

View Article Online View Journal

Energy & Environmental Science

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. Alvarez-Guerra, J. Albo, E. Alvarez-Guerra and Á. Irabien, *Energy Environ. Sci.*, 2015, DOI: 10.1039/C5EE01486G.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Ionic liquids in the electrochemical valorisation of CO₂

Manuel Alvarez-Guerra, Jonathan Albo, Enrique Alvarez-Guerra, Angel Irabien

Broader context

Climate change mitigation and transition to energy systems less dependent on fossil fuels are great challenges in the 21st century. Converting carbon dioxide into useful products (the so-called Carbon Capture and Utilisation, CCU) is an attractive strategy that can complement Carbon Capture and Storage (CCS). Particularly, the CO₂ valorisation by electrochemical routes is receiving increasing attention as a way to obtain chemicals with added-value and as a promising option to chemically store renewable energy from intermittent sources like solar or wind, thus reducing our reliance on fossil fuels. On the other hand, ionic liquids (ILs) are a family of compounds with unique properties that have led to their consideration as interesting alternative, more effective solvents in many applications, including in electrochemistry. Therefore, the growing interest in the electrochemical valorisation of CO_2 has resulted in different innovative attempts, including the use of ILs in order to improve the performance of these electrochemical approaches. This review aims to specifically address the use of ILs in the electrochemical process of CO₂ valorisation, offering a complete overview of the state-of-the-art to both inform readers and encourage further research efforts in this challenging field.

1	Ionic liquids in the electrochemical valorisation of CO ₂
2	
3	Manuel Alvarez-Guerra ^a , *, Jonathan Albo ^b , Enrique Alvarez-Guerra ^a ,
4	Angel Irabien ^a
5	^z Department of Chemical and Biomolecular Engineering. ETSIIT. University of Cantabria.
6	Avda. Los Castros, s/n. 39005, Santander, Spain.
7	^b Department of Chemical Engineering, University of the Basque Country (UPV/EHU). Apdo.
8	644, 48080 Bilbao, Spain.
9	*E-mail: alvarezgm@unican.es
10	
11	Abstract
12	The development of electrochemical processes for using captured CO ₂ in the production
13	of valuable compounds appears as an attractive alternative to recycle CO_2 and, at the
14	same time, to store electricity from intermittent renewable sources. Among the different
15	innovative attempts that are being investigated to improve these processes, the
16	application of ionic liquids (ILs) has received a growing attention in recent years. This
17	paper presents a unified discussion of the significant work that involves the utilisation
18	of ILs for the valorisation of CO ₂ by means of electrochemical routes. We discuss
19	studies in which CO_2 is used as one of the reactants to electrosynthesise value-added
20	products, among which dimethyl carbonate has been the focus of particular attention in
21	the literature. Approaches based on the electrochemical reduction of CO_2 to convert it
22	into products without the use of other carbon-based reactants are also reviewed,
23	highlighting the remarkable improvements that the use of ILs has allowed in the CO_2

25

26

Energy & Environmental Science

electroreduction to CO. The review emphasises on different aspects related with process

design, including the nature of ILs anions and cations that have been used, the working

View Article Online DOI: 10.1039/C5EE01486G

Environmental Science Accepted Manuscript

Energy &

conditions, the electrocatalytic materials, the electrode configurations, or the design of electrochemical cells, as well as discussing the most relevant observations, results and 27 figures of merit that the participation of ILs has allowed to achieve in these processes. 28 29 Several conclusions are finally proposed to highlight crucial challenges and recommendations for future research in this area. 30 31 32 **1. INTRODUCTION** 33 1.1. The problem of CO₂ 34 35 The increase in the concentration of carbon dioxide (CO_2) in the atmosphere since preindustrial times due to anthropogenic emissions has been considered as a major 36 contributor to the greenhouse effect and global warming ¹. According to the latest 37 38 Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), about 39 two-thirds of the total greenhouse gas emissions in 2010 were CO_2 emissions related to the combustion of fossil fuels². Fossil fuels (i.e. oil, coal and natural gas) represented 40 41 81.7% of the total primary energy supply in the world in 2012, while renewable energies only accounted for 13.5%³. Although the ultimate goal for many countries is 42 to phase out fossil fuels in heat and power production, as well as in the transport sector, 43 future estimations indicate that the shift to renewable energy sources is slow and that 44 the world energy supply will still rely on fossil fuels in the next decades ^{4, 5}. Therefore, 45 CO₂ emissions have to be reduced urgently, but in a context of an increasing world 46 energy consumption that will still be highly dependent on fossil fuels³. This represents 47 a complex challenge that has to be met. Consequently, different mitigation strategies are 48

Energy & Environmental Science Accepted Manuscript

7/06/2015 10:17:31.
17/06/2015
Library on 1
e London
ial Colleg
d by Imper
ownloade
June 2015. E
d on 16 Ju
Published

49	being considered, seeking to reduce the extent of climate change by reducing CO_2
50	emissions or increasing their removal from the atmosphere ⁶ . Among these strategies,
51	the capture of CO_2 from flue gases of combustion processes and its subsequent storage
52	for long-term isolation from the atmosphere ("Carbon Capture and Storage", CCS) 7-9
53	has gained significant attention. In fact, CCS has been suggested as a key climate
54	change technology that is currently in the process of being demonstrated worldwide ¹⁰ .
55	However, CCS technology development has progressed slower than anticipated in large
56	scale demonstration ⁵ . New funding for CCS demonstration projects peaked in 2008,
57	when several governments supported CCS technology demonstration as part of
58	economic stimulus plans, but since then, additional funding has been limited ¹¹ . The lack
59	of a positive public opinion to CO ₂ storage, which has already been detected recently in
60	some projects may also hamper its implementation. Although long-term CO ₂ storage
61	requires intervention of authorities through the application of strict penalties or
62	economic support and subsidies ¹⁰ , the IEA (International Energy Agency) considers
63	that the deployment of CCS in both power and industry is critical to address climate
64	change ⁵ . In this way, in the IEA BLUE Map Scenario (which assumed that global
65	energy-related CO ₂ emissions are reduced to half their levels by 2050 compared to 2007
66	levels), the use of CCS accounted for 19% of the emissions reduction, where 58% of the
67	CO_2 captured would come from power generation, 21% from industry and 24% from
68	fuel transformation ¹² . More recently, the main focus of IEA Energy Technology
69	Perspectives (ETP) 2014 is the 2°C Scenario (2DS), which aims to achieve the
70	ambitious goal of limiting global temperature rise to 2°C and sets the target of cutting
71	energy-related CO ₂ emissions by more than half in 2050 compared with 2011; in the
72	2DS, CCS is also considered as crucial for realising deep emission cuts in the industrial

73

74

2DS goals ⁵.

sector, providing around one quarter of the cumulative reductions needed to achieve the

View Article Online DOI: 10.1039/C5EE01486G

75	In this context, while CCS technologies are being developed with the focus of capturing
76	and storing CO_2 in huge quantities ¹³ , processes for converting captured CO_2 into useful
77	and valuable products (the so-called "Carbon Capture and Utilisation", CCU) are being
78	developed in parallel ¹⁴ . Although it has been argued that the potential of CCU is still
79	limited because the current global demand for products does not have the capacity to
80	sequester enough CO ₂ emissions to contribute significantly to meeting the carbon
81	reduction targets ^{10, 14} , it has also been recognised that exploiting part of the captured
82	CO_2 to generate value from it as raw material for chemical synthesis of for use as fuel
83	can complement its storage ¹³ . Therefore CCU appears as an innovative and attractive
84	option that has started to draw attention worldwide ¹⁴ . Currently, important research
85	efforts are being carried out to develop CCU processes ^{15, 16} which may allow its
86	conversion into valuable chemicals by means of, e.g. chemical ¹⁷⁻¹⁹ , electrochemical ²⁰⁻²⁷ ,
87	photocatalytic ²⁸⁻³¹ or biological ³²⁻³⁵ transformations.
88	Apart from the attractive possibility of obtaining useful chemicals from CO ₂ , the
89	electrochemical valorisation has been suggested in the literature as an excellent future
90	option to store energy from renewable sources which is intermittent and difficult to
91	predict accurately, such as solar or wind energy ³⁶ . In this way, processes for the
92	electrochemical conversion of CO ₂ , coupled to renewable energy sources, could allow
93	the valorisation of captured CO ₂ obtaining value-added products, and at the same time,
94	could also make it possible to store electrical energy in chemical form. Because
95	electricity is difficult to store on a large scale, its production has to closely follow
96	demand and to adapt to fluctuations. Nevertheless, renewable energies such as solar and
97	wind are intermittent and not able to follow closely the demand (i.e. wind does not blow

constantly, while solar energy cannot be produced during the night or with cloudy 98 weather). Therefore, the reliable integration of renewables is complex and, according to 99 100 the IEA, perhaps the most disputed and misunderstood factor in sustainable electricity supply ³⁷. 101

102

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10:17:31.

1.2. Ionic liquids 103

Ionic Liquids (ILs) are organic salts composed solely of ions (cations and anions), 104

which are liquids below 100 °C. Many of them are liquids even at room temperature, so 105

they are also called "room-temperature ionic liquids" (RTILs). As opposed to an ionic 106

107 solution, which is a solution of a salt in a molecular solvent, the term "ionic liquid"

should be literally understood as a liquid that consists entirely of ions ³⁸. Heating normal 108 salts, such as NaCl (melting point 801°C) to high temperature produces also a liquid, 109

which consists entirely of ions, but this is considered a molten salt and not defined as an 110 ionic liquid ³⁹. An essential feature of ILs is that they exhibit a very wide liquidus range 111 (i.e. a very wide span of temperatures between the melting and boiling points). With the 112

exception of some liquid polymers, no molecular solvent can match the liquidus range 113

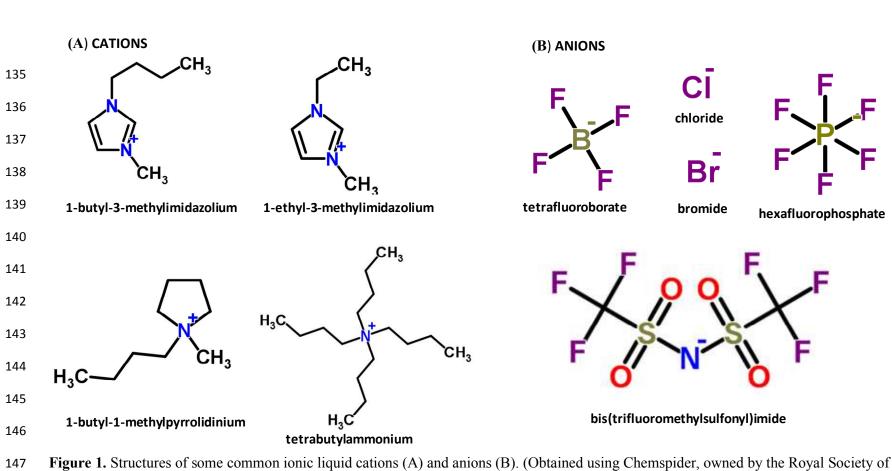
of ILs⁴⁰. Although ILs and traditional molten salts share this fundamental feature of 114

possessing a wide liquidus range, they differ in where the liquidus range is in the scale 115 of temperature. Moreover, in contrast to molten salts, which form tight ion pairs in the

vapour phase, the reduced Coulombic interactions between ions energetically restricts 117

the ion pair formation required for volatilisation of ILs leading to little measurable 118

vapour pressures 40. 119


116

In the last decades, ILs have received rising interest in multiple fields of chemistry and 120 121 chemical technologies due to their useful properties in these contexts, which include 122 immeasurably low vapour pressure ⁴¹, high thermal stability and excellent solvation

View Article Online DOI: 10.1039/C5EE01486G

Energy & Environmental Science Accepted Manuscript

123	ability for a wide range of compounds ⁴² . Moreover, ILs ideally designed to fulfil a
124	specific task (i.e. "task-specific" or "functionalised" ILs) can be created by choosing
125	certain anionic and cationic components which incorporate functional groups designed
126	to impart to them particular properties or reactivities ⁴³ . In spite of the fact that ILs have
127	some solubility in water, and hence, it is necessary to assess their potential toxicity to
128	the aquatic environment 44-47, their negligible vapour pressure eliminates the problems
129	associated with polluting emissions to the atmosphere. Consequently, ILs are
130	considered attractive replacements for volatile organic solvents in many applications,
131	including in electrochemistry 40, 48-50. Some of the most commonly used ILs are
132	illustrated in Figure 1.

148 Chemistry: <u>http://www.chemspider.com/</u>)

Page 9 of 59

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10:17:31.

150

151

152

The possibility of either converting the CO_2 into products or of simply sequestering the

 CO_2 involves the need to separate it from the gas mixtures of the sources of emission.

1.3. Suitability of ionic liquids for CO₂ capture & conversion

Therefore, it has been highlighted that capture of CO_2 from flue gases of conventional 153 coal- and natural-gas-fired power plants is likely to be an important component of the 154 energy portfolio in the next decades ⁵¹. The most mature and applied technology for the 155 post-combustion capture of CO₂ from flue gas streams is cyclic chemical absorption/ 156 desorption using aqueous solutions of monoethanolamine (MEA)^{52,53}. However, amine-157 based processes have many disadvantages and limitations, including those related to the 158 159 corrosive and volatile nature of amines, and especially, the high energy consumption required to release the captured CO_2 in the regeneration step ⁵⁴⁻⁵⁶. 160 161 In recent years, ILs have also been proposed as alternative, more effective or nextgeneration solvents for CO₂-selective separation processes ⁵⁷⁻⁵⁹. 162 Substitution of the absorption liquid (usually volatile and toxic aqueous amine 163 164 solutions) by a solvent with low vapour pressure like ILs has been proposed as way to perform process intensification of CO₂ capture from post-combustion flue gases at 165 industrial scale ^{60, 61}. Therefore, ILs for CO₂ capture have been the focus of intense 166 research activity, as shown in several recent reviews on this subject (see e.g. ^{51, 55, 56, 62-66}). 167 An interesting advantage is that both the selectivity and solubility of CO_2 in ILs can be 168 readily "tuned" by tailoring the structures of cation and/or anion, offering an 169 unprecedented control over solvent composition and functionality ⁵⁷. Although when 170 171 encountering wet flue gases some selectivity problems may be found with ILs with highly basic anions that absorb large quantities of water ¹⁰, ILs show inherently high 172 selectivity for CO₂ over other components in the post-combustion flue gas mixture and 173 their capacity can be dramatically enhanced by incorporation of amine functional 174

175	groups to chemically capture CO_2 ⁵¹ . Furthermore, many ILs exhibit, due to their
176	chemical structure, a high affinity towards CO ₂ , which make them additionally
177	interesting solvents for CO_2 capture processes ⁶⁷⁻⁶⁹ . The high solubility of CO_2 in ILs
178	suited to this specific task will facilitate electrochemical CO ₂ valorisation because, as
179	already mentioned, ILs show desirable properties as media for electrochemical
180	reactions.
181	Several references can be found in the literature that explain in detail the properties of
182	ILs as electrochemical solvents and describe their many applications in the field of
183	electrochemistry (see e.g. ⁷⁰⁻⁷⁸). The viscosities of ILs, which are usually 1-3 orders of
184	magnitude higher than those of conventional solvents, are probably their major
185	drawback in electrochemistry ⁷³ . However, ILs have many advantages when employed
186	as a solvent in electrochemical experiments ⁷¹ . Especially, their inherent redox-
187	robustness, generally possessing a wide electrochemical window (i.e. a wide potential
188	difference between the oxidation and reduction reactions of the molecules/ions that
189	constitute the solvent ⁷⁵), is a usual common property of ILs which is highly desirable
190	for applying them as electrochemical solvents ⁷³ . It should also be emphasised that the
191	conductivity of ILs, which is another feature of vital importance, is generally similar to
192	that of conventional nonaqueous solvents with added inorganic electrolytes, but ILs
193	offer the advantage that this property is intrinsic to the pure IL and does not require the
194	addition of a separate salt ⁷⁰ . Besides, those ILs containing metals in their anion (also
195	known as magnetic ionic liquids (MILs)), have shown interesting properties as a
196	reaction media for various catalytic reactions, as well as for electrochemical devices
197	(i.e. flow battery systems, anti-glare rear, information displays, etc.), where reversible
198	oxidation/reduction processes involve changes in colour or magnetic properties ⁷⁹ .
199	

View Article Online DOI: 10.1039/C5EE01486G

Environmental Science Accepted Manuscript

nergy &

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10:17:31.

