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ABSTRACT 

The required vertical closed loop geothermal heat exchanger size highly depends on the peak demand of 
the building when no complementary heat source is included. If grouting materials were able to resist 
freezing temperatures, a mean-demand designed geothermal heat exchanger would be sufficient to fulfill 
the energy requirements of the building, either preventing the oversizing of the geothermal heat exchanger 
or the necessity of a hybrid system and therefore saving their associated cost. This paper analyzes the 
freeze-thaw durability of five cement based geothermal grouting mortars. One was a neat cement (N) and 
the rest contained either Limestone sand (L), silica sand (S), electric arc furnace slag (EAF) or Construction 
and demolition Waste (CDW). Mortars were either exposed up to 25 freeze-thaw cycles or to continuous 
water curing to analyze the influence of both treatments on the volumetric water content, flexural, 
compressive and pipe to mortar adherence loads and on the thermal conductivity of the resulting mortars. 
Results show no significant damage due to the freeze-thaw cycles applied to all the mortars but the Neat 
cement, probably due to the non-saturation of the core of the probes. Although neat cement presented no 
flexural resistance to freeze-thaw cycles and the probes were severely damaged, no influence was 
observed on the thermal conductivity of the core material, denoting that any loss of efficiency of a 
geothermal heat exchanger must be due to the increment of the contact thermal resistance between the 
pipe and grout or the creation of new contact resistances in the fractures of the grout itself. 
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1. INTRODUCTION 

Geothermal heat pump systems take advantage of the year-round constant ground temperature to obtain 
higher efficiencies than any other system, as stated by the Environmental Protection Agency [1]. Instead of 
using ambient air as a heat source or sink, closed geothermal heat pump systems (CGHP) use a heat 
carrying fluid which flows through a buried pipe circuit and exchanges heat indirectly with the ground. 
When vertical heat exchangers are used, the closed pipe circuit is introduced into a vertical borehole 
reaching depths of up to 200m. To protect the heat exchanger pipes from the possible collapse of the 
borehole walls, borehole is filled with a grouting material. This material must present good mechanical and 
thermal properties to transfer heat from the pipes to the ground or vice versa and to ensure the borehole 
wall stability. 

Apart from the base demand, the design of a geothermal system is highly dependent on the peak demand 
of the installation, leading to highly over-dimensioned geothermal systems. Since the construction of a 
ground heat exchanger is much more expensive than any other conventional HVAC system, geothermal 



 

installations are normally designed for base demand, while peak demand is usually covered by more 
economic alternatives (solar thermal energy, boilers, cooling towers, etc.). It would be possible to cover 
short-term peak demands if the heat carrier fluid was allowed to reach temperatures below water freezing 
point (0ºC). However, freezing the grout might lead to a permanent reduction of the system efficiency. If 
grout is designed to resist such freeze-thaw cycles, there would be some benefits that could be exploited. 
The water high latent heat of fusion and the higher thermal conductivity of the ice over the water, 2.22 
W/(m K) over 0.566 W/(m K) at 0ºC [2] should enhance grout thermal conductivity, reducing the borehole 
thermal resistance and hence improving the system’s overall efficiency. This efficiency improvement could 
permit to satisfy peak demand of the system with a mean demand designed geothermal system, reducing 
its overall construction cost.  

Influence of the freeze-thaw cycles in cement-based materials such as concrete or mortar has been studied 
by many authors, as it is summarized in Table 1. The type and number of freeze-thaw cycles as well as the 
tested properties depend on the type of exposure of the material. However, there is little bibliography on 
the effect of freeze-thaw cycles on the geothermal grouting materials. Allan et al. [3] evaluated the freeze-
thaw durability of silica sand-based geothermal mortars by using the ultrasonic velocity test and also 
checking the pipe to mortar bond integrity, concluding that no significant damage was observed after 300 
cycles. Recently, Park et al. [4] analyzed the effect of the freeze-thaw cycles on the compressive strength of 
a cement-based geothermal mortar concluding that its value is reduced as the number of cycles increased. 
The main goal of this paper is to analyze the damage caused by the freeze-thaw cycles in the physical, 
mechanical and thermal properties of geothermal cement-based grouting materials. As each mortar used in 
the analysis contained a different aggregate type, its influence on the freeze-thaw durability is also 
determined. 

