades until microtubule assembly is

complete.

We have also documented the recruitment of this cofactor to the

Fleming body during cytokinesis, where TBCD plays a role in cell

abscission. However, this is not a novel phenomenon, but has

already been observed in plants [19]. Cell abscission requires the

co-ordination of two key processes, membrane supply and

microtubule retraction. We believe that because this cofactor is

an efficient depolymerizing protein [6,8], it must contribute to the

disassembly of the microtubules at the midbody during cell

separation. Remarkably, there are already established molecular

Figure 5. TBCD is required in ciliogenesis. (A) TBCD is abundantly
expressed during neurogenesis. Western blot of total protein extracts
(50 mg/lane) from developing and adult mouse brains obtained at the
indicated embryonic and postnatal ages. (B) Confocal-microscopic
images of cryo-sections of neonatal and adult murine cerebral
ependymal epithelium immunostained for TBCD. This cofactor accu-
mulated in clusters localized in the ependymal cell cytoplasm (left, open
arrow). In the adult, TBCD localized at the apical borders of the
ependymal cells, where the basal bodies are located (right, open arrow).
TBCD was also detectable on parenchymal cell centrosomes (solid
arrow). (C) A general view of an ependymal cell primary culture in which
cilia, immunostained with anti-tubulin antibody, and TBCD are labelled.
These culture conditions allow the observation of epithelial cells at
various differentiation stages (I–IV, see the text). (Solid arrow) TBCD

accumulated in differentiating cells with no cilia, whereas ciliated cells
(open arrow) contained fewer TBCD spots. (D) Detail of the apical
borders of differentiated ependymal cells where a single TBCD spot was
observed at the base of each cilium (arrow). These TBCD spots partially
co-localized with the c-tubulin-labelled basal body. (E) Detail of the
cytoplasm of a differentiating ependymal cell (stages I–II), where the
assembly of several centriolar rosettes, labelled for TBCD and c-tubulin,
are shown. TBCD accumulated into structures of approximately 0.3 mm
in diameter, which created ring-like structures that were often
associated with a single c-tubulin spot of a similar diameter (1, 2, and 3).
doi:10.1371/journal.pone.0008846.g005
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Figure 6. TBCD changes during ciliogenesis in ependymal cells. (A) Diagram of the location of TBCD accumulation (green) with respect to the
centrioles and cilia (red) during ependymal cell differentiation. (B) Short-term cultures display cells at stages I and II, where only a single cilium per cell
is observed, presumably the primary cilium. (1) The presence of the primary cilium is often accompanied by the development of small cytoplasmic
TBCD clusters containing 1–3 TBCD spots of approximately 0.3 mm. (2) Uncommitted epithelial cells in the culture displayed diffuse TBCD
immunostaining. This confocal plane did not coincide with the daughter centriole. (C) General view of a culture immunostained with GT335 and for
TBCD. Here, the relationship between TBCD and the assembly of ependymal cilia can be seen. (*) Primary cilia with their corresponding TBCD-labelled
centrioles are observed. (1) Differentiating cells (stages I–II) contain TBCD aggregates in their cytoplasm (Figure 5E). (2–4) Cilia assembly occurs after
TBCD spots migrate to the apical border of the cells as single spots, presumably accompanying newly developed centrioles. (D-E) A series of confocal
sections obtained from the apical borders of the epithelial cells towards the cilia. Cells were immunostained with anti-a-tubulin and anti-TBCD
antibodies to show the relationships between this cofactor, the microtubule cytoskeleton, and the cilia. (D) Differentiating cells displaying a few cilia
(arrows) show TBCD clusters visible in the cytoplasmic confocal planes (inset). (E) Differentiated cells containing several cilia show smaller TBCD
aggregates in the confocal planes, which coincide with the basal bodies of existing cilia (inset).
doi:10.1371/journal.pone.0008846.g006
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links between the centrosome and midbody for other proteins,

which are predominantly involved in the process of membrane

supply [38]. Here, we have shown that not only TBCD, but also

the c- and e-tubulins occur at the Fleming body. Although we

cannot explain the role of e-tubulin in this structure, we believe

that TBCD and c-tubulin play a shared role in this secondary

MTOC during cytokinesis. Significantly, a failure of cell abscission

has also been reported in cultures in which c-tubulin had been

silenced [39].