In recent years a renewed interest in the electrochemical valorisation of CO₂ has been 201 observed, with a rapidly growing number of studies focussed on different innovative 202 attempts. The ILs are a family of compounds with unique properties, so their use, as 203 well as in other fields and even in other electrochemical applications, has also been 204 explored for the electrochemical valorisation of CO₂. Different previous reviews have 205 mentioned some studies that utilise ILs in the electrochemical conversion of CO₂ ^{67, 80-83}. 206 However, there is a lack of a comprehensive work that specifically discusses and unifies 207 208 the literature on this particular topic. According to the increasing attention that this field 209 has attracted recently, a work which, expanding previous reviews and incorporating the 210 abundant relevant recent literature, could offer a complete overview on the state of the art of the use of ILs in the electrochemical valorisation of CO₂, taking into consideration 211 the types of ILs used, configuration of electrodes and electrochemical cells, operating 212 conditions, or the effect that the ILs have had on the performance of electrolyses for 213 CO₂ valorisation, would be of great interest. 214 Therefore, to fill this gap, this review article presents a unified discussion of relevant 215 studies that involve the utilisation of ILs for the electrochemical valorisation of CO₂. 216 The review has been divided in two main parts. Approaches in which CO_2 is used as 217 one of the reactants to electrosynthesise valuable products with the participation of ILs 218 219 will be reviewed and discussed in the first part (section 2). Then, the second part 220 (section 3) will deal with the use of ILs in direct electrochemical approaches to convert 221 CO₂ without other carbon-based reactants. In both parts, key aspects that will deserve special attention in the discussion include the nature of ILs anions and cations that have 222 223 been used; the products that have been obtained in the different studies; which

224 conditions, electrocatalytic materials, electrode configurations and types of cells have

225	been utilised; and the most relevant observations, results and figures of merit that the
226	participation of ILs has allowed to achieve in these processes. The codes used in this
227	paper to designate the different ILs are listed in Table 1. Besides, a final section will
228	include some concluding remarks, highlighting as well crucial challenges that will have
229	to be tackled in the vibrant area of research of innovative processes for the
230	electrochemical valorisation of CO ₂ .
231	
232	(TABLE 1 HERE)
233	
234	2. USE OF ILS IN ELECTROSYNTHESIS OF VALUABLE COMPOUNDS
235	USING CO2 AS REACTANT
236	
237	2.1. Summary of studies
238	Relevant studies which involve the use of ILs in CO ₂ electrochemical valorisation
239	approaches in which CO ₂ is used as one of the reactants, together with other substrates,
240	to synthesise chemicals of interest ⁸⁴⁻¹¹⁰ , are summarised in Table 2. This Table is
241	focused on showing, for each study, the substrates and products of the electrosynthesis
242	application, the specific ILs used in the reaction media, the operating conditions that
243	were studied, the nature and characteristics of electrodes investigated, and the type of
244	electrochemical cell used, together with a brief description of relevant observations and
245	results reported in each study.
246	
247	(TABLE 2 HERE)
248	
249	

View Article Online DOI: 10.1039/C5EE01486G

Energy & Environmental Science Accepted Manuscript

250	2.2. D	Discussion	and	trends

251	Types of products. It is important to emphasise that Table 2 focusses on studies
252	that have carried out electrolyses that involve the use of ILs as media to conduct
253	electrochemical reactions of different substrates with CO ₂ to synthesise valuable
254	compounds. Among these products, several studies have focussed on synthesising
255	organic carbonates (especially dimethylcarbonate, DMC) from alcohols and CO_2 ^{84, 89-91,}
256	94, 97-99, 101, 102, 106, 108, 109. Various references whose aim is the synthesis of different
257	carboxylic acids can also be found ^{86-88, 92, 93, 105} , such as phenylacetic acid ⁹² , 2-
258	phenylpropionic acid ⁹³ , 2-hydroxy-2- phenylpropionic acid ¹⁰⁷ , fatty acids ¹⁰⁵ or 2-
259	arylsuccinic acids ^{87,88} . Other approaches that have also been reported include the
260	synthesis of organic carbamates ^{85,96} , the pharmaceutical intermediate 6-aminonicotinic
261	acid ⁹⁵ , or 1-phenylethanol ¹⁰⁰ .
262	
263	Most used ILs. Examination of Table 2 reveals that imidazolium-based ILs have
263 264	Most used ILs. Examination of Table 2 reveals that imidazolium-based ILs have been, by far, the most researched class of ILs for CO ₂ electrochemical valorisation
264	been, by far, the most researched class of ILs for CO ₂ electrochemical valorisation
264 265	been, by far, the most researched class of ILs for CO ₂ electrochemical valorisation applications, and, particularly, the ILs 1-butyl-3-methylimidazolium tetraflouroborate
264 265 266	been, by far, the most researched class of ILs for CO ₂ electrochemical valorisation applications, and, particularly, the ILs 1-butyl-3-methylimidazolium tetraflouroborate ([BMIm][BF ₄]) ^{84-86, 89-92, 94-96, 98, 99, 101-104, 106} , and to a lesser extent, 1-butyl-3-
264 265 266 267	been, by far, the most researched class of ILs for CO ₂ electrochemical valorisation applications, and, particularly, the ILs 1-butyl-3-methylimidazolium tetraflouroborate ([BMIm][BF ₄]) ^{84-86, 89-92, 94-96, 98, 99, 101-104, 106} , and to a lesser extent, 1-butyl-3- methylimidazolium bromide ([BMIm][Br]) ^{90, 91, 97, 106, 108-110} or 1-ethyl-3-
264 265 266 267 268	been, by far, the most researched class of ILs for CO ₂ electrochemical valorisation applications, and, particularly, the ILs 1-butyl-3-methylimidazolium tetraflouroborate ([BMIm][BF ₄]) ^{84-86, 89-92, 94-96, 98, 99, 101-104, 106} , and to a lesser extent, 1-butyl-3- methylimidazolium bromide ([BMIm][Br]) ^{90, 91, 97, 106, 108-110} or 1-ethyl-3-
264 265 266 267 268 269	been, by far, the most researched class of ILs for CO ₂ electrochemical valorisation applications, and, particularly, the ILs 1-butyl-3-methylimidazolium tetraflouroborate ([BMIm][BF ₄]) ^{84-86, 89-92, 94-96, 98, 99, 101-104, 106} , and to a lesser extent, 1-butyl-3- methylimidazolium bromide ([BMIm][Br]) ^{90, 91, 97, 106, 108-110} or 1-ethyl-3- methylimidazolium tetraflouroborate ([EMIm][BF ₄]) ^{84, 90, 91, 96} .
264 265 266 267 268 269 270	been, by far, the most researched class of ILs for CO ₂ electrochemical valorisation applications, and, particularly, the ILs 1-butyl-3-methylimidazolium tetraflouroborate ([BMIm][BF ₄]) ^{84-86, 89-92, 94-96, 98, 99, 101-104, 106} , and to a lesser extent, 1-butyl-3- methylimidazolium bromide ([BMIm][Br]) ^{90, 91, 97, 106, 108-110} or 1-ethyl-3- methylimidazolium tetraflouroborate ([EMIm][BF ₄]) ^{84, 90, 91, 96} .
264 265 266 267 268 269 270 271	been, by far, the most researched class of ILs for CO ₂ electrochemical valorisation applications, and, particularly, the ILs 1-butyl-3-methylimidazolium tetraflouroborate ([BMIm][BF4]) ^{84-86, 89-92, 94-96, 98, 99, 101-104, 106} , and to a lesser extent, 1-butyl-3- methylimidazolium bromide ([BMIm][Br]) ^{90, 91, 97, 106, 108-110} or 1-ethyl-3- methylimidazolium tetraflouroborate ([EMIm][BF4]) ^{84, 90, 91, 96} . Applied electrode materials. Regarding the materials that have been used as electrodes, the different works reported have studied the conversion of CO ₂ in ILs using

between substrates and CO_2 in an IL-medium are also strongly dependent upon the nature of the cathode material, which usually resulted in great differences in the yields of the desired products depending on the metal used as cathode (see e.g. ^{86-89, 92, 95, 98, 103-} 106).

279

Operating conditions. Table 2 also reveals that the different electrochemical 280 281 conversions of CO_2 in ILs have been carried out under mild conditions. Most studies have been performed at ambient temperature and pressure. An increase in the current 282 efficiencies achieved has been reported using higher CO_2 pressures, due to the fact that 283 284 the solubility of the CO_2 in the IL increased with increasing pressure ⁹³. However, it is 285 important to emphasise that the influence of the temperature on these processes is more 286 complex, because temperature can have an effect on both the viscosity of the IL and the solubility of CO₂ in the IL medium. Lower temperature leads to an increase in the 287 solubility of CO₂ in the IL, which is favourable to the electrosynthesis; on the other 288 hand, decreasing the temperature also usually leads to an increase of viscosity that 289 causes mass transport within solution to be slower, and therefore is unfavourable to the 290 performance of the process. The combination of these two opposite influences explains 291 292 that the different works that investigated the effect of temperature, usually in a range between 20-30°C and 60-75°C (Table 2), came to the same conclusion that the optimum 293 temperature resulted to be an intermediate value of the range studied (usually 50 or 294 55°C) 86, 89, 92, 94, 95, 98 295

296

Types of electrochemical cells. Most of the studies that are summarised in Table 2 have been performed in small undivided cells and with small electrode areas (usually in the order of a few cm²). Few works have used divided cells $^{85, 96, 103, 104}$, and only very

Energy & Environmental Science

Figure 2. Scheme of the filter-press electrochemical cell with cathodic and anodic
 compartment separated by a membrane. Reprinted from ref. ¹¹⁰.

311

312 **2.3.** Electrosynthesis of dimethylcarbonate (DMC)

313 As already mentioned, DMC is clearly the most studied product of electrosyntheses that

314 involve the use of ILs, particularly among the most recent works, which reveal the

315 increasing interest in this compound. Methanol and CO_2 are the common substrates

used in all the references found in the literature (Table 2). Figure 3 shows the yields

317 reported in different studies, graphically organised according to the other compounds

318 and the ILs involved in the electrosynthesis.

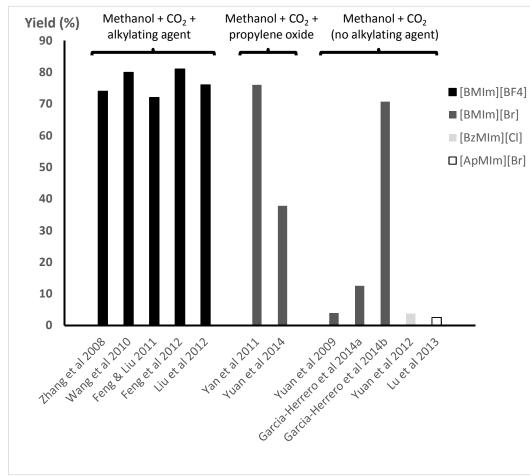


Figure 3. Yields of DMC (based on limiting reactant) reported in different studies,
 organized according to the reactants used and the ILs involved. Data from refs. ^{89-91, 94, 97,}
 ^{99, 101, 102, 106, 108-110}.

320

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10:17:31.

Most of the initial works that studied the electrosynthesis of DMC involved the use of 325 the IL [BMIm][BF₄]^{89, 94, 99, 101, 102} with electrodes mainly based on Cu. Yields of 74%⁸⁹ 326 and 72% ⁹⁹ have been reported using a Cu working electrode, while 76% yield was 327 obtained with an In electrode ¹⁰². Slight improvements were achieved when electrodes 328 based on nanoporous Cu were used: Wang et al.⁹⁴ reported 80% yield with a working 329 electrode prepared by depositing Ag on nanoporous Cu, and Feng et al. ¹⁰¹ achieved 330 331 81% yield with a porous nanostructured electrode where Pt was deposited over Cu skeleton. However, in all these works that used $[BMIm][BF_4]$ the high yields of DMC 332

Page 17 of 59

View Article Online DOI: 10.1039/C5EE01486G

Energy & Environmental Science Accepted Manuscript

333	were achieved after adding methyl iodide (CH ₃ I) as alkylating agent in the final steps of
334	the electrosynthesis, which is a carcinogenic compound.
335	Other works have used methanol, CO ₂ and propylene oxide to synthesise DMC using
336	the IL [BMIm][Br] and Pt electrodes achieving yields of 76% 97, or more recently, of
337	37.8% 108 . Although both works avoided the use of CH ₃ I, propylene oxide is also a
338	carcinogenic and mutagenic compound. Attempts that do not involve the use of such
339	problematic species have also been reported, but at the expense of achieving much
340	lower yields in DMC. The ILs used in these attempts implied the participation of a
341	methylimidazoilum-based cation with a halide anion (Br or Cl), using either Pt or
342	graphite electrodes ^{90, 91, 106, 109} . In ref. ⁹¹ , using only methanol, CO ₂ and the IL 1-benzyl-
343	3-methyl imidazolium chloride ([BzMIm][Cl]), with graphite electrodes, DMC was
344	synthesised with a maximum yield of 3.8%. However, although DMC was obtained
345	without the use of any other additives, the preparation of the IL proposed involved the
346	use of benzyl chloride, which is a compound classified as carcinogenic. More recently,
347	also using graphite as electrodes, the synthesis of the amino-functionalised IL 1-(3-
348	aminopropyl)-3-methylimidazolium bromide ([ApMIm][Br]) and its use for
349	electrosynthesis of DMC has been proposed, giving maximum yields of 2.5% ¹⁰⁶ .
350	Finally, works that have studied the electrosynthesis of DMC from methanol and CO_2
351	with Pt electrodes, adding only CH ₃ OK and the IL [BMIm][Br], can also be found ^{90, 109,}
352	¹¹⁰ . Yuan et al. ⁹⁰ studied this synthesis in a small cell in excess CO ₂ , reporting a 3.9%
353	yield and suggesting that CH ₃ OK acted as a co-catalyst and [BMIm][Br] as an
354	electrolyte. Further work on the system methanol-CO ₂ -CH ₃ K-[BMIm][Br] has recently
355	been carried out using a filter-press electrochemical reactor with anodic and cathodic
356	compartments divided by a Nafion membrane, achieving a yield in DMC of 12.5% in
357	excess methanol ¹⁰⁹ . The influence of the membrane was then explored in a subsequent
	16

358	work, in which new results using different anion exchanged membranes were reported
359	¹¹⁰ . Interestingly, although similar results of DMC concentration were achieved after 48
360	h, the evolution with time was different when comparing both types of membranes;
361	using the best performing anion exchange membrane tested (fumasep FAB-PK-130),
362	the concentration of DMC did not increase strongly during the first hours as happened
363	with the Nafion membrane, but it increased slowly and progressively throughout the
364	experiment. Apart from reporting the first results found in the literature of DMC
365	electrosynthesis from CO ₂ and methanol using a filter-press cell configuration, these
366	works also suggested that the IL [BMIm][Br] is not merely an electrolyte, but it must
367	play a catalytic role in the electrosynthesis of DMC. However, further more in-depth
368	research is needed to clarify the reaction mechanism, and particularly, to ascertain the
369	possible specific role of the IL that is involved in this electrosynthesis.
370	

372 **3. USE OF ILs IN ELECTROREDUCTION OF CO₂ WITHOUT OTHER**

373 CARBON-BASED REACTANTS

374

375 **3.1. Summary of studies**

Table 3 gives an overview of relevant studies that have used ILs in CO₂ electroreduction processes to convert it directly into products (i.e. without the use of other carbon-based reactants) ¹¹¹⁻¹²⁹. Similar to Table 2, for each of the references Table 3 summarises the IL involved, the desired product to be obtained, the operating conditions and the characteristics of the electrodes and cells used for the electrolyses, together with a brief summary of the main observations and figures of merit reported to assess the performance.