Table 1. Previous studies of the damage caused by freeze-thaw cycles in concretes and mortars. 

Material Reference Freezing cycle Thawing cycle #Cycles Standard Tested property Conclusion 

T(°C) t(h) Ambience T(°C) t(h) Ambience 

Concrete and 
(FRP) 

Quiao and Xu 
[5] 

-18 16 Air 22 8 Air 50/100 ND Bond 3 point 
flexural strength 

Significant 
damage 

Concrete and 
CFRP 

Colombi et 
al. [6] 

-18 5 ND 4 5 ND 100/200 ASTM 
C666 

Pull out 
debonding test 

No significant 
damage 

Concrete and 
CFRP 

Green et al. 
[7] 

-18 16 Air 15 8 Water 300 ASTM 
C310 

Bond strength No significant 
damage 

Reinforced 
concrete 

Hanjari et al. 
[8] 

-20 12 Water at 
surface 

20 12 Water at 
surface 

* RILEM TC 
176-IDC 

Compressive, 
bond and 
splitting 

strengths, etc. 

Significant 
reduction of all 

parameter. 

EAF and 
limestone-

based 
concretes 

Manso et al. 
[9] 

-17 18 Air 4 6 Water 25 ND Weight and 
compressive 

strength 

Durability of 
EAF concrete is 
similar to that 

of standard 
concrete 

Masonry 
mortar and 

stone 

Maurenbrec
her et al. [10] 

-12/-
20 

8/8 Air/Air 15 8 Water 
sprayed 

24/60 ND Bond strength Bond failure is 
general after 60 

cycles 
Cement 
mortar 

Cao et al. 
[11] 

-20 0.66 Air 50 0.66 Air ND ND Electric resistivity Progressive 
damage during 
cool cycle due 
to the thermal 

contraction 
Silica sand -

based mortar 
Allan et al. 

[3] 
-18 5 Air 4 5 Air 300 ASTM 

C666 
Ultrasonic pulse 

velocity and 
bond integrity 

No significant 
damage 

Cement-based 
geothermal 

grout 

Park et al. [4] -5 240 HCC 50 120 HCC 1 ND Compressive 
strength, 
thermal 

conductivity, 
hydraulic 

conductivity 

Reduction of 
compressive 
strength with 

the freeze-thaw 
cycle 

FRP: Fiber reinforced polymer; CFRP: Carbon fiber reinforced polymer; ND: Not defined by the author; HCC: humidity controlled chamber: unsaturated conditions 
* Process was finished when compressive strength was reduced in 25% and 50%, respectively 

2. METHODOLOGY 
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2.1. Materials and mix proportions 

Aggregate properties, mix proportion design and initial characterization of the five different mix 
proportions used in this paper have been performed in a previous release [12]. Each mortar is made of 
cement (c), water (w), superplasticizer (sp) and a different aggregate type as basic constituent. Neat 
cement grout (N) has been used as reference material to represent the aggregate absence.  

Most of the grouts used at present are thermally improved by the addition of quartz or siliceous 
aggregates, but any other alternative aggregate has been studied up to date. The use of alternative local 
aggregates would reduce grout shipping cost, and consequently its final cost. Furthermore, the utilization 
of recycled aggregates would permit the reuse of waste materials that nowadays are carried to landfill, 
reducing its final environmental impact. 

In this paper silica sand (S) is used as reference aggregate since it is the one most used nowadays. 
Limestone sand (L) is studied as an alternative natural aggregate, widely used in Spain for making structural 
concrete. Electric arc furnace slag (EAF) represents the recycled aggregates that are used at the present for 
other purposes such as making concrete, asphalt concrete, or directly used as sub-base or landfill in road 
construction. Finally, the construction and demolition waste (CDW) represents the waste aggregates that 
are discarded nowadays (this paper uses a 2 mm maximum aggregate size, whose use is not permitted in 
the actual Spanish structural concrete standard (EHE08)). Properties of the aggregates used are 
summarized in Table 2. 