Our data also demonstrate a significant reduction in the pole-to-

pole spindle length after TBCD depletion, suggesting that this

cofactor participates in microtubule spindle dynamics. Indeed,

F16D3.4, the C. elegans TBCD orthologue, has been shown to be

a regulator of the microtubule growth rate [21]. Classical

experiments performed by Mitchinson [40] and later reviewed

by Rogers et al. [41] demonstrated that spindle microtubules are

extremely dynamic, insofar as tubulin subunits are continuously

incorporated into the microtubule plus ends while they are

removed at their minus ends, embedded at the spindle poles. This

model implies that there should be identical tubulin polymerizing–

depolymerizing rates at both microtubule extremes to maintain

the spindle symmetry and length. At the minus ends, proteins such

as Kin 1 or katanin could be pulling and severing the

microtubules, whereas at the plus ends, there must be a sufficient

tubulin supply to maintain a constant microtubule length. Both

mechanisms require an exquisite co-ordination of tubulin

processing and trafficking events between microtubule extremes,

where we hypothesize that TBCD is implicated. Our data show

how excess TBCD releases microtubules from the centrosome and

produces c-tubulin-containing supernumerary MTOCs at meta-

phase, findings suggesting that TBCD contributes to microtubule

release from the centrosome during mitosis, as well as in

interphase. Although the molecular mechanism of microtubule

release from the centrosome is still unknown, it is broadly accepted

that the anchoring of the microtubule to this organelle depends on

the c-tubulin ring complex (cTuRC), and that any mechanism

leading to cTuRC detachment releases microtubules into the

cytosol. TBCD is one of several candidate proteins that may

anchor the cTuRC to the centrosome [24]. The contribution of

TBCD to this process would explain why in mammalian

centrioles, microtubules are nucleated through their entire length

(where there is c-tubulin), whereas microtubules are only anchored

in the distal part of the mother centriole [42], a region devoid of

TBCD.

Centrioles are not just required at the centrosome but also for

the assembly of the basal bodies of cilia. Unfortunately, the

mechanisms involved in massive centriologenesis and centriolar

differentiation into basal bodies are still unclear. Recent studies

have revealed that more than 1,000 different proteins are

implicated in ciliary function, but almost no information regarding

their roles in centriolar differentiation or ciliary axoneme assembly

is available. Here, we have shown that TBCD is also crucial in

centriologenesis via the acentriolar pathway, where it is organized

into ‘‘centriolar rosettes’’. We propose a model in which TBCD

molecules associate to form a scaffold for the assembly of other

centriolar proteins, in both the canonical and the acentriolar

assembly pathways. Further studies of TBCD at the biochemical

level will shed light on the mechanisms underlying the way this

tubulin cofactor is recruited into these procentriolar structures

during the differentiation of multi-ciliated cell. An increased

understanding of the process of ciliogenesis will assist the better

diagnosis and treatment of cilia-associated human diseases, such as

primary ciliary dyskinesia and Bardet–Biedl, Alstrom, and

Meckel–Gruber syndromes.

Materials and Methods

Ethics Statement
25 Swiss-Webster mice were used in this study. They were killed

according to PHS policy and the U.S. National Institutes of Health

guidelines.

Antisera, Immunocytochemistry, Flow Cytometry and
Cultures

Affinity purified primary antibodies were produced against

TBCD recombinant protein fragments of BtTBCD (obtained

from Dr. Cowan, New York University, NY, USA), HsTBCD

isoform 1 and M. musculus TBCD (RPZD, Berlin, Germany).

Rabbit sera were affinity purified against HsTBCD baculovirus-

infected Sf9 cell extracts, as described previously [43]. CHO cell

(ATCCR number: CCL-61TM) S-phase arrest was induced by

treatment with 2 mM thymidine (Sigma-Aldrich, MO, USA) for

16 h. Immuno-electron-microscopic analysis was performed on

80 nm sections of 4% paraformaldehyde/0.1% glutaraldehyde-

fixed tissue embedded in Unicryl (BBInternational, Cardiff, UK).

Antibodies used were anti-a- and anti-b-tubulin (B512 and

Tub2.1, respectively), anti-acetylated tubulin, anti-NEDD1/

GCP-WD, and anti-e- and anti-d-tubulin antibodies (all from

Sigma Aldrich). The anti-glutamylated tubulin antibody

(GT335) was a gift from Dr Janke (CNRS, Montpellier, France)