Energy & Environmental Science Accepted Manuscript

383	
384	(TABLE 3 HERE)
385	
386	3.2. Discussion and trends
387	Types of products. A first look at Table 3 reveals that the use of ILs in the
388	electrochemical reduction of CO ₂ has been studied in processes to obtain only a few
389	different types of products. In 2008, Chu et al. ¹¹² reported the production of low-density
390	polyethylene (LDPE) with 8-14% current efficiency by bubbling CO ₂ gas in a mixture
391	of IL [EMIm][BF ₄] and water. Some references can be found related to the formation of
392	N-heterocyclic carbene-CO ₂ (NHC-CO ₂) adducts by electrolysis on [BMIm][BF ₄]
393	bubbling CO_{2} , where the NHC-CO ₂ adduct can then be used as latent catalyst for
394	organocatalysed reactions ¹¹⁵ or may be utilised to catch and release CO ₂ cyclically and
395	in mild condition ¹³⁰ . Very recently, an interesting investigation where the
396	electrochemical CO ₂ reduction with the participation of ILs yielded formate was carried
397	out by Watkins and Bocarsly ¹²³ in a medium formed by the IL 1-ethyl-3-
398	methylimidazolium trifluoroacetate ([EMIm][TFA]) with 33% water as cosolvent. The
399	[EMIm][TFA] was considered especially due to its high storage capacity for CO ₂ ,
400	which is largely unaffected by water. In this IL, the authors proposed that the
401	mechanism did not involve the C-2-bound carboxylate intermediate suggested in other
402	studies ¹¹³ , but they proposed instead the direct CO ₂ reduction at the In electrode to yield
403	formate. Higher current density and lower electrode potential for electrolysis, in
404	comparison to aqueous systems, were reported, which was attributed to a stabilising
405	effect of the IL [EMIm][TFA] on the CO ₂ intermediate and the increased solubility of
406	CO_2 in the matrix ¹²³ .

nergy & Environmental Science Accepted Manuscript

Since the majority of works using ILs has CO as product, this CO₂ electroreduction will
be specifically discussed in subsection 3.3. below.

409

410 Most used ILs. Table 3 shows that species within the family of imidazolium-based

411 ILs have clearly been the most investigated type of ILs. Especially, 1-ethyl-3-

412 methylimidazolium tetrafluoroborate ([EMIm][BF₄]), followed by 1-butyl-3-

413 methylimidazolium tetraflouroborate ([BMIm][BF₄]) and 1-butyl-3-methylimidazolium

hexafluorophosphate ([BMIm][PF₆]), have been, by far, the most widely used ILs in the
electroreduction of CO₂.

416

Applied electrode materials. Metals of different nature have been the materials 417 widely used as working electrodes for studying the electroreduction of CO_2 with the 418 participation of ILs. It is interesting to note in Table 3 that many studies have employed 419 a configuration in which the metal catalysts are deposited over a carbon support (e.g.^{113,} 420 ^{114, 116, 118, 119, 122, 125}). Bismuth-based CO evolving electrocatalysts, in which this metal is 421 electrodeposited onto a glassy carbon electrode, have been recently studied ^{118, 125}. Ag 422 nanoparticles painted on a graphite gas diffusion layer were the cathodes in studies that 423 involved the use of [EMIm][BF4] 113, 114, 116, while Au nanoparticles painted on carbon 424 paper were used in matrix of [BMIm][PF₆]¹¹⁹.Interesting recent works on CO₂ 425 electroreduction to CO report better performance than noble metal catalysts (like Ag or 426 Au) using molybdenum disulphide $(MoS_2)^{128}$ (superior performance that was attributed 427 to the metallic character and high d-electron density of the Mo-terminated edges of 428 MoS₂), and using non-metallic carbon nanofibre heterogeneous catalysts ¹¹⁷. 429 Although the vast majority of studies have been carried out with metal-based 430 heterogeneous electrocatalysts, Grills et al. ¹²⁴ very recently explored the effect of ILs 431

432

on the electrochemical reduction of CO2 to CO with a homogeneous Re catalyst (fac-

View Article Online DOI: 10.1039/C5EE01486G

433	ReCl(2,2'-bipyridine)-(CO) ₃ , whose electrocatalytic activity for the selective reduction
434	of CO ₂ to CO was already known in organic solvents like acetonitrile). In this work, in
435	which the authors indicate that it is the first example of ionic liquid-enhanced
436	electrocatalytic CO ₂ reduction with a homogenous catalyst, the use of 1-ethyl-3-
437	methylimidazolium tetracyanoborate ([EMIm][TCB]) as both the solvent and the
438	electrolyte resulted in 0.45V lower overpotential for the electrocatalytic reduction of
439	CO ₂ to CO with the Re catalyst compared to in acetonitrile containing 0.1M
440	[TBA][PF ₆]. Although the experiments showed that the IL helped to abate the activation
441	energy for the CO_2 reduction reaction, the roles of $[EMIm]^+$ and $[TCB]^-$ still have to be
442	clarified ¹²⁴ .
443	
443 444	Operating conditions. As can be seen in Table 3, almost all the studies on the
	Operating conditions. As can be seen in Table 3, almost all the studies on the electrochemical reduction of CO_2 using ILs have been carried out at ambient conditions
444	
444 445	electrochemical reduction of CO ₂ using ILs have been carried out at ambient conditions
444 445 446	electrochemical reduction of CO_2 using ILs have been carried out at ambient conditions of temperature different temperatures and pressures have been reported. Zhao et al.
444 445 446 447	electrochemical reduction of CO_2 using ILs have been carried out at ambient conditions of temperature different temperatures and pressures have been reported. Zhao et al. investigated the effect of CO_2 pressure on CO_2 electroreduction, working with high
444 445 446 447 448	electrochemical reduction of CO_2 using ILs have been carried out at ambient conditions of temperature different temperatures and pressures have been reported. Zhao et al. investigated the effect of CO_2 pressure on CO_2 electroreduction, working with high pressures of up to 10 MPa, and reporting that the Faradaic efficiency of CO increased
444 445 446 447 448 449	electrochemical reduction of CO_2 using ILs have been carried out at ambient conditions of temperature different temperatures and pressures have been reported. Zhao et al. investigated the effect of CO_2 pressure on CO_2 electroreduction, working with high pressures of up to 10 MPa, and reporting that the Faradaic efficiency of CO increased considerably as the pressure was increased ¹¹¹ . This enhanced efficiency at higher
444 445 446 447 448 449 450	electrochemical reduction of CO_2 using ILs have been carried out at ambient conditions of temperature different temperatures and pressures have been reported. Zhao et al. investigated the effect of CO_2 pressure on CO_2 electroreduction, working with high pressures of up to 10 MPa, and reporting that the Faradaic efficiency of CO increased considerably as the pressure was increased ¹¹¹ . This enhanced efficiency at higher pressures was attributed to the fact that the solubility of CO_2 in the IL [BMIm][PF ₆]

454

453

reduction of CO₂¹¹¹.

455 Types of electrochemical cells. Regarding the type of electrochemical cell, Table
456 3 shows that most of the works have studied the electroreduction of CO₂ using a two-

- 457 compartment cell divided by a Nafion cation-exchange membrane to separate the
- 458 cathodic and anodic compartments ^{113, 114, 116, 118, 119, 122, 125, 129}. Although some of them have
- 459 used a classic H-type cell, the use of a flow cell, i.e. a filter-press or sandwich style
- 460 reactor that allows the circulation of the catholyte and the anolyte through its own
- 461 compartment (Figure 4) has also been reported ^{113, 114, 116}.
- 462

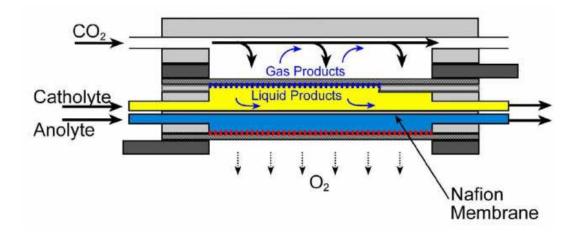


Figure 4. Schematic of electrochemical flow cell with catholyte and anolyte channels
separated by a Nafion membrane. Reprinted from ref. ¹¹⁶

467

468

469 **3.3.** CO₂ electroreduction to CO

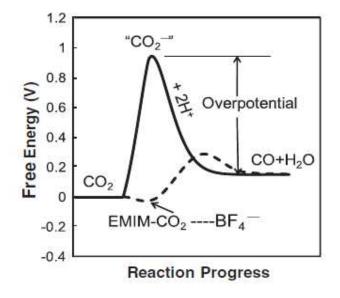
- 470 The electroreduction of CO_2 to CO has clearly been the most studied route in which ILs
- 471 have been used, particularly since the publication in 2011 of the work by Rosen et al.

472 ¹¹³. This paper reports the promising results of an electrocatalytic system based on a

- 473 flow cell with a silver cathode that was able to reduce CO_2 to CO at very low
- 474 overpotentials (i.e. below 0.2V more than the equilibrium potential) for at least 7 h with
- 475 Faradaic efficiencies greater than 96% using an IL electrolyte (aqueous solution
- 476 18mol% [EMIm][BF₄]). In a subsequent work, these authors indicate that, according to

Energy & Environmental Science

View Article Online DOI: 10.1039/C5EE01486G


Energy & Environmental Science Accepted Manuscript

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10:17:31.

- 478 hydrogen formation and enhancing CO_2 conversion ¹³¹, proposing that the IL provided a
- 479 low-energy pathway for CO₂ conversion to CO at low overpotential via formation of an
- 480 adsorbed CO₂-EMIm complex (Figure 5).

481

Figure 5. A schematic of how the free energy of the system changes during the reaction CO₂ + 2H⁺ + 2e⁻ \leftrightarrow CO + H₂O in water or acetonitrile (solid line) or IL [EMIm][BF₄] (dashed line). Reprinted from ref. ¹¹³.

486

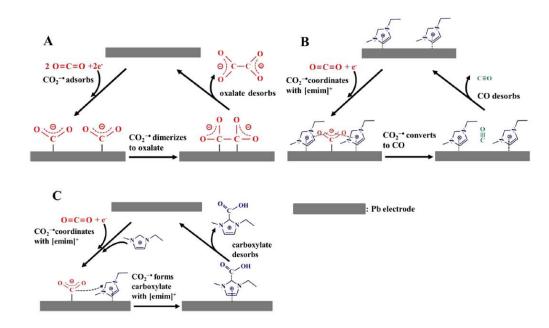
482

487 These ideas of Rosen et al. ¹³¹ have been recently supported by investigations where the

488 formation of CO is also attributed to the interaction between CO_2 and the cation

489 $[EMIm]^+$ at the electrode surface ¹²⁹. When trying to explain how the mechanism of CO₂

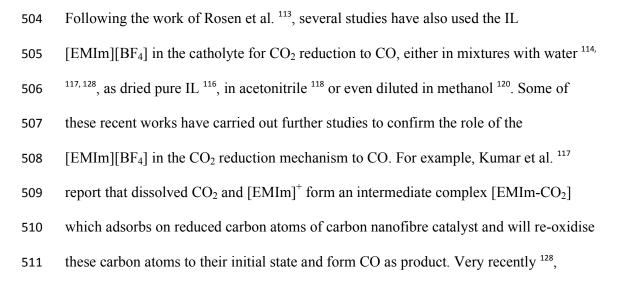
490 electroreduction switch from oxalate anion to CO at a Pb electrode when using


491 [EMIm][NTf₂], this study suggests that the cathode surface is covered with both CO_2 .

and the imidazolium cations, which stabilise the CO_2^{-} and prevent close approach of

493 two CO_2^{-1} , hence inhibiting their dimerization to form oxalate and allowing the

494 formation of CO¹²⁹ (Figure 6). These results are in agreement with Rosen et al.'s study


- 495 ¹³¹, and, interestingly, they also suggest that after CO_2^{-1} coordinates with [EMIm]⁺, the
- 496 formation of an imidazolium carboxylate appears as a competing pathway to the CO_2 .
- 497 conversion to CO, as represented in Figure 6.

499

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10:17:31.

Figure 6. Reaction pathways for the electrochemical reduction of CO₂ in the (A)
absence and (B, C) presence of [EMIm][NTf₂] at a Pb electrode in acetonitrile.
Reprinted from ref. ¹²⁹

512

quantum molecular dynamics simulations also revealed that the [EMIm]⁺ cation forms a

View Article Online DOI: 10.1039/C5EE01486G

513	complex $[\text{EMIm-CO}_2]^+$ with CO_2 stabilised by hydrogen bonding, which reacts with
514	water in neutral solution (forming either [EMIm-HCO ₃] or [EMIm-CO ₃] ⁻ complexes)
515	and that in acidic environment remains stable; furthermore, the [EMIm-CO ₂] complexes
516	could potentially physisorb at the negatively charged cathode (bulk molybdenum
517	disulphide in this study), suggesting that the presence of $[\text{EMIm}]^+$ cations around CO_2
518	molecules could reduce the reaction barrier for electrons passing into CO_2 ¹²⁸ .
519	ILs with the anion $[BF_4]^-$ have been the most widely studied in the CO ₂ electroreduction
520	to CO, not only with $[EMIm]^+$ cation ($[EMIm][BF_4]$, as already stated) ^{113, 114, 116-118, 120,}
521	¹²⁸ , but also with cation $[BMIm]^+$ in the IL $[BMIm][BF_4]$ ^{118, 122, 125-127} . The deprotonation
522	of the central imidazolium carbon of the $[EMIm]^+$ and $[BMIm]^+$ ILs has been suggested
523	as the most likely source of protons to drive the $2e^{-}/2H^{+}$ conversion of CO ₂ to CO ¹¹⁸ .
524	Several works have also studied the use of $[BMIm][PF_6]^{118, 119, 125}$, which some authors
525	hypothesise that could serve as both a promoter for CO ₂ activation at the catalyst and
526	the supporting electrolyte in the catholyte solution ¹²⁵ . Using density functional theory
527	calculations, the major fraction of the overpotential of the CO_2 reduction into CO was
528	attributed to the need of energetically stabilise the key reaction intermediate COOH*,
529	and in this sense, the $[BMIm][PF_6]$ would act as a more efficient COOH* stabiliser ¹¹⁹ .
530	Various studies that have compared the performance of CO ₂ electroreduction to CO
531	using different ILs have been recently published. For example, Medina-Ramos et al. ¹²⁵
532	performed controlled potential electrolysis experiments to compare the behaviour of
533	CO ₂ saturated solutions of acetonitrile containing [PF ₆] ⁻ , [BF ₄] ⁻ , [Cl] ⁻ , [Br] ⁻ , or [OTf] ⁻
534	salts of [BMIm] ⁺ using a bismuth catalyst modified glassy carbon electrode. Although
535	each of these ILs surveyed displayed selectivities for CO production higher than 74%
536	and partial current densities for CO ranging from 17 to 30 mA cm ⁻² , the best results
	24