Table 3 shows the mix proportions used in the freeze-thaw analysis. Finally, water content of the mix 
proportions have been determined to meet the 260-300mm diameter of the flow table consistency test 
(UNE-EN 1015-3 [13]). 

 

Table 2. Aggregate properties [12] 

 
L S 

EAF* CDW** 

 

EAF F CDW F 

Specific gravity 2.71 2.65 3.82 2.753 2.57 2.753 

Water absorption (%) 0.52 0.16 1.83 N/A 5.07 N/A 

Sieve (mm) Passing percentage by volume 

4 100.0 100.0 100.0 100.0 

2 99.3 100.0 99.9 100.0 

1 61.3 78.6 57.4 75.7 

0.5 40.1 65.6 37.6 52.1 

0.25 27.7 46.9 32.5 35.1 

0.125 20.5 27.2 28.5 24.7 

0.063 15.7 17.5 23.5 17.6 

*EAF 75% and Limestone Filler (F) 25% by weight 

**CDW 90% and F 10% by weight 
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Table 3. Mix proportions of the cement based grouting materials used 

 Grouting material 

 N L S EAF CDW 
Cement (c)  CEM II/B(V) 32.5R 
Aggregate 1 (A1) - L S EAF CDW 
A1/c - 2 2 1.5 1.80 
Aggregate 2 (A2) - - - F F 
A2/c - 0 0 0.5 0.20 
Superplasticizer (SP) Melment F10® 
SP/c 0.02 0.02 0.02 0.02 0.02 
Water to cement ratio (w/c)  0.3 0.39 0.43 0.42 0.66 

 

2.2. Mortar characterization 

For the physical characterization of the mortars, volumetric water content of the hardened mortar was 
determined based on the UNE-EN 1015-10 standard [14] (1). Results were obtained as the mean of the 3 
specimens tested. This method has been successfully used to determine the volumetric water content by 
other authors [15]. 

𝜙𝜙𝑤𝑤 =
(𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑)
(𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠)

 (1) 

Where, 

- φw is the volumetric water content (-) 
- msat is the water-saturated mass of the specimen (kg) 
- msub is the water-submerged mass of the specimen (kg) 
- mdry is the oven dried mass of the specimen (kg) 

Mechanical properties of the hardened mortar matrix were determined by the flexural and compressive 
loads according to UNE-EN 1015-11 [16]. Specimens were oven dried for 24 h at 105ºC and tested at 20ºC 
once they reached thermal equilibrium. Flexural load was determined as the mean of the three specimens 
tested, while compressive load was determined as the mean of the six specimens tested. To complete the 
mechanical characterization of the mortars, a non-standardized test was performed to determine the pipe 
to mortar bond strength. The test is based on the push out test proposed by Allan et al. [17,18]. Fig 1shows 
a sketch of the test, as well as one of the specimens tested. Mortar specimen was 110mm diameter and 
124mm high hollow cylinder. Centered along the axis of the cylinder, a PE100/SDR11 embedded 32mm 
diameter high density polyethylene pipe was placed. To allow the pipe going downward because of the 
applied load, a 40mm diameter and 19mm high cylindrical gap was left at the bottom surface of the mortar 
specimen. During the test, a uniform vertical load was applied on the top annular surface of the pipe to 
push it out of the specimen. A constant load increment of 25 N/s was set and the maximum displacement 
was limited to 5mm for safety reasons. As the tests were performed immediately after the removal of the 
probes from the water, tests were carried out at 15ºC. The resulting load-displacement curves presented a 
sharp load decrease once the pipe began to slide through the grout before the maximum displacement was 
reached. The pipe to mortar bond strength (Fb) was determined as the maximum load registered during the 
test. Final test result is obtained as the mean value of three specimens tested. 