and the anti-c-tubulin antibody (TU30) from Dr Draber

(Institute of Molecular Genetics, Prague, Czech Republic). The

GFP-centrin1 construct was kindly provided by Dr M. Bornens

(Institut Curie, Paris). Secondary antibodies were Alexa-Fluor-

488-conjugated goat anti-rabbit IgG and goat-anti-mouse IgG,

Alexa-Fluor-647-conjugated goat anti-mouse IgG (Molecular

Probes, Invitrogen), Cy3-conjugated goat anti-mouse IgG and

goat anti-mouse IgG1, and Cy5-conjugated goat anti-rabbit IgG

(Jackson ImmunoResearch Laboratories, Inc.) and a 10 nm anti-

rabbit IgG gold conjugate (Sigma, St. Louis, MO). RNA

interference was performed with a ‘‘Smart Pool’’ mixture

targeting human TBCD (Dharmacon, CO, USA). TBCD

silencing was confirmed 24, 48, and 72 h after RNAi treatment

by western blotting. TBCD cDNA fragments were produced by

PCR. The TBCD mutants were sequenced and cloned into the

pEGFP-C2 and/or pEGFP-N3 vectors from Invitrogen (Life

technologies, California USA). P2 cerebellar mixed primary cell

cultures were grown on poly-L-lysine and laminin-coated

(Sigma-Aldrich, MO, USA) coverslips and were grown in 10%

foetal bovine serum in IMDM medium (all from Gibco,

Invitrogen). The cultures were fixed at different time points

after plating (after 5–20 days in culture). Beating cilia were

observed approximately 10 days after dissociation. Cell lines and

cultures used for immunocytochemistry were fixed in ice-cold

(220uC) methanol or 4% paraformaldehyde, and further

permeabilized in phosphate-buffered saline (PBS)–0.1% Triton

X-100 in PBS (PBS-T). For some experiments microtubules were

depolymerized with 2 mM nocodazole and cold (4uC) treatments

for 30 min. CHO cell centrosome overduplication was induced

by treatment with 2 mM thymidine (Sigma-Aldrich) for 16 h.

Flow cytometry was performed on cells with Hoechst-stained

DNA 15 and 30 h after transfection with HsTBCD–YFP or

H2B–YFP kindly supplied by Dr DiCroce (ICREA, CRG,

Barcelona, Spain) as the control. A Becton Dickinson FACS

CantoII equipment equipped with a 405 nm and 488 nm laser

diodes was used. Ten thousand cells were collected for each

sample. The data were analysed using the FACS Diva software

(Becton Dickinson, NJ, USA).
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Confocal Microscopy, Measurements and Statistical
Analysis

Cell measurements were made on confocal-microscopic pro-

jected images obtained with a Zeiss 636 lens. Microscopy was

performed on a Zeiss LSM-510 confocal microscope equipped

with an argon (488 nm) laser and two HeNe (543 and 633 nm)

lasers. Images in the same confocal planes were scanned

sequentially to avoid fluorescent channel emission cross-talk. The

maximum confocality was according to the manufacturer’s

instructions. A t test was performed on the data obtained for

confocal microscopy measurements on two different coverslips,

resulting in three different experiments. Statistical analysis of data

and graphing were performed using the SigmaPlot 8.0 software

(Systat Software, Richmond, CA). The data in Figure 4E represent

mean values and standard error bars.

Microtubule Binding Tests
Bovine brain tubulin was purified as described by [44]. Full-

length cDNAs encoding HsTBCD and BtTBCD were used as the

templates for coupled transcription and translation in rabbit

reticulocyte cell-free lysates (Promega Corporation) in the presence

of 35S-methionine (.1000 Ci/mmol; Amersham Pharmacia

Biotech), as described elsewhere [45]. The products of in vitro

TBCD synthesis were incubated with taxol-stabilized microtu-

bules, as previously described [8].

Supporting Information

Figure S1 Specificity of TBCD antibodies and confocal images

at metaphase. (A) Specificity of the antibodies directed against

TBCD produced for the study. Western blot of total HeLa cell

extracts (50 mg/lane) immunostained with an antibody recogniz-

ing full-length HsTBCD (antibody 1) and a second antiserum

recognizing a fragment of mouse TBCD (MmTBCD; antibody 2).

Both antibodies demonstrated great specificity after affinity

purification. (B) Confocal-microscopic images of triply/doubly

labelled HeLa cells at metaphase. TBCD partially co-localized

with NEDD1/GCP-WD but did not co-localize with e-tubulin.

Found at: doi:10.1371/journal.pone.0008846.s001 (0.88 MB TIF)

Figure S2 TBCD is associated with centriologenesis in different

systems. (A) TBCD immunostaining in thymidine-treated S-

arrested CHO cells. (top) CHO cells generally contained aberrant

centriolar numbers and when blocked at S-phase by thymidine

treatment, underwent repeated cycles of centriole synthesis. After

16 h blockage, TBCD accumulation at the developing centrioles

was specifically observed. (B) TBCD immunostaining of a HeLa

cell transfected with a construct encoding PLK4. This protein is

known to trigger centriologenesis when overexpressed. TBCD

labelled the developing centrioles 24 h after transfection.

Found at: doi:10.1371/journal.pone.0008846.s002 (1.31 MB TIF)
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