Energy & Environmental Science Accepted Manuscript

537	were obtained with [BMIm][PF ₆], [BMIm][BF ₄], and particularly, with [BMIm][OTf],
538	which is also one of the least expensive commercially available [BMIm] ⁺ ILs. However,
539	the solutions containing [BMIm] ⁺ halides gave the lowest efficiencies and slowest
540	kinetics of the ILs studied, which was attributed to the fact that [BMIm][Br] and
541	[BMIm][Cl] are more hygroscopic than the other ILs surveyed, and the presence of
542	water in the electrolyte may lead to the formation of other CO ₂ reduction products apart
543	from CO, such as formate ¹²⁵ . Another interesting comparison was carried out by Zhou
544	et al. ¹²⁶ , who examined a series of aqueous solutions of ILs with different cation and
545	anion structures, reporting that CO ₂ reduction on Ag electrode did not occur in aqueous
546	solutions of quaternary ammonium ILs (such as [TEA][BF4] or [TBA][BF4]) but it did
547	occur in imidazolium IL solutions (such as [BMIm][BF ₄], [BMIm][Cl] or
548	[MOEMIm][BF ₄]). Specifically, the best results were achieved with [BMIm][Cl]; on the
549	one hand, the significant effectiveness of $[Cl]^-$ containing IL for the CO_2
550	electroreduction to CO was explained due to the stronger H-bond formed by Cl ⁻ with
551	the hydrogen from H ₂ O molecules, which might decrease the binding strength with the
552	surface of Ag cathode and hence might result in an enhanced inhibition of hydrogen
553	evolution reaction; on the other hand, the relatively strong H-bond of imidazolium
554	cation with water would promote the elimination of O from CO ₂ ; therefore, the anion
555	$[C1]^{-}$ and $[BMIm]^{+}$ cation were suggested as the most effective combination for CO_2
556	reduction to CO probably due to the dominating water-cation and water-anion
557	interactions in aqueous [BMIm][Cl], although they also admit that great research efforts
558	are still needed to fully understand the reaction mechanism ¹²⁶ .
559	

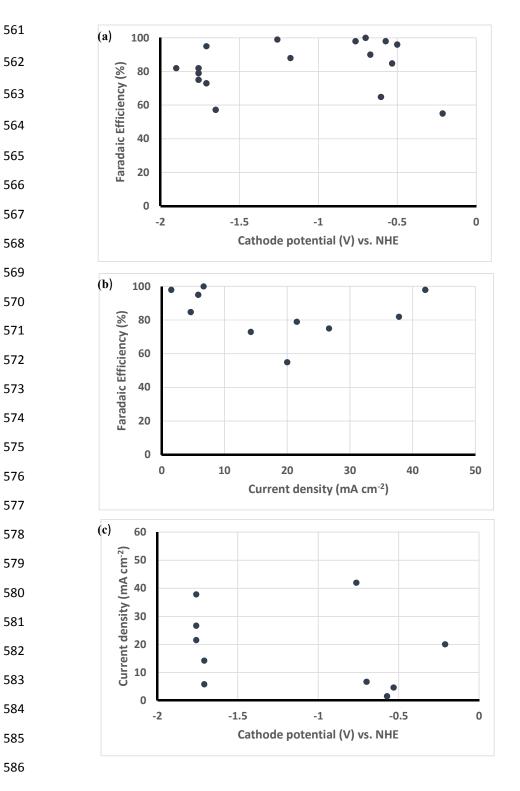


Figure 7. Summary of results of studies for CO₂ electroreduction to CO with ILs. Data
from refs. ^{100, 113, 114, 117-122, 124-129}. (a) Faradaic efficiencies for CO as a function of the
cathode potential (vs. NHE, Normal Hydrogen Electrode). (b) Faradaic efficiencies for
CO vs. current density. (c) Current density vs. cathode potential (vs. NHE)

331	
592	Figure 7 summarises the Faradaic efficiencies for CO and current densities against the
593	cathode potential, as well as the relationship between Faradaic efficiency and current
594	density, obtained in works that have carried out electrolyses for the conversion of CO_2
595	to CO with the aid of ILs. It should be noted that the data used for these plots have been
596	taken from studies where different variables, such as the nature of the catalyst,
597	configuration of the electrode and cell, type of electrolytes and ILs used, or working
598	conditions, are not consistent and may influence the results. Moreover, some of the
599	listed in Table 3 could not be included because they did not report some of these data.
600	In any case, Figure 7 reveals that several studies have achieved very high Faradaic
601	efficiencies, close to 100%, at cathode potentials between -0.5 and -0.77 V vs. NHE
602	(Figure 7a). However, it is noteworthy that the total current densities achieved in these
603	electrolyses have been low, even for studies with lower Faradaic effiencies than 100%
604	(Figure 7b) or for cathode potentials of up to -1.7 V vs NHE (Figure 7c). Therefore,
605	these low current densities reported, far from the values of hundreds of mA cm^{-2} that are
606	considered to be required for the viability of a CO_2 electroreduction process ¹³² ,
607	represent an important issue to address, which is usually attributed to limitations due to
608	CO ₂ diffusion. In this sense, for example, Shi et al. ¹²¹ very recently reported the
609	conversion of CO ₂ into CO in an IL/ organic solvent electrolyte solution. The
610	conventional organic solvent propylene carbonate (PC) was used to dilute the IL 1-
611	butyl-3-methyl-imidazolium trifluoromethanesulfonate ([BMIm][CF ₃ SO ₃]) with the aim
612	of overcoming the problem of the low current density of CO ₂ electroreduction because
613	of restrained CO ₂ diffusion in ILs owing to their high viscosity ¹²¹ , and the cathodic
614	current densities of CO ₂ reduction measured in cyclic voltammetry studies were much

Energy & Environmental Science

higher in [BMIm][CF₃SO₃]/PC solution than those detected in [BMIm][CF₃SO₃]

View Article Online DOI: 10.1039/C5EE01486G

nergy & Environmental Science Accepted Manuscript

catholyte. 616 617 3.4. Other studies on CO₂ electroreduction 618 Although they have not performed electrolytic tests and therefore they have not been 619 included in Table 3, it should be emphasised that some other works have carried out 620 fundamental electrochemical studies with interesting results on the use of ILs for 621 electroreduction of CO₂. For example, Barrosse-Antle and Compton ¹³³ studied the 622 623 electrochemical reduction of CO₂ in 1-butyl-3-methylimidazolium acetate 624 ([BMIm][Ac]) with Pt electrode (10 µm diameter) in a "T-cell" at ambient temperature and pressure, and reported that CO_2 is reduced to the radical anion CO_2^{-1} and that 625 probable follow-up chemistry includes the formation of oxalate, CO and carbonate. 626 They also found the diffusion coefficient of CO_2 in this IL to be lower than it would be 627 628 expected in the case of simple physical absorption of CO₂, which suggested chemical complexation of CO₂ in the IL [BMIm][Ac]¹³³. Subsequent work of Compton group 629 630 focussed on studying the reaction of CO₂ and protons from strong acid bis(trifluoromethane)-sulfonimide (H[NTf2]) in the IL 1-ethyl-3-methylimidazolium 631 bis(trifluoromethylsulfonyl)imide ([EMIm][NTf₂]) or 1-butyl-3-methylpyrrolidinium 632 bis(trifluoromethylsulfonyl)imide ([BMPyrr][NTf₂]), at mild conditions of room 633 temperature (298 K) and pressure (1 atm), with pre-anodised Pt microelectrode in a 634 glass T-shaped cell ¹³⁴. From the study of cyclic voltammograms, the proposed reaction 635 636 is between reduced CO_2 and activated H on Pt, giving as final products formic acid and H₂; although good yield of formic acid is suggested, concentrations or efficiencies that 637 could be obtained were not reported ¹³⁴. However, Martindale and Compton point out 638 that the advantage over the equivalent reduction in aqueous solution is that the radical 639

Energy & Environmental Science Accepted Manuscript

640	anion is significantly more stabilised in the IL medium and so survives for a longer
641	period, which could provide considerably greater control over subsequent reaction
642	pathways and may open possibilities for developing processes with higher efficiencies
643	to the desired product. Finally, it is also worth mentioning that Snuffin et al. ¹³⁵ reported
644	the design and synthesis of an IL 1-ethyl-3-methyl-imidazolium trifluorochloroborate
645	([EMIm][BF ₃ Cl]) that contains a novel anion (BF ₃ Cl ⁻). Using a pre-polished Pt disk (2
646	mm diameter), cyclic voltammograms showed a reduction peak at about -1.8V that
647	yielded a current density of 5.7 mA cm ⁻² . The authors suggested that this anion may
648	catalyse the CO ₂ reduction by forming a Lewis acid-base adduct BF ₃ -CO ₂ , although the
649	chemical reactions of CO ₂ fixation following the electrochemical reduction were still
650	under investigation ¹³⁵ .
651	
652	
653	4. CONCLUDING REMARKS AND FUTURE PERSPECTIVES
654	

Climate change mitigation and the transition to energy systems less dependent on fossil 655 fuels are some of the great challenges in the 21st century. The deployment of CCS is 656 currently considered to be crucial for capturing and storing CO_2 in the large quantities 657 required to contribute significantly to achieve carbon reduction targets. In parallel, CCU 658 technologies can complement CO₂ storage and generate value from part of the captured 659 660 CO_2 by converting it into useful products. Particularly, the development of 661 electrochemical processes for CO₂ valorisation appears as an interesting possibility. Apart from the possibility of obtaining useful chemicals from CO₂, the electrochemical 662 valorisation has been suggested in the literature as an excellent future option to 663 chemically store intermittent energy from renewable sources such as solar or wind 664

View Article Online DOI: 10.1039/C5EE01486G

665	energy. Moreover, CO ₂ electrochemical conversion processes can be carried out at mild
666	conditions.
667	For all of these reasons, in recent years a renewed interest in the electrochemical
668	valorisation of CO ₂ has been observed, with a rapidly growing number of studies
669	focussed on different innovative attempts. The ILs are a family of compounds with
670	unique properties, so their use, as well as in other fields and even in other
671	electrochemical applications, has also been explored for the electrochemical valorisation
672	of CO ₂ . This review focusses on giving an overview of the use of ILs both in the CO_2
673	electroreduction and in approaches for the electrosynthesis of valuable compounds in
674	which CO_2 is used as one of the reactants. The ILs studied, the operating conditions
675	(pressure, temperature, electrolytes, potentials applied, way of supplying CO ₂ , etc.), the
676	nature and characteristics of the electrodes, and the types of electrochemical cells,
677	together with the most remarkable findings and figures of merit reported in relevant
678	studies on the electrochemical valorisation of CO ₂ that involve ILs, are summarised and
679	presented in comprehensive tables to help readers easily find the information.
680	Different ILs have been considered, but the most studied ones have clearly been
681	imidazolium-based ILs, especially [BMIm][BF ₄], [EMIm][BF ₄], or [BMIm][Br].
682	Regarding the electrosynthesis of value-added chemicals by employing ILs, organic
683	carbonates, and in particular DMC, have been the focus of increasing attention.
684	Interesting approaches to synthesise DMC from methanol and CO ₂ using ILs but
685	without the addition of problematic alkylating agents like CH ₃ I have been proposed.
686	However, great research efforts are needed to clarify the reaction mechanism and the
687	role of the ILs involved in this electrosynthesis, which would help to achieve the
688	increase in the yields of DMC that is required for further development of these
689	processes. Approaches for the electroreduction of CO ₂ with the aid of ILs, particularly

Energy & Environmental Science Accepted Manuscript

690	to convert it to CO, have been more thoroughly studied, reaching a higher level of
691	development than approaches for the electrosynthesis of other products like DMC,
692	although still only at a lab scale. As discussed in this review, CO ₂ has been successfully
693	reduced to CO using ILs at very low overpotentials when compared to the theoretically
694	required ones, which encourages the need to continue exploring the use of ILs in
695	electrochemical processes for converting CO ₂ in other products of interest.
696	The different studies reviewed in this paper show that the application of ILs can help
697	improving the electrochemical valorisation of CO ₂ . However, the maturity of the
698	technology for the electrochemical conversion of CO ₂ is still far from practical
699	application. Despite the encouraging results reported in recent investigations, there are
700	several technical challenges that have to be overcome. The rates of formation of the
701	product (measured by the current density at which the process can be operated), the
702	reaction efficiencies and the products yields achieved in these electrochemical routes
703	have to be improved. Together with attempts to increase catalytic activity, product
704	selectivity and stability by exploring innovative electrocatalysts and optimised electrode
705	/reactor configurations, the use of novel compounds like ILs can also help to achieve the
706	significant advances that are currently required to develop processes for the
707	electrochemical efficient production of useful products by valorisation of CO ₂ .
708	Promising results reviewed in this paper on studies where the use of ILs (alone or in
709	mixtures with water or other solvents) has allowed improving the performance of CO_2
710	electrovalorisation approaches support this idea. It can then be concluded that ILs can
711	play a beneficial role in these electrochemical processes, although deeper research is
712	still necessary to fully explore their possibilities. Despite the fact that some attempts to
713	have an insight into the electrochemical conversion of CO ₂ can be found in the
714	literature, the level of understanding of the CO ₂ reaction mechanisms, pathways and
	24

715

intermediates involved in the production of useful chemicals is not enough. Particularly,

716	the role of the ILs in many of the CO_2 electrochemical approaches in which they have
717	been tested is far from being clear. Therefore, a greater knowledge on a molecular level
718	could also guide the design efforts along paths that will lead to "task-specific" ILs that
719	could be especially suited for the electrochemical conversion of CO _{2.} Finally, apart from
720	the considerable research required to overcome current limitations, once the technical
721	feasibility of these processes is demonstrated, it is important to realise that other
722	important aspects of the electrochemical valorisation of CO2 must not be disregarded
723	and will have to be analysed in a systematic manner. In this way, the cost-effectiveness
724	and a holistic view of the sustainability of CO ₂ electrovalorisation approaches will have
725	to be carefully assessed considering the entire life cycle, in order to ensure a favourable
726	economic balance, social acceptance and a positive environmental profile.
727	
728	Acknowledgements
729	The financial support from the Spanish Ministry of Economy and Competitiveness
730	Project CTQ2013-48280-C3-1-R is gratefully acknowledged. J. Albo particularly
731	thanks Juan de la Cierva program (JCI-2012-12073).
732	
733	
734	References
735	1 T. R. Karl and K. E. Trenberth, Science, 2003, 302, 1719-1723.
736 737 738 739	2 Intergovernmental Panel on Climate Change (IPCC), <i>Climate Change 2014:</i> <i>Mitigation of Climate Change. Contribution of Working Group III to the Fifth</i> <i>Assessment Report of the Intergovernmental Panel on Climate Change</i> , Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 2014.
740	3 International Energy Agency (IEA). Key World Energy Statistics 2014.

- 740 3 International Energy Agency (IEA), Key World Energy Statistics 2014.
- http://www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf, 741
- 742 2014.