Finally, apparent thermal conductivity of the water-saturated hardened mortar was determined according 
to the ASTM D-5334 [19] standard. Mortar specimens were 16cm diameter and 20cm high cylinders. When 
mortar was still fresh, a 1.7mm inner-diameter and 17cm long hollow stainless steel pipe was introduced 
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axially centered to permit the later insertion of the testing needle. During the 300s testing period, the 
needle probe injected a constant 45 W/m heating power (Q), recording its temperature rise (ΔT). According 
to the infinite line source theory [20] and based on the results obtained, apparent thermal conductivity of 
the mortar (λ) was determined with the equation (2). H is the thermal needle heating length (0.1m) and s is 
the slope of ΔT with the Napierian logarithm of time, which is calculated by a least squares fitting of the 35-
270s time interval. Three tests were performed per specimen, and the resulting thermal conductivity was 
determined as the mean value of the three specimens performed per cycle time. 

𝜆𝜆 =
𝑄𝑄

4 ∙ 𝜋𝜋 ∙ 𝐻𝐻 ∙ 𝑠𝑠
 (2) 

 

 
Fig. 1.  Adherence probe: a) Geometry of the probe (b) detail of pipe top where the load is applied and c) cylindrical gap 

created to allow the pipe going downward. 

All the specimens where cured under ambient laboratory conditions for 24h after making the mix. Once 
molds were removed, all the specimens were cured submerged into water at 20ºC for another 28 days to 
reach initial conditions before the beginning of any treatment. Then, one half of the specimens were 
subject to freeze-thaw (FT) cycles. For every cycle, specimens were frozen water-saturated at -17ºC for 24h 
and submerged into water at 15ºC for other 24h. At the same time, the other half of the specimens were 
cured permanently submerged into water at 15ºC to also quantify the influence of the curing age in the 
evaluated properties. Mortar properties were determined at 0, 7, 14 and 25 freeze-thaw cycles. In parallel, 
same tests were performed in the probes submerged into water. 

3. RESULTS AND DISCUSSION 

3.1. Volumetric water content of the hardened mortar 

Fig. 2 shows the initial and final volumetric water content of the different mortars subject to continuous 
water submersion or subject to 25 freeze-thaw cycles. According to the results obtained, it was evident that 
aggregate type had a bigger influence than both of the treatments analyzed. At first sight, the evolution of 
the water content for each treatment was different depending on the type of mortar evaluated. For all the 
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mortars there existed a reduction of the volumetric water content with the continuous water-submerged 
curing, as predicted by Tekin et al. [21], who observed that porosity of the cementitious materials was 
reduced with the curing age. Accordingly, Allan et al. [18] also observed a reduction of the water infiltration 
capacity with the curing age. However, the water content of the probes subject to freeze-thaw cycles was 
not reduced as much as that of the probes subject to water submerged curing. For the N, CDW and S 
mortars the water content even increases. During the freeze-thaw cycles, probes were submerged into 
water and frozen at air, alternating the pressure and temperature conditions on the probe surface and 
enhancing the water infiltration capacity of the mortar. 

This phenomenon is more likely to occur near the ground surface, where the grout is exposed to 
unsaturated conditions and to the alternation of cold and wet cycles during the winter due to the heating 
demand, ambient air temperature variation and water-table variation. For the grout below water-table, 
pressure and exposition to water could be considered constant, and the temperature variation also will be 
less than the one observed in the upper part due to the higher thermal conductivity and heat capacity of 
the ground and grout enhanced by the constant water presence. Therefore, the volumetric water content 
of the grout could be higher in the non-saturated zone than the one immediately under the water table. 

 

Fig. 2. Influence of the aggregate type, freeze thaw cycles (FT) and continuous water curing (W) on the volumetric water content of the mortars. 

Once determined the significant importance of the aggregate type on the volumetric water content of the 
resulting mortar, the origin of the water content was analyzed. Fig.3 shows the influence of the water to 
cement ratio used in the mix and all the determined volumetric contents for each of the mortars studied. It 
was evident that the water content of the hardened mortar came from the water used during its 
fabrication. For the mortars containing any aggregate and with a similar consistency this relationship was 
linear and depended on the water absorption of the main aggregate used. However, for the neat cement 
mix, the lower than expected water content could be attributed to the absence of aggregate and its 
inherent water absorption capacity. For all the cases evaluated, volumetric water content was smaller than 
the water dosage used for mortar mixing, denoting that part of the water did not react with the cement 
and remained in the mortar pore structure. This relation also indicated that the core of the probes was not 
saturated. 
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Fig 3. Influence of the water dosage used in the mix on the resulting volumetric water content. 

3.2. Mechanical properties of the hardened mortar 

At first, all the evaluated probes were treated as the same sample, without taking into consideration either 
the aggregate type or treatment applied. Fig. 4 shows the influence of the volumetric water content on the 
flexural, compressive and adherence loads. 

 

Fig. 4. Influence of the volumetric water content on the mechanical behavior of the evaluated mortars a) Flexural load b) compressive load and c) 
pipe to mortar adherence load. 

As volumetric water content increased, a decrease of the flexural and compressive strength was observed, 
as predicted by Chen et al. [15]. However, in this case the relation was more dispersed since the different 
volumetric water content of the mixes was obtained by changing the aggregate type, not the water to 
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cement ratio of the mix. Pipe to mortar adherence seemed to present a similar trend for maximum loads 
with similar volumetric water content while minimum loads seemed to be independent. No relation was 
found between the internal mechanical properties of the mortar - flexural and compressive loads - and the 
pipe to mortar adherence load. Therefore, pipe to mortar adherence seemed to depend only on their 
contact surface conditions. For the maximum loads, it looked like water acted as a lubricant in the contact 
surface reducing the pipe to mortar adherence. However, the minimum loads seemed to be independent of 
the volumetric water content, which indicated that the pipe to mortar adherence failed due to 
imperfections of the contact surface before the water-lubrication effect appeared. 

The damage caused by the probes subject to water submerged curing and freeze-thaw cycles on each 
mortar were analyzed separately. Fig. 5 shows the evolution of the flexural, compressive and adherence 
loads with the treatment duration for all the mortars evaluated. 

 
Fig. 5. Evolution of the mechanical strength with the treatment type and time applied: a) symbol statement and b) flexural, c) compressive and d) 

adherence loads. 

Horizontal lines represent the reference values measured prior to the beginning of the treatments, just 
after the 28 days curing period was concluded. All the mortars but the neat cement presented no influence 
of any treatment on the flexural and compressive strengths, probably due to the non-saturation of the 



 

probes [22]. For the adherence load, the N and S mortars followed a similar trend; however, the CDW, EAF 
and L mortars seemed to present an increase of the adherence load for both treatments, which was of less 
importance for the probes subject to freeze-thaw cycles, denoting a small damage due to the treatment 
applied (the higher initial value observed for the L mortar was attributed to the higher temperature 
registered by error during the test, as indicated by Allan et al. [18]). To verify if the mechanical strength of 
the materials was affected by any of the treatments applied, probability-probability plots of flexural, 
compressive and adherence loads were determined for each mortar, without any treatment distinction (Fig 
6). For the flexural and compressive loads it was observed that all the mortars fit a normal distribution, 
indicating that the variations of the results were due to the uncertainty of the test procedure. According to 
the adherence load, as the vertical load applied to the pipe increases, the micro-cracks in the pipe to 
mortar contact surface increased until a minimum energy condition was reached to debond the pipe from 
the mortar. Therefore, the adherence load was the result of an accumulated damage in the pipe to mortar 
contact surface and behaved following a Weibull distribution, as proved by other authors for other 
materials [23-26]. As the example of the CDW mortar shown in Fig. 6, adherence load for all the mortars fit 
to a Weibull distribution, indicating that the slight improvement observed for the adherence load could be 
also due to the testing procedure. As a conclusion, for all the mortars analyzed but the neat cement, the 
mechanical properties of the mortars evaluated were not affected by either the water curing or freeze-
thaw cycles. 