4 M. B. Toftegaard, J. Brix, P. A. Jensen, P. Glarborg and A. D. Jensen, Prog. Energy 743 744 Combust. Sci., 2010, 36, 581-625. 5 International Energy Agency (IEA), Energy Technology Perspectives 745 746 2014: Harnessing Electricity's Potential, International Energy Agency, Paris, France, 2014. 747 6 UNESCO (United Nations Educational, Scientific and Cultural Organization) and 748 UNEP (United Nations Environment Programme), Climate Change Starter's 749 750 Guidebook, UNESCO, Paris, France, 2011. 751 7 N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C. S. Adjiman, C. K. Williams, N. Shah and P. Fennell, Energy Environ. Sci., 2010, 3, 752 1645-1669. 753 8 A. A. Olajire, Energy, 2010, 35, 2610-2628. 754 9 J. C. M. Pires, F. G. Martins, M. C. M. Alvim-Ferraz and M. Simões, Chem. Eng. Res. 755 Des., 2011, 89, 1446-1460. 756 10 M. E. Boot-Handford, J. C. Abanades, E. J. Anthony, M. J. Blunt, S. Brandani, N. 757 Mac Dowell, J. R. Fernández, M. -. Ferrari, R. Gross, J. P. Hallett, R. S. Haszeldine, 758 P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R. T. J. Porter, M. 759 Pourkashanian, G. T. Rochelle, N. Shah, J. G. Yao and P. S. Fennell, Energy 760 761 Environ. Sci., 2014, 7, 130-189. 11 International Energy Agency (IEA), Energy Technology Perspectives 762 763 2012: Pathways to a Clean Energy System, International Energy Agency, Paris, 764 France, 2012. 12 International Energy Agency (IEA), Energy Technology Perspectives 765 2010: Scenarios & Strategies to 2050, International Energy Agency, Paris, France, 766 767 2010. 13 P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. 768 Schreiber and T. E. Müller, Energy Environ. Sci., 2012, 5, 7281-7305. 769 14 R. M. Cuéllar-Franca and A. Azapagic, J. CO2 Util., 2015, 9, 82-102. 770 15 M. Mikkelsen, M. Jørgensen and F. C. Krebs, *Energy Environ. Sci.*, 2010, **3**, 43-81. 771 16 G. Centi, E. A. Quadrelli and S. Perathoner, Energy Environ. Sci., 2013, 6, 1711-772 773 1731. 774 17 H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman, A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, D. A. Dixon, K. Domen, D. L. DuBois, J. Eckert, E. 775 Fujita, D. H. Gibson, W. A. Goddard, D. W. Goodman, J. Keller, G. J. Kubas, H. H. 776 777 Kung, J. E. Lyons, L. E. Manzer, T. J. Marks, K. Morokuma, K. M. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W. M. H. Sachtler, L. D. Schmidt, A. Sen, G. A. 778 Somorjai, P. C. Stair, B. Ray Stults and W. Tumas, Chem. Rev., 2001, 101, 953-996. 779 780 18 S. N. Riduan and Y. Zhang, Dalton Trans., 2010, 39, 3347-3357. 19 T. Sakakura and K. Kohno, Chem. Commun., 2009, 1312-1330. 781

- 20 C. M. Sánchez-Sánchez, V. Montiel, D. A. Tryk, A. Aldaz and A. Fujishima, *Pure Appl. Chem.*, 2001, **73**, 1917-1927.
- 784 21 D. T. Whipple and P. J. A. Kenis, J. Phys. Chem. Lett., 2010, 1, 3451-3458.
- 785 22 N. S. Spinner, J. A. Vega and W. E. Mustain, Catal. Sci. Technol., 2012, 2, 19-28.
- 786 23 R. P. S. Chaplin and A. A. Wragg, J. Appl. Electrochem., 2003, 33, 1107-1123.
- 787 24 M. Gattrell, N. Gupta and A. Co, J Electroanal. Chem., 2006, 594, 1-19.
- 788 25 J.-P. Jones, G. K. S. Prakash and G. A. Olah, Isr. J. Chem., 2014, 54, 1451-1466.
- 789 26 J. Qiao, Y. Liu, F. Hong and J. Zhang, Chem. Soc. Rev., 2014, 43, 631-675.
- 27 J. Albo, M. Alvarez-Guerra, P. Castano and A. Irabien, *Green Chem.*, 2015, 17, 2304-2324.
- 792 28 G. Centi and S. Perathoner, *ChemSusChem*, 2010, **3**, 195-208.
- 29 P. Usubharatana, D. McMartin, A. Veawab and P. Tontiwachwuthikul, *Ind. Eng. Chem. Res.*, 2006, 45, 2558-2568.
- 795 30 M. Tahir and N. S. Amin, Renew. Sust. Energ. Rev., 2013, 25, 560-579.
- 796 31 W. Tu, Y. Zhou and Z. Zou, Adv. Mater., 2014, 26, 4607-4626.
- 797 32 J.-S. Lee and J.-P. Lee, *Biotechnol. Bioprocess Eng.*, 2003, **8**, 354-359.
- 33 A. Kumar, S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, F. X. Malcata and H.
 van Langenhove, *Trends Biotechnol.*, 2010, 28, 371-380.
- 34 X. Zeng, M. K. Danquah, X. D. Chen and Y. Lu, *Renew. Sust. Energ. Rev.*, 2011, 15, 3252-3260.
- 802 35 M. K. Lam and K. T. Lee, *Biotechnol. Adv.*, 2012, **30**, 673-690.
- 36 G. A. Olah, G. K. S. Prakash and A. Goeppert, *J. Am. Chem. Soc.*, 2011, 133, 1288112898.
- 37 International Energy Agency (IEA), *Harnessing Variable Renewables: A Guide to the Balancing Challenge*, International Energy Agency, Paris, France, 2011.
- 38 A. Stark and K. Seddon, in Kirk-Othmer Encyclopedia of Chemical Technology,
 John Wiley & Sons, 2007, 26, pp. 836-920.
- 39 G. W. Meindersma, M. Maase and A. B. De Haan, in *Ullmann's Encyclopedia of Industrial Chemistry*, Wiley-VCH-Verlag GmbH & Co, Weinheim, Germany, 2007.
- 40 P. Wasserscheid and T. Welton, *Ionic Liquids in Synthesis. Second Edition.* WileyVCH-Verlag GmbH & Co, Weinheim, Germany, 2008.
- 41 M. J. Earle, J. M. S. S. Esperança, M. A. Gilea, J. N. C. Lopes, L. P. N. Rebelo, J.
 W. Magee, K. R. Seddon and J. A. Widegren, *Nature*, 2006, 439, 831-834.
- 42 D. J. Couling, R. J. Bernot, K. M. Docherty, J. K. Dixon and E. J. Maginn, *Green Chem.*, 2006, 8, 82-90.
- 43 J. H. Davis Jr., Chem. Lett., 2004, 33, 1072-1077.
- 818 44 T. P. T. Pham, C.-W. Cho and Y.-S. Yun, *Water Res.*, 2010, 44, 352-372.

- 45 M. Alvarez-Guerra and A. Irabien, Green Chem., 2011, 13, 1507-1516.
- 46 M. Petkovic, K. R. Seddon, L. P. N. Rebelo and C. Silva Pereira, *Chem. Soc. Rev.*, 2011, 40, 1383-1403.
- 47 P. Luis, J. Albo, C. Afonso and A. Irabien, in *Ecotoxicology around the Globe*, Nova
 Science Publisher, 2011, pp. 359-371.
- 48 M. Galiński, A. Lewandowski and I. Stepniak, *Electrochim. Acta*, 2006, **51**, 5567 5580.
- 49 H. Olivier-Bourbigou, L. Magna and D. Morvan, *Appl. Catal.*, *A*, 2010, **373**, 1-56.
- 50 J. P. Hallett and T. Welton, *Chem. Rev.*, 2011, **111**, 3508-3576.
- 828 51 J. F. Brennecke and B. E. Gurkan, J. Phys. Chem. Lett., 2010, 1, 3459-3464.
- 52 G. Puxty, R. Rowland, A. Allport, Q. Yang, M. Bown, R. Burns, M. Maeder and M. Attalla, *Environ. Sci. Technol.*, 2009, 43, 6427-6433.
- 831 53 G. T. Rochelle, *Science*, 2009, **325**, 1652-1654.
- 832 54 M. S. Jassim and G. T. Rochelle, *Ind. Eng. Chem. Res.*, 2006, 45, 2465-2472.
- 55 F. Karadas, M. Atilhan and S. Aparicio, *Energy Fuels*, 2010, 24, 5817-5828.
- 56 M. Ramdin, T. W. De Loos and T. J. H. Vlugt, *Ind. Eng. Chem. Res.*, 2012, 51, 8149-8177.
- 57 J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin and R. D.
 Noble, *Ind. Eng. Chem. Res.*, 2009, 48, 2739-2751.
- 58 B. Gurkan, B. F. Goodrich, E. M. Mindrup, L. E. Ficke, M. Massel, S. Seo, T. P.
 Senftle, H. Wu, M. F. Glaser, J. K. Shah, E. J. Maginn, J. F. Brennecke and W. F.
 Schneider, *J. Phys. Chem. Lett.*, 2010, 1, 3494-3499.
- 59 M. Hasib-ur-Rahman, M. Siaj and F. Larachi, *Chem. Eng. Process.*, 2010, 49, 313 322.
- 60 J. Albo, P. Luis and A. Irabien, *Ind. Eng. Chem. Res.*, 2010, 49, 11045-11051.
- 61 J. Albo, P. Luis and A. Irabien, *Desalin. Water Treat.*, 2011, 27, 54-59.
- 62 M. S. Shannon and J. E. Bara, Sep. Sci. Technol., 2012, 47, 178-188.
- 63 X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang and Y. Huang, *Energy Environ*.
 Sci., 2012, 5, 6668-6681.
- 848 64 Z. Zhao, H. Dong and X. Zhang, Chin. J. Chem. Eng., 2012, 20, 120-129.
- 849 65 D. R. Macfarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D.
- Elliott, J. H. Davis, M. Watanabe, P. Simon and C. A. Angell, *Energy Environ. Sci.*,
 2014, 7, 232-250.
- 66 S. D. Kenarsari, D. Yang, G. Jiang, S. Zhang, J. Wang, A. G. Russell, Q. Wei and M.
 Fan, *RSC Adv.*, 2013, 3, 22739-22773.
- 854 67 F. Jutz, J.-M. Andanson and A. Baiker, Chem. Rev., 2011, 111, 322-353.
- 855 68 E. Santos, J. Albo and A. Irabien, J. Membr. Sci., 2014, 452, 277-283.

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10:17:3

- 856 69 J. Albo, T. Yoshioka and T. Tsuru, Sep. Purif. Technol., 2014, 122, 440-448.
- 70 M. C. Buzzeo, R. G. Evans and R. G. Compton, *ChemPhysChem*, 2004, 5, 11061120.
- 859 71 D. S. Silvester and R. G. Compton, Z. Phys. Chem. (Muenchen, Ger.), 2006, 220, 1247-1274.
- 72 D. S. Silvester, E. I. Rogers, L. E. Barrosse-Antle, T. L. Broder and R. G. Compton,
 J. Braz. Chem. Soc., 2008, 19, 611-620.
- 863 73 P. Hapiot and C. Lagrost, *Chem. Rev.*, 2008, **108**, 2238-2264.
- 864 74 H. Liu, Y. Liu and J. Li, Phys. Chem. Chem. Phys, 2010, 12, 1685-1697.
- 75 L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O'Mahony, E. I. Rogers
 and D. S. Silvester, *Chem. Asian J.*, 2010, 5, 202-230.
- 867 76 C. D. Hubbard, P. Illner and R. Van Eldik, *Chem. Soc. Rev.*, 2011, 40, 272-290.
- 77 H. Ohno, ed. *Electrochemical Aspects of Ionic Liquids, 2nd Edition, John Wiley &*Sons, Inc, New Jersey, 2011.
- 78 D. R. MacFarlane, J. M. Pringle, P. C. Howlett and M. Forsyth, *Phys. Chem. Chem. Phys.*, 2010, 12, 1659-1669.
- 872 79 E. Santos, J. Albo and A. Irabien, *RSC Adv.*, 2014, 4, 40008-40018.
- 873 80 N. V. Rees and R. G. Compton, *Energy Environ. Sci.*, 2011, 4, 403-408.
- 874 81 Y. Oh and X. Hu, Chem. Soc. Rev., 2013, 42, 2253-2261.
- 875 82 E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazábal and J. Pérez-Ramírez,
 876 *Energy Environ. Sci.*, 2013, 6, 3112-3135.
- 83 S. Zhang, J. Sun, X. Zhang, J. Xin, Q. Miao and J. Wang, *Chem. Soc. Rev.*, 2014, 43, 7838-7869.
- 879 84 H. Yang, Y. Gu, Y. Deng and F. Shi, Chem. Commun., 2002, 274-275.
- 85 M. Feroci, M. Orsini, L. Rossi, G. Sotgiu and A. Inesi, *J. Org. Chem.*, 2007, 72, 200 203.
- 86 H. Wang, G. Zhang, Y. Liu, Y. Luo and J. Lu, *Electrochem. Commun.*, 2007, 9, 2235-2239.
- 87 G.-Q. Yuan, H.-F. Jiang, C. Lin and S.-J. Liao, *Electrochim. Acta*, 2008, 53, 2170-2176.
- 886 88 G.-Q. Yuan, H.-F. Jiang and C. Lin, *Tetrahedron*, 2008, **64**, 5866-5872.
- 887 89 L. Zhang, D. Niu, K. Zhang, G. Zhang, Y. Luo and J. Lu, *Green Chem.*, 2008, 10, 202-206.
- 90 D. Yuan, C. Yan, B. Lu, H. Wang, C. Zhong and Q. Cai, *Electrochim. Acta*, 2009,
 54, 2912-2915.
- 91 X. Yuan, B. Lu, J. Liu, X. You, J. Zhao and Q. Cai, *J. Electrochem. Soc.*, 2012, 159, E183-E186.

- 893 92 D. Niu, J. Zhang, K. Zhang, T. Xue and J. Lu, Chin. J. Chem., 2009, 27, 1041-1044.
- 93 Y. Hiejima, M. Hayashi, A. Uda, S. Oya, H. Kondo, H. Senboku and K. Takahashi,
 Phys. Chem. Chem. Phys., 2010, 12, 1953-1957.
- 94 X. Y. Wang, S. Q. Liu, K. L. Huang, Q. J. Feng, D. L. Ye, B. Liu, J. L. Liu and G.
 H. Jin, *Chin. Chem. Lett.*, 2010, 21, 987-990.
- 898 95 Q. Feng, K. Huang, S. Liu and X. Wang, *Electrochim. Acta*, 2010, **55**, 5741-5745.
- 96 M. Feroci, I. Chiarotto, M. Orsini, G. Sotgiu and A. Inesi, *Electrochim. Acta*, 2011,
 56, 5823-5827.
- 901 97 C. Yan, B. Lu, X. Wang, J. Zhao and Q. Cai, J. Chem. Technol. Biotechnol., 2011, .
- 902 98 H. Wang, L.-X. Wu, Y.-C. Lan, J.-Q. Zhao and J.-X. Lu, *Int. J. Electrochem. Sci.*,
 903 2011, 6, 4218-4227.
- 904 99 Q. Feng and S. Liu, Asian J. Chem., 2011, 23, 4823-4826.
- 905 100 S.-F. Zhao, L.-X. Wu, H. Wang, J.-X. Lu, A. M. Bond and J. Zhang, *Green Chem.*,
 906 2011, 13, 3461-3468.
- 907 101 Q. Feng, S. Liu, X. Wang and G. Jin, *Appl. Surf. Sci.*, 2012, **258**, 5005-5009.
- 908 102 F. Liu, S. Liu, Q. Feng, S. Z. Zhang and P. Bu, *Int. J. Electrochem. Sci.*, 2012, 7, 4381-4387.
- 910 103 L.-X. Wu, H. Wang, Z.-Y. Tu, B.-B. Ding, Y. Xiao and J.-X. Lu, *Int. J. Electrochem. Sci.*, 2012, 7, 11540-11549.
- 912 104 L.-X. Wu, H. Wang, Y. Xiao, Z.-Y. Tu, B.-B. Ding and J.-X. Lu, *Electrochem.* 913 *Commun.*, 2012, 25, 116-118.
- 914 105 R. Matthessen, J. Fransaer, K. Binnemans and D. E. D. Vos, *RSC Adv.*, 2013, 3, 4634-4642.
- 916 106 B. Lu, X. Wang, Y. Li, J. Sun, J. Zhao and Q. Cai, J. CO2 Util., 2013, 3-4, 98-101.
- 917 107 S.-F. Zhao, M. Horne, A. M. Bond and J. Zhang, *Green Chem.*, 2014, 16, 2242 918 2251.
- 919 108 D. D. Yuan, B. B. Yuan, H. Song, R. X. Niu and Y. X. Liu, *Advanced Materials* 920 *Research*, 2014, **953-954**, 1180-1183.
- 921 109 I. Garcia-Herrero, M. Alvarez-Guerra and A. Irabien, J. Chem. Technol.
 922 Biotechnol., 2014, DOI: 10.1002/jctb.4445.
- 110 I. Garcia-Herrero, M. Alvarez-Guerra and A. Irabien, J. Chem. Technol.
 Biotechnol., 2014, DOI: 10.1002/jctb.4605.
- 925 111 G. Zhao, T. Jiang, B. Han, Z. Li, J. Zhang, Z. Liu, J. He and W. Wu, J. Supercrit.
 926 Fluids, 2004, 32, 287-291.
- 927 112 D. Chu, G. Qin, X. Yuan, M. Xu, P. Zheng and J. Lu, *ChemSusChem*, 2008, 1, 205 928 209.
- 113 B. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. A.
 Kenis and R. I. Masel, *Science*, 2011, **334**, 643-644.

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10:17:31

931 932	114 B. A. Rosen, W. Zhu, G. Kaul, A. Salehi-Khojin and R. I. Masel, <i>J. Electrochem. Soc.</i> , 2013, 160 , H138-H141.
933	115 M. Feroci, I. Chiarotto, S. Vecchio Ciprioti and A. Inesi, Electrochim. Acta, 2013,
934	109 , 95-101.

- 116 A. Salehi-Khojin, H.-R. M. Jhong, B. A. Rosen, W. Zhu, S. Ma, P. J. A. Kenis and
 R. I. Masel, *J. Phys. Chem. C*, 2013, 117, 1627-1632.
- 117 B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B. A. Rosen, R. Haasch, J. Abiade,
 A. L. Yarin and A. Salehi-Khojin, *Nat. Commun.*, 2013, 4.
- 118 J. L. Dimeglio and J. Rosenthal, J. Am. Chem. Soc., 2013, 135, 8798-8801.
- 119 W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A.
 Peterson and S. Sun, *J. Am. Chem. Soc.*, 2013, 135, 16833-16836.
- 942 120 J. Shi, Y. J. Jia, F. Shi and X. C. Wang, *Advanced Materials Research*, 2013, 781 943 784, 2573-2576.
- 121 J. Shi, F. Shi, N. Song, J.-X. Liu, X.-K. Yang, Y.-J. Jia, Z.-W. Xiao and P. Du, J.
 Power Sources, 2014, 259, 50-53.
- 122 I. Ganesh, P. P. Kumar, I. Annapoorna, J. M. Sumliner, M. Ramakrishna, N. Y.
 Hebalkar, G. Padmanabham and G. Sundararajan, *Appl. Surf. Sci.*, 2014, 293, 229247.
- 949 123 J. D. Watkins and A. B. Bocarsly, ChemSusChem, 2014, 7, 284-290.
- 124 D. C. Grills, Y. Matsubara, Y. Kuwahara, S. R. Golisz, D. A. Kurtz and B. A.
 Mello, *J. Phys. Chem. Lett.*, 2014, 5, 2033-2038.
- 125 J. Medina-Ramos, J. L. Dimeglio and J. Rosenthal, J. Am. Chem. Soc., 2014, 136,
 8361-8367.
- 126 F. Zhou, S. Liu, B. Yang, P. Wang, A. S. Alshammari and Y. Deng, *Electrochem. Commun.*, 2014, 46, 103-106.
- 956 127 D. Quezada, J. Honores, M. García, F. Armijo and M. Isaacs, *New J. Chem.*, 2014,
 957 38, 3606-3612.
- 128 M. Asadi, B. Kumar, A. Behranginia, B. A. Rosen, A. Baskin, N. Repnin, D.
 Pisasale, P. Phillips, W. Zhu, R. Haasch, R. F. Klie, P. Král, J. Abiade and A.
 Salehi-Khojin, *Nat. Commun.*, 2014, 5.
- 129 L. Sun, G. K. Ramesha, P. V. Kamat and J. F. Brennecke, *Langmuir*, 2014, 30, 6302-6308.
- 963 130 M. Feroci, I. Chiarotto, G. Forte and A. Inesi, J. CO2 Util., 2013, 2, 29-34.
- 131 B. A. Rosen, J. L. Haan, P. Mukherjee, B. Braunschweig, W. Zhu, A. SalehiKhojin, D. D. Dlott and R. I. Masel, *J. Phys. Chem. C*, 2012, 116, 15307-15312.
- 966 132 C. Oloman and H. Li, ChemSusChem, 2008, 1, 385-391.
- 967 133 L. E. Barrosse-Antle and R. G. Compton, Chem. Commun., 2009, 3744-3746.
- 968 134 B. C. M. Martindale and R. G. Compton, Chem. Commun., 2012, 48, 6487-6489.

969 135 L. L. Snuffin, L. W. Whaley and L. Yu, J. Electrochem. Soc., 2011, 158, F155970 F158.

971

Ionic liquids in the electrochemical valorisation of CO₂

Manuel Alvarez-Guerra, Jonathan Albo, Enrique Alvarez-Guerra, Angel

Irabien

Tables

Table 1. Codes and names used for ILs in this paper.

Table 2. Studies about electrosynthesis of valuable compounds using CO_2 as reactant that involve the use of ILs.

Table 3. Studies about electroreduction of CO_2 to obtain value-added products that involve the use of ILs.

Table 1. Codes and names used for ILs in this paper.

Code	Name
[AcMIm][Cl]	1-acetic acid-3-methylimidazolium chloride
[ApMIm][Br]	1-(3-aminopropyl)-3-methylimidazolium bromide
[BMIm][BF ₄]	1-butyl-3-methylimidazolium tetraflouroborate
[BMIm][Br]	1-butyl-3-methylimidazolium bromide
[BMIm][CF ₃ SO ₃]	1-butyl-3-methyl-imidazolium trifluoromethanesulfonate
[BMIm][Cl]	1-butyl-3-methylimidazolium chloride
[BMIm][OH]	1-butyl-3-methylimidazolium hydroxide
[BMIm][OTf] [BMIm][PF ₆]	1-butyl-3-methylimidazolium trifluoromethanesulfonate
	1-butyl-3-methylimidazolium hexafluorophosphate
[BMMIm][BF ₄]	1-butyl-2,3-dimethylimidazolium tetrafluoroborate
[BMMIm][Cl]	1-butyl-2,3-dimethylimidazolium chloride
[BMPyrd][NTf ₂]	1-butyl-1-methylpyrrolidinium bis-
	(trifluoromethylsulfonyl)imide
[BMPyrr][NTf ₂]	1-butyl-3-methylpyrrolidinium
	bis(trifluoromethylsulfonyl)imide
[BPy][BF ₄]	butylpyridinium tetrafluoroborate
[BzMIm][Cl]	1-benzyl-3-methyl imidazolium chloride
[DEME][TFSA]	N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium
	bis- (tri-fluoromethanesulfonyl)amide
[EMIm][BF ₃ Cl]	1-ethyl-3-methylimidazolium trifluorochloroborate
[EMIm][BF ₄]	1-ethyl-3-methylimidazolium tetraflouroborate
[EMIm][Br]	1-ethyl-3-methylimidazolium bromide
[EMIm][EtSO ₄]	1-ethyl-3-methylimidazolium ethylsulfate
[EMIm][NTf ₂]	1-ethyl-3-methylimidazolium
	bis(trifluoromethylsulfonyl)imide
[EMIm][TCB]	1-ethyl-3-methylimidazolium tetracyanoborate
[EMIm][TFA]	1-ethyl-3-methylimidazolium trifluoroacetate
[MMMIm][NTf ₂]	trimethylimidazolium bis(trifluoromethylsulfonyl)imide
[MOEMIm][BF ₄]	1-(2-methoxyethyl)-3-methylimidazolium
	tetrafluoroborate
[MPPyrr][NTf ₂]	1-methyl-1-propylpyrrolidinium
	bis(trifluoromethylsulfonyl)imide
$[TBA][BF_4]$	tetrabutylammonium tetrafluoroborate
[TBA][Br]	tetrabutylammonium bromide
[TBA][Cl]	tetrabutylammonium chloride
[TBA][I]	tetrabutylammonium iodide
$[TBA][PF_6]$	tetrabutylammonium hexafluorophosphate
[TEA][BF ₄]	triethylammonium tetrafluoroborate
[TMPA][TFSA]	N,N,N-trimethyl- N-propylammonium bis- (tri-
	fluoromethanesulfonyl)amide

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10:17:31.

59			Ene	ergy & Environmental	Science		
Table 2. S	Studies about electr	osynthesis of val	uable compounds t	using CO_2 as reactant that	at involve the use of IL	_S	
Ref.	Substrates	ILs	Products of electrochemical synthesis	Electrolysis operating conditions	Electrodes	Cell	Other observations
Yang et al. 2002 ⁸⁴	Epoxides (propylene oxide, epichlorohydrin, styrene oxide) and CO ₂	[BMIm][BF ₄], [EMIm][BF ₄], [BMIm][PF ₆], [BPy][BF ₄].	Cyclic organic carbonates	Ambient T & P. Reaction time typically 24 h. Continuous bubbling of CO ₂ throughout the reaction	Cu working electrode. Mg or Al rod as sacrificed anode		Best performance was achieved with [BMIm][BF ₄] using propylene oxide a substrate (92% conversion, 100% selectivity, 87% current efficiency)
59 Table 2. S Ref. Yang et al. 2002 ⁸⁴ Feroci et al. 2007 ⁸⁵	Amines and CO ₂ . C ₂ H ₅ I was added as an alkylating agent	[BMIm][BF ₄]	Organic Carbamates (and alkylated amines as byproducts)	1 atm CO ₂ , 55°C Continuous bubbling of CO ₂	Cathode: Cu, Pt or Ni. Anode: Pt. Ag wire as quasireference electrode. Spiral electrodes, apparent area 0.8 cm ²	Divided glass cell (volume of catholyte & anolyte 1 mL). Anolyte and catholyte were separated through a G-5 glass septum.	Maximum chemical yield of carbamat (80%) was obtained using a Pt cathode
Wang et al. 2007 ⁸⁶	Activated olefins (e.g. ethyl cinnamate) and CO ₂	[BMIm][BF ₄]	Monocarboxylic acids (principal product), accompanied by saturated esters.	1 atm CO ₂ ; 25, 40, 50 or 60°C	Metallic ring cathode: stainless steel, Ti, Cu or Ni. Mg rod sacrificial anode.	Undivided cell	Optimal temperature was 50°C. React yields and selectivity were particularly dependent on the nature of the electrohighest yield of monocarboxylic acid: $(41\%) > Ti (35\%) > Cu (30\%) > Ni (25\%) = Cu (30\%) = Cu (30\%)$
Yuan et al. 2008 ⁸⁷	Aryl-substituted alkenes (mainly styrene and derivatives) and CO_2	Mixture of [TBA][Br] and dried DMF solvent	2-arylsuccinic acids	4 MPa CO ₂ pressure, room temperature	Cathode: Ni plate (2 cm x 3 cm x 0.02 cm) Anode: Al plate (2 cm x 3 cm x0.05 cm). Other cathodes (Pt, Cu, Cu-Sn alloy) and anodes (Mg or Zn) were also tested.	High-pressure stainless-steel undivided cell	Moderate to good yields (50-87%) and selectivity (98%) were achieved. Amo different cathodes and anodes investig the optimal results for reaction of styr and CO_2 were with Ni (or Pt, but it is less available than Ni) as cathode and Al as anode (selectivity 98%, yield 85
Yuan et al. 2008 ⁸⁸	Arylacetylenes (phenylacetylene and derivatives) and CO ₂	Mixture of [TBA][Br] and dried DMF solvent	Aryl-maleic anhydrides and 2- arylsuccinic acids	3 MPa CO ₂ pressure, room temperature	Cathode: Ni sheet (2 cm x3 cm x0.02 cm) Anode: Al plate (2 cm x3 cm x0.05 cm). Other cathodes (Pt, Ag, Cu, Zn, stainless	High-pressure stainless-steel undivided cell	The products were obtained with excert total yields (82-94%). For reaction of phenylacetylene and CO ₂ , Ni cathode best results, with excellent total yields 93% (with Al anode) and 87% (with M anode).

Zhang et al. 2008 ⁸⁹	Alcohols and CO ₂ . Alkyl iodides (CH ₃ I or C ₂ H ₅ I) were added as alkylating agent	[BMIm][BF ₄]	Organic carbonates (e.g. DMC)	1 atm CO ₂ ; 25, 35, 45, 55, 65 or 75°C. Continuous bubbling of CO ₂	steel, Cu-Sn alloy) and anodes (Mg) were also tested. Cathode: Cu, Ag, stainless steel, Ti or Ni (8.0cm ²) Mg sacrificial anode Reference electrode:	Undivided glass cell	The yield of DMC decreased in the order Cu \approx Ag > SS >Ti > Ni. Best yields with Cu and Ag cathodes (73 and 74% of DMC), at an optimum temperature of 55°C.
Yuan et al. 2009 ⁹⁰	Methanol and CO ₂ . CH ₃ OK was added		DMC	Ambient pressure, temperature in the	Ag/AgI electrode Cathode and anode: both Pt	Undivided four-neck	Primary and secondary alcohols were converted in good yields, whereas tertiary alcohol and phenol were unreactive. [BMIm][Br] gave the best, but low (3.9%) yield of DMC after 48 h of reaction time
	as co-catalyst	[BMIm][Br], [EMIm][Br], [BMIm][Cl], [BMIm][OH], [BMIm][BF ₄], [EMIm][BF ₄].		interval 273-323 K. Solution was saturated with CO_2 by gentle bubbling (ca. 2–3 bubbles s ⁻¹). The reaction was carried out for 48 h at 5.5V.		bottle cell	and at 303 K. This low yield was attributed to the bulk hydrogen production in the cathode. CH_3OK was found to play a key role in the synthesis of DMC, enhancing the reduction of CO_2 .
Yuan et al. 2012 ⁹¹	Methanol and CO ₂	[BzMIm][Cl]. Other ILs used: [BMIm][Cl], [BMIm][OH], [BMIm][Br] [BMIm][BF4], [EMIm][BF4], [EMIm][Br].	DMC	Atmospheric pressure, temperature in the interval 283-313 K. Solution was saturated with CO_2 by gentle bubbling (ca. 2–3 bubbles s ⁻¹ , about 5.0- 7.5 mg min ⁻¹). Electrolysis was carried out at 4.0V constant potential for 60 h.	were also studied: Pt, glass-carbon and Cu. Working electrode surface area= 0.2826 cm ² .		Maximum yield (3.77%) and selectivity (51.8%) for DMC were obtained using [BzMIm][Cl], with graphite cathode, after 60 h at 293 K. The suggested reaction mechanism was totally different from that proposed in their previous work ⁹⁰ : "electrochemical synthesis of DMC is mainly based on the activation of methanol on the electrode surface, and CO ₂ merely participates in the chemical reaction with the methoxide anion adsorbed on the electrode surface"
Niu et al. 2009 ⁹²	Benzyl chloride and CO ₂	[BMIm][BF ₄]	Phenylacetic acid (principal product), accompanied by dimer 1,2- biphenylethane.	0.1 MPa CO ₂ pressure; 30, 40, 50, 60 or 70°C	Cathode: Ag cylinder (8 cm ²). Mg rod sacrificial anode. Other cathodes (Cu, Ni) and anodes (Al, Zn) were also tested.	Undivided cell	The effect of different electrodes was investigated: much higher yields with Ag cathode (45%) than with Cu and Ni (5 and 7%). No differences observed among the use of Mg, Al and Zn as sacrificed anode. Best temperature was 50°C.

59		Energy & Environmental Science							
59 Hiejima et al. 2010 ⁹³ Wang et al. 2010 ⁹⁴	α - chloroethylbenzen e and high- pressure CO ₂	[DEME][TFSA]	2-phenylpropionic acid	0.1, 3, 5 or 8 MPa pressure, 25 or 40 °C	Working electrode: Pt plate (2x1 cm ²). Counter electrode: Mg rod (diameter 6.4 mm) sacrificial anode. Quasi-reference electrode: Pt wire (diameter 0.5 mm)	High-pressure vessel	Current efficiency (low under ambient conditions) drastically increased with temperature and pressure (maximum 65% at 40°C and 8 MPa), which was mainly explained by the increase of the diffusion coefficient of the reactant in the IL. Experiments with other ILs gave worse results: the reaction system did not work in [TMPA][TFSA], and the yields of undesired byproducts increased appreciably in [BMIm][TFSA]		
Wang et al. 2010 ⁹⁴	CO ₂ . At the end of electrolysis, methanol first, and finally 3-fold molar CH ₃ I, were added.	[BMIm][BF ₄]	DMC	Ambient pressure; 20, 30, 40, 50, 60 or 70 °C.	Working electrode: silver-coated nanoporous copper (NPC-Ag). Ag or NPC cathode material were also tested but gave remarkable lower yield of DMC. Counter electrode: Pt foil. Reference: Ag wire	Undivided cell	80% yield of DMC was obtained under the optimal reaction conditions (temperature= 50°C, -1.7V vs. Ag).		
Feng et al. 2010 ⁹⁵	2-amino-5- bromopyridine and CO ₂ . PhCH ₂ Br was used as esterification agent; 6-ANA was finally obtained by hydrogenation of the ester in CH ₃ OH with 10% Pd/C catalyst	[BMIm][BF ₄]	6-aminonicotinic acid (6-ANA)	Ambient pressure, 25, 50 or 75 °C. CO ₂ was bubbled for 30 min after bubbling Ar gas for 30 min.	Ringed Ag cathode (area 3 cm ²). Sacrificial Mg rod anode (diameter 0.5 cm). Reference: Ag wire. Cu, Ni and stainless steel were also investigated as cathode, and Al as anode.	Undivided cell	6-ANA was obtained in 75% yield and 100% selectivity under optimised conditions (Ag cathode/ Mg anode, 50°C, -1.9V vs. Ag., 0.01 mol L ⁻¹ of substrate concentration, 2.0 F mol ⁻¹ passed charge)		
Feroci et al. 2011 ⁹⁶	Amines, CO_2 and O_2 . C_2H_5I was also added as alkylating agent.		Organic carbamates	60°C. Continuous O ₂ and CO ₂ bubbling. Time of electrolyses between 3.5 and 10 h.	Cathode (surface area ca. 1 cm ²): C, Cu, Pt, Ni, Pb. Anode (0.8 cm ²): flat Pt spiral (99.9%). Ag quasi reference	Two compartment home-made glass cell. The anolyte (1 mL) and catholyte	Superoxide ion O_2^{-1} is electrochemically generated by selective reduction of O_2 , which reacts with CO_2 yielding the carboxylating $C_2O_6^{2^2}$ anion. Good electrochemical efficiency with a reasonable time of electrolysis (4 h) was		

					electrode.	(2 mL) were separated by a glass disk	achieved in [BMIm][BF ₄] using a Cu cathode.
Yan et al. 2011 ⁹⁷	Methanol, CO ₂ and propylene oxide (PO)	[BMIm][Br]	DMC	Ambient pressure, temperature in the interval 293-313 K. Solution was saturated with CO ₂ by gentle bubbling (ca. 2–3 bubbles s ⁻¹). Electrolysis time: 48 h, supplying 5.5V via the 2 electrodes	Cathode and anode: both Pt. Graphite and glass- carbon electrodes were also used, achieving worse results	Undivided four-neck cell	The effect of various conditions was studied. Under the optimal operation conditions for the system (303K, reaction time 48h, methanol/PO molar ratio 11.5:1, and amount of IL 0.059 mol), the conversion and yield (calculated on the basis of PO) were 97% and 75.5%, respectively, with a selectivity to DMC of 77.8%.
Wang et al. 2011 98	Diols (mainly 1,2- butanediol) and CO_2 CH ₃ I and anhydrous K ₂ CO ₃ were added to esterify the reaction mixture.	[BMIm][BF ₄]. [BMIm][PF ₆] was also studied, with worse results.	Cyclic organic carbonates (mainly butylene carbonate)	Mild conditions: 1 atm CO ₂ ; 40, 45, 50, 55 or 60°C. Potentiostatic electrolysis	Metallic ring cathode: Ni, Ag or Cu. Mg rod sacrificial anode.	Undivided cell	The influence of reaction conditions (electrode materials, electrolysis potential, temperature, diol concentration and composition of IL) were investigated. Highest yield obtained at optimized conditions was 12% carbonate, achieved with Ni cathode, at 50°C, -1.7 V electrolysis potential, and using 1,2-butanediol concentration of 0.10 mol L ⁻¹ . Carbonate yield maintained ca. 12 % for 6 cycles of reuse of IL.
Feng & Liu 2011 99	CO ₂ . At the end of electrolysis, methanol (0.12M) first, and finally 5 fold molar CH ₃ I, were added.	[BMIm][BF ₄]	DMC	Potentiostatic electrolyses at 55°C until 1 F of charge passed. Prior to every experiment, the solution was bubbled with CO_2 under stirring for 0.5 h to be saturated. Continuous CO_2 flow was kept throughout the electrolyses.	Working electrode: ringed Cu electrode (area =5 cm ²). Counter electrode: Mg rod (d=0.5 cm), placed down the middle of the ringed Cu cathode. Reference electrode: $Ag^+/AgCl$	with a gas inlet and	The effect of the applied potential on the Faradaic efficiency was studied in the range -1.8V to -2.3V. Maximum Faradaic efficiency and yield of DMC was 72.3% at - 1.9V.
Zhao et al 2011 ¹⁰⁰	Acetophenone and CO ₂	[BMIm][BF ₄]	1-phenylethanol	Potentiostatic bulk electrolysis at 25°C. A slow stream of CO_2 (to provide a constant supply of the reactant)	Glassy carbon beaker cathode; Mg sacrificial anode; silver wire quasi- reference electrode	Undivided cell	Unexpectedly, 97% yield of 1- phenylethanol (with 65% conversion of acetophenone) was obtained, instead of the anticipated 2-hydroxy-2-phenylpropionic acid

59			En	was applied during the electrolysis (P=1 atm). Duration of electrolysis was about 10 h.	Science		
Feng et al. 2012 ¹⁰¹ Liu et al. 2012 ¹⁰²	CO ₂ . At the end of electrolysis, methanol (0.12M) first, and finally 3 fold molar CH ₃ I, were added.	[BMIm][BF ₄]	DMC	Potentiostatic electrolyses at -2.2 V (vs. Ag) at 25°C until 1 F of charge passed. Prior to every experiment, the solution was bubbled with CO ₂ under stirring for 30 min to be saturated	Working electrodes: 1) Pure Pt. 2) NPC-Pt film (area=1cm ²) (i.e. Three-dimensional porous nanostructure composite electrode of copper skeletons and platinum shells, NPC-Pt) Counter electrode: Mg rod (d=0.5cm). Ag wire was used as quasi-reference electrode	Undivided cell with a gas inlet and outline	Cyclic voltammogram studies indicated th nanoporous structure of NPC-Pt electrode can increase the active centers where the reduction of CO_2 occurred, compared to pure Pt electrode. Pure Pt and NPC-Pt electrodes were compared in potentiostati electrolyses: higher and more stable curre density (3.2 mA cm ⁻²) obtained at NPC-Pt higher yield of DMC finally formed on NPC-Pt (81% vs. 64% on pure Pt); current efficiency kept constant at 83% on the NPC-Pt after 5 cycles, compared to 64% of the pure Pt.
Liu et al. 2012 ¹⁰²	CO ₂ . After electrolysis, methanol, and finally CH ₃ I as alkylation agent (3-fold excess), were added.	[BMIm][BF ₄]	DMC	Mild conditions; 30, 40, 50, 60 or 70 °C. Prior to each test, [BMIm][BF ₄] was bubbled with CO ₂ for 30 min to be saturated. Constant potential was applied (- 1.5, -1.7, -1.9 or -2.1 V) and continuous CO ₂ flow was kept throughout the tests	In electrode (area= 1 cm ²) Magnesium rod (d=0.5 cm) sacrificial anode	Standard undivided glass cell	The influence of temperature, working potential and charge passed on the yield DMC was studied. Maximum yield was 76%, obtained under a charge consumpti of 1.0 F mol ⁻¹ , with a potential of -1.7V a at 40°C.
Wu et al. 2012a ¹⁰³	CO_2 and diols (mainly styrene glycol). CH_3I and anhydrous K_2CO_3 were then added to esterify the reaction mixture.	[BMIm][BF ₄]. Other alkylimidazoliu m ILs were also studied, with worse results.	Cyclic carbonates (mainly styrene carbonate)	Mild reaction conditions: 1 atm CO ₂ and temperatures from 30 to 60°C. Galvanostatic conditions	Working electrode: Ti, Cu, Stainless steel (SS), Pt, Ni, glassy carbon (GC)	Two- compartment cell divided by cation- exchange membrane	The synthesis of the cyclic carbonates from CO_2 and diols was suggested to be carried out via electrogenerated N-heterocyclic carbenes. Best yield of 60% for styrene carbonate (based on styrene glycol) was obtained using Ti, at 40°C, when the past charge reached 1.5 F mol ⁻¹ , at current density of 18.9 mA cm ⁻² , and with stirring time of 2h. The yield decreased depending on the cathode material in this order:

<u>г</u>					1	1	
XX7 (1	00 1111		D: 11 1		XX7 1 1 1 1 1	т	Ti>Cu>SS>Pt>Ni>GC.
	CO ₂ and alcohols (mainly benzyl	[BMIm][BF ₄]. Other ILs	Dialkyl carbonates	Mild reaction conditions: 1 atm CO ₂	Working electrode:	Two-	The dialkyl carbonates were synthesised via
					Ti, Cu, Stainless steel	compartment	electrogenerated N-heterocyclic carbenes
	alcohol). CH ₃ I and	([BMIm][PF ₆]	(mainly benzyl	and temperatures from 20 to 60°C.	(SS), Pt, Ni	cell	(NHCs), where the IL acted as NHC
	anhydrous K ₂ CO ₃	and	methyl carbonate)	Galvanostatic conditions			precursor. Best results for synthesis of
	were then added to esterify the	[BMMIm][BF ₄]) were also		Galvanostatic conditions			benzyl methyl carbonate from CO ₂ and benzyl alcohol (92% conversion and 96%
	reaction mixture.	studied, with					selectivity) were obtained using Ti, at 40°C,
	reaction mixture.	worse results.					with 2.0 F mol ⁻¹ of charge passed, at current
		worse results.					density of 18.9 mA cm ⁻² , and with stirring
							time of 2.5 h. Under these optimised
							conditions, other primary alcohols were
							converted into the corresponding dialkyl
							carbonates with conversions ~90% and
							selectivities 95-97%; secondary alcohols
							were also converted into dialkyl carbonates
							with selectivities 93-95% but low
							conversions (24-27%); and for tertiary
							alcohol and phenol, no carbonate was
							detected.
Matthesen	CO ₂ , DMF or	[TBA][Br],	Dicarboxylated	Galvanostatic	Ni (or Ta, Pt, Cu, SS)	Stainless-steel	A yield of 79% and a current efficiency of
et al. 2013	MeCN as solvent,	[TBA][I] or	products, fatty	experiments at room	cylindrical cathode		53% were achieved by at room temperature
105	and conjugated	$[TBA][PF_6].$	triacid methyl	temperature.	mesh (wet surface	cell	by supplying 3 F mol ⁻¹
	linoleic acid	[MPPyrr][NTf ₂]	esters (e.g. 9,12-	Atmospheric pressure or	area of 10 cm ²).		at 3 mÅ cm ⁻² to a 0.2 mol dm ⁻³
	methyl esters	& [BMIm][BF ₄]	Carboxy-10-	CO_2 pressure of 3, 5, 10	Central sacrificial Mg		concentration of CLAME,
	(CLAME). Other	were also used as	octadecenoic acid	or 20 bar. CO2 was	or Al anode rod (wet		while bubbling CO ₂ at atmospheric
	different	solvents for the	trimethyl ester)	charged into the cell to	surface area of 4 cm^2)		pressure, at the best experimental
	conjugated dienes	electrocarboxylat		the desired pressure or			parameters found for the reaction: Ni as
	were also studied	ion of CLAME,		continuous bubbling was			cathode, Mg as anode, MeCN as solvent
		but gave no		kept during the whole			and TBABr as supporting electrolyte.
-		product		test.			
Lu et al.	Methanol and CO ₂	[ApMIm][Br].	DMC	Ambient conditions.	Graphite as cathode	Undivided	Best performance (2.5% yield and 94.5%
2013 106		Other ILs used:		Atmospheric pressure,	and platinum as	four-neck	selectivity for DMC after 60 h) was
		[BMIm][OH],		temperature in the	anode. Other cathodes	bottle cell	obtained with graphite using [ApMIm][Br],
		[BMIm][Br]		interval 0-50°C. Solution	were also studied: Pt,		which was attributed to the basicity of the
		$[BMIm][BF_4],$		was saturated with CO ₂	glass-carbon and Cu.		functionalized IL. Increasing temperature
		[AcMIm][Cl]		by gentle bubbling (ca. $2 + 2 + 1 + 1 + 2 = -1$)			beyond 20°C and reaction time beyond 60h
				2-3 bubbles s ⁻¹).			decreased conversion and selectivity.
				Electrolysis was carried			

59	Energy & Environmental Science										
				out at 3.5V cell voltage for 60 h.							
Zhao et al. 2014 ¹⁰⁷	Acetophenone and CO ₂	[BMMIm][BF ₄] or [BMPyrd][NTf ₂]	2-hydroxy-2- phenylpropionic acid	Potentiostatic bulk electrolysis at 22°C with [BMPyrd][NTf ₂] or 50°C with [BMMIm][BF ₄]. A constant stream of CO ₂ flowed through the cell during the electrolysis (P=1 atm)	Glassy carbon cylindrical tube cathode; Mg sacrificial anode; silver wire quasi- reference electrode	Undivided cell	A 98% yield of 2-hydroxy-2- phenylpropionic acid was obtained [BMPyrd][NTf ₂]; water promoted undesirable reactions. Using dry [BMMIm][BF ₄] the pro yields were 15% 2-hydroxy-2- phenylpropionic, 60% 1-phenyleth 25% dimers.				
59 Zhao et al. 2014 ¹⁰⁷ Yuan et al 2014 ¹⁰⁸	CO ₂ , Methanol and propylene oxide (PO)	[BMIm][Br]	DMC	Solution was saturated with CO_2 by gentle bubbling (ca. 2–3 bubbles s ⁻¹) at ambient pressure after blowing nitrogen for 30 min. Different potentials (from 5 to 7.5V) and different temperature (273 to 313K) were used. The effect of reaction time and of the amount of IL were also studied.	Pt electrodes	One compartment cell	The optimum values of cell voltag temperature were 5.5V and 303K. DMC increased rapidly with react achieved a maximum (37.8%), at 4 beyond 48h, it fell sharply.				
Garcia- Herrero et al. 2014a	Methanol and CO ₂ . CH ₃ OK was added as co-catalyst	[BMIm][Br]. Tests with [EMIm][EtSO4] were also done with worse results.	DMC	CO ₂ was bubbled into the electrolyte of the working compartment until saturation. Electrolytes were circulated with a flow rate of 20 mL min ⁻¹ . A 1.2 V potential between working and reference electrodes was applied for up to 48h at 303K. The influence of the composition of the	Pt/Nb plate (99.5% Pt) electrodes with a surface area of 10 cm ² each. Leak-free Ag/AgCl 3.4 M KCl reference electrode.	Flow-by filter- press cell. Anodic and cathodic compartments separated by a Nafion 117 cation exchange membrane	First study of CO ₂ electrovalorisat DMC using a divided cell. The simultaneous presence of both CF [BMIm][Br] was found to be requ obtain DMC. The results suggest [BMIm][Br] is not merely an elec but it plays a catalytic role in the electrosynthesis. Best results were obtained with 59 15% [BMIm][Br] and 80% metha %). The evolution of the DMC co time revealed that after 18h it no 1 increased but fluctuated around 13				

				also studied.			CO_2) was obtained.
Garcia-	Methanol and CO ₂ .	[BMIm][Br]	DMC	CO ₂ was bubbled until	Pt/Nb plate (99.5%	Flow-by filter-	The use of constant bubbling and molecular
Herrero et	CH ₃ OK was added				Pt) electrodes with a		sieves only gave slight improvements
al. 2014b	as co-catalyst			configuration, tests were	surface area of 10 cm ²	two different	during the first hours. A similar DMC
110				also carried out using	each.	configurations:	concentration to that achieved with the
				constant CO ₂ bubbling	Leak-free Ag/AgCl	undivided cell	Nafion membrane was obtained after 48 h
				and molecular sieves 3A	3.4 M KCl reference	or divided cell	using the best performing anion exchange
				as dehydrating agents.	electrode.	with anodic	membrane tested. Regardless of which
				Electrolytes were		and cathodic	membrane is used, an additional resistance
				circulated with a flow		compartments	seems to be introduced. A final
				rate of 20 mL min ⁻¹ . 1.2		separated by 6	concentration of 85 mmol L ⁻¹ (yield of
				V between working and		different anion	70.71% based on CO_2) was obtained up to
				reference electrodes		exchange	48 h without membrane, which involves a
				(average cell potential of		membranes.	six-fold increase regarding the previous
				3.5V) was applied for up			work with Nafion membrane.
				to 48h at 303K.			

Notes: [DMF]: N,N-Dimethylformamide DMC: dimethylcarbonate H[NTf₂]: acid bis(trifluoromethane)-sulfonimide MeCN: acetonitrile

Ref.	ILs	Products	Electrolysis operating	Electrodes	Cell	Other observations
			conditions			
Zhao et al. 2004	[BMIm][PF ₆],	Syngas ($CO + H_2$) and trace amount of formic acid	Supercritical CO ₂ was charged into the cell at different high pressures (in the range $7.3 - 10.6$ MPa). Electrolyses were conducted galvanostatically with a current density of 20 mA cm ⁻¹ at 318.2 K. Different amount of water was added in the system	Cu (>99.99%) plank cathode (geometric area of 2.0 cm ²). Pt (>99.99%) plank anode (geometric area of 2.0 cm ²). Pt wire quasi-reference electrode with a diameter of 0.3mm.	High pressure undivided cell: Teflon-lined stainless steel cell of 30 mL. Cathode and anode were in parallel with a distance between them of 3 mm.	FE for CO increases (from about 20 to 55%) and for H_2 decreases (from about 60 to 40%) as the CO ₂ pressure is increased (from about 7.3 to 10.6 MPa). As the amount of water added is smaller, the FE for CO is larger and the FE for H_2 decreases.
Chu et al. 2008 ¹¹²	[EMIm][BF ₄]	Low- density polyethyle ne (LDPE)	Ambient temperature and pressure. CO ₂ was bubbled into the catholyte (mixture of [EMIm][BF ₄] and water (1:1 v/v)) for 0.5 h.	Cathode: nanostructured nsTiO ₂ film electrode (area 10 cm ²). Anode: Pt foil (area 10 cm ²). Reference electrode: aqueous SCE	Divided H-type cell. A cationic film (0.18-mm thickness) was used as the diaphragm.	FE for LDPE production of 8-14%. In the proposed reaction mechanism, the role of $[EMIm][BF_4]$ is to maintain a high concentration of CO ₂ at the electrode surface.
Rosen et al. 2011 ¹¹³	[EMIm][BF ₄]	CO (desired) and H ₂ (undesired) on the cathode; O ₂ on the anode	CO ₂ flows at a rate of 2.5 sccm at 22°C. In the cathode compartment, 18 mol% [EMIm][BF ₄] in water flows at 0.5 mL min ⁻¹ . In the anode compartment, 100 mM aqueous H_2SO_4 also flows at 0.5 mL min ⁻¹ . Experiments were carried out at constant voltage on the cell.	Silver cathode (electrochemical surface area of 6 cm ²): Sigracet® graphite gas diffusion layer in which 10 mg of Ag nanoparticles ink was painted. Pt anode (electrochemical surface area of 500 cm ²): 10 mg of Platinum Black nanoparticles painted on same Sigracet® paper.	Flow cell. A Nafion 117 membrane was placed between the anode and the cathode to isolate the anode from the IL.	Formation of gaseous CO was first observed at an applied voltage of 1.5 V, just slightly above the minimum (i.e., equilibrium) voltage of 1.33 V. FE of CO formation was always greater than 96% at any applied cell 22potential between 1.5 and 2.5V. Hydrogen formation was always less than 3% of the FE. The system continued producing CO for at least 7 h at FEs greater than 96%. The energy efficiency of the process was 87% at low voltage (1.5V) and dropped as voltage increased.
Rosen et al. 2013	[EMIm][BF ₄]	СО	CO ₂ flowed at a rate of 2.5 sccm at 22°C. All liquids (catholyte: mixtures of [EMIm][BF ₄] and water;	Cathode: Sigracet® graphite gas diffusion layer in which 10 mg of Ag nanoparticles ink	Flow cell. A Nafion 117 membrane was placed between the	The FE to CO increased when water was added to the dry [EMIm][BF ₄] electrolyte, reaching nearly 100% at 89.5 mol% water. The [EMIm][BF ₄]

· · ·					1 1.1	
			anolyte: $0.1 \text{ M H}_2\text{SO}_4$) flowed	was painted onto an area	anode and the	could inhibit the H ₂ evolution expected
			through the cell at 0.5 mL min	of 1.5 cm^2 . Anode: 5 nm	cathode to isolate	upon water addition, even at high water
			¹ . Cell potential was held at	Pt black nanoparticles	the anode from the	concentrations.
			2.5V.	painted on the same	IL.	
				Sigracet® paper.		
	[BMIm][BF ₄]	Adduct	Electrolyses under	Electrodes were flat Pt	Two-compartment	The NHC-CO ₂ adduct was obtained by
al. 2013		NHC-CO ₂	galvanostatic control. Cell was	spirals, 99.9%; surface	home-made glass	simple bubbling of CO ₂ in pre-
115			kept at 60°C. CO ₂ was bubbled	areas: ca 1.0 cm^2 for the	cell, in which	electrolysed [BMIm][BF ₄]. The NHC-
			into the catholyte for 15 min.	cathode and 0.8 cm ² for	anolyte and	CO ₂ adduct can be used as latent catalyst
				the anode	catholyte were	that release NHC (N-heterocyclic
					separated by a glass	carbenes) upon thermal or ultrasound
					disk	activation; the released NHC can be
						used as reagent or as catalyst in classical
						chemical reactions; it was successfully
						employed in two exemplifying
						organocatalyzed reactions: the benzoin
						condensation and the oxidative
						esterification of cinnamaldehyde with
						benzyl alcohol.
	[EMIm][BF ₄]	CO	Both electrolytes (catholyte:	Cathode: Ag	Flow cell.	Highest current density of CO in the
Khojin et			dried [EMIm][BF ₄]; anolyte	nanoparticles of 200, 70	A Nafion 212	flow cell (almost 4 mA cm ⁻²) was
al. 2013			$0.5 M H_2 SO_4$) were pumped at	or 40 nm painted onto	membrane was used	observed at 3.25V with 40 nm
116			0.5 mL min^{-1} . CO ₂ flows at a	Sigracet® carbon paper	to separate the	nanoparticles. Voltammetry studies with
			rate of 7 sccm at 25°C.	(5 mg cm^{-2}) . Anode: Pt	catholyte and	different Ag nanoparticles (200, 70, 40,
			Different cell potential was	black (5 mg cm ⁻²)	anolyte.	5 and 1 nm) showed that the catalytic
			applied: 2.75, 3.00, 3.25V. At	painted onto Sigracet®		activity increased with decreasing
			each cell potential, the cell was	carbon paper.		particle size until 5 nm, but the activity
			allowed to reach steady state			decreased when using even small
			for 200 s, after which the			nanoparticle size (1 nm). This volcano
			gaseous products and unreacted			effect was attributed to changes of the
			CO_2 were collected for			binding energy of key intermediates as
			analysis.			the particle size decreases.
Kumar et	[EMIm][BF ₄]	СО	Chronoamperometry	Working electrode:	Three-electrode	The polyacrylonitrile-based
al. 2013			experiments at -0.573 V vs.	metal-free carbon	electrochemical cell	heteroatomic CNFmetal-free catalyst
117			SHE were carried out for 9h in	nanofibres (CNFs) with	1	exhibited negligible overpotential
			STIE were carried out for 911 III	$1 \times 0.5 \text{ cm}^2$ surface area.		exhibited negligible overpotential

⁵ SPage 53 of 59			Energy & Environmental Science			
College London Library on 17			the electrolyte was varied from 0 to 100% H ₂ O mole fraction)	The performance with CNFs was also compared with Ag		order of magnitude higher current density compared with Ag catalyst under similar experimental conditions.
Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/24/5 10 DiMeglio & Bosentha 1 5013 118				nanoparticles painted onto Sigracet® graphite layer with 1 cm ² surface layer. Conunter- electrode: 25x8 mm ² Pt, gauze 52 mesh with 99.9% metal basis. Reference electrode: Ag wire (0.5 mm diameter, annealed, 99.9% metal basis)		At a constant potential of $-0.573V$ (vs. SHE), the FE for CO formation was 98%. When the influence of water mole fraction was studied, the highest current density in CV experiments was obtained for a [EMIm][BF ₄] solution 75 mol% water and 25 mol% [EMIm][BF ₄] (~15 mA cm ⁻² , approximately five times higher compared with pure [EMIm][BF ₄])
	[BMIm][BF ₄], [BMIm][PF ₆] or [BMMIm][BF 4]	СО	Controlled potential electrolysis (CPE) experiments were performed at an applied potential -1.95 V vs. SCE for a CO ₂ - saturated solution of MeCN containing 0.1 M [TBA][PF ₆] as supporting electrolyte and 20 mM IL.	Bi ⁰ /Bi ³⁺ material electrodeposited onto an inert glassy carbon electrode substrate. Counter electrode: platinum gauze (99.9%). Ag/AgCl reference electrode (1.0 M KCl)	electrochemistry cell with three- electrode configuration. Gas-tight two- compartment cell divided by a Nafion 212 membrane	In CPE with the single-compartment cell, using [EMIm][BF ₄], FE of nearly 95% for CO with an average partial current density for CO of 3.77 mA cm ⁻² were observed; similar FEs were obtained using [BMIm][BF ₄] or [BMIm][PF ₆] but the current densities for CO production were slightly higher (5.51 or 4.82 mA cm ⁻² , respectively). In the two-compartment cell, electrocatalytic conversion of CO ₂ to CO was coupled to water oxidation, showing initial current densities of approx. 9 mA cm ⁻² with a FE of 52% for CO, using [BMIm][PF ₆] as IL; permeation of the Nafion membrane by water caused a gradual decrease to j_{tot} =0.25 mA cm ⁻² with a FE of 39% for CO, although extended CPEs of over 12 h showed no additional decay in j.
Zhu et al. 2013 ¹¹⁹	[BMIm][PF ₆]	СО	Experiments in aqueous 0.5M KHCO ₃ saturated with CO ₂ at	Working electrode: Monodispersed 4, 6, 8,	Conventional gas- tight two-	The CO ₂ reduction activity was size- dependent. The 8 nm Au NPs showed

			25°C. Each compartment	10 nm Au Nanoparticles	compartment H-	the maximum FE (up to 90% at -0.67V
			contained 50 mL electrolyte.	(NPs). A C-Au paste (20	cell, separated by	vs. reversible hydrogen electrode, RHE).
			Before the experiment, the	mg of C-Au NPs, 3 mg	Nafion 212	Using density functional theory (DFT)
			catholyte was saturated with	of PVDF and a few	membrane	calculations, this behaviour was
			CO_2 by bubbling CO_2 gas for at	drops of N-methyl-2-		attributed to the presence of dominated
			least 30 min.	pyrrolidone), in which		edge sites on the 8 nm NP surface,
				[BMIm][PF ₆] was		which eases the adsorption/ stabilisation
				added, was painted onto		of key reaction intermediates for the
				carbon paper (Toray		CO ₂ reduction into CO and inhibits
				TGP-H-060).		hydrogen evolution reaction. Au NPs
				Counter electrode:		embedded in a matrix of [BMIm][PF ₆]
				99.9% Platinum wire		exhibited even higher reaction activity
				Reference electrode:		$(3 \text{ A} \cdot \text{g}^{-1} \text{ mass activity})$ and selectivity
				Ag/AgCl (4.0M KCl)		(97% FE) at -0.52 V (vs. RHE).
Shi et al.	[EMIm][BF ₄]	СО	[EMIm][BF ₄]/methanol mixture		Three electrodes	Current density reached 14.2 mA cm^{-2}
2013 ¹²⁰	[21,1111][214]	00	with 1:1 volume ratio.	sheet (99.99%, 2x2	system (not clear if	after 1000 s and remained stable until
2015			Potentiostatic electrolysis at -	mm^2). Counter	a divided or an	7200 s electrolysis, with a FE of CO
			1.95V for 2h, with CO_2 bubbled	electrode: graphite rod	undivided cell is	formation of 73%
			through the cell continuously