 
Fig. 6. Probability-Probability plots of the mechanical strength for the CDW mortar: a) flexural and compressive loads and b) adherence load. 

On the contrary, for the neat cement mortar, severe damage was observed in all flexural probes and in two 
of the nine adherence probes subject to freeze-thaw treatment. All the flexural probes were broken in two 
halves prior to the realization of the first set of flexural tests (7 cycles); hence, the freeze-thaw strength of 
the neat cement mortar was considered negligible. However, its appearance and the compressive load of 
the resulting two halves were similar to that of the probes submerged into water, denoting that the 
damage was only local. Accordingly, two adherence probes broke after 4 and 7 freeze-thaw cycles, just 
after the introduction of the probes into water. Both probes presented only one failure surface, as it is 
shown in Fig 7. When adherence probes were introduced into the water bath at 15ºC, a temperature 
gradient was created between the embedded pipe and the mortar to pipe contact surface. As the thermal 
expansion coefficient of the HDPE is higher than that of the mortar [2], the pipe created a tangential 
tension in the mortar, causing the failure in the imperfection shown in Fig. 7 and propagating it until the 
overall failure. 
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Fig 7. Failure observed in the two adherence probes due to the freeze-thaw cycles. 

3.3. Thermal conductivity of the hardened mortars 

As for the mechanical properties, at first all the mortars were treated as part of the same sample to analyze 
the influence of the water content on the thermal conductivity of the mortars. As shown in Fig. 8, the 
influence of the aggregate type was more relevant than the one of the water content. Therefore, each 
mortar was evaluated separately to determine the possible influence of the type of exposition on the 
thermal conductivity of the mortars. 

 
Fig. 8 Influence of the water content on the thermal conductivity of the resulting mortar. 

Fig. 9 shows the time dependence of the thermal conductivity for the different mortars and expositions 
analyzed. As for the mechanical properties, no time dependence was observed for any of the mortars, as it 
was later confirmed by their probability- lognormal probability plot shown in Fig. 10. Thermal conductivity 
probes of the neat cement mortar presented a severe damage (Fig. 11). However, damage did not alter the 
resulting thermal conductivity. Therefore, it seems that thermal conductivity of the mortar matrix would 
remain undisturbed and that any increment of the borehole thermal resistance of a vertical heat exchanger 
must be caused because of the appearance of surface contact resistances between the pipe and mortar or 
at mortar failure plains. 



 

 

Fig. 9. Evolution of the thermal conductivity with the treatment type and time applied 

 
Fig. 10. Probability-Probability plots of the thermal conductivity for the CDW mortar. 

 
Fig. 11. Failure observed in the thermal conductivity probes of the Neat cement mortar. 

 

4. CONCLUSIONS 

Freeze-thaw durability of five different geothermal cement-based grouting mortars has been examined to 
analyze the possibility of overloading a geothermal heat exchanger system to cover the building heating 
peak demand. For that purpose, evolution of water content, mechanical properties and thermal 
conductivity of different mortars containing either limestone sand (L), silica sand (S), electric arc furnace 



 

slag (EAF) or construction and demolition waste (CDW) were compared with a reference neat cement 
mortar. Thus, the goals proposed in this paper have led to the following conclusions: 

- The aggregate type used has a bigger influence than the applied freeze-thaw cycles on both the water 
content and thermal conductivity of the resulting mortars. Water content presents a linear dependence 
with the water proportion used in the mix, indicating that the probe core was not saturated. 

- According to the proposed freeze-thaw cycles, no significant damage has been observed on the 
mechanical and thermal properties of the mortars containing any of the aggregates proposed, probably 
due to the non saturation of the probe core.  

- Freeze-thaw cycles applied on the neat cement grout caused a severe impact on the flexural, 
adherence and thermal conductivity probes. However, damage did not vary its thermal conductivity, 
indicating that any thermal conductivity loss produced in the grout must be due to the appearance of 
thermal contact resistances at the failure planes caused by the freeze-thaw damage. 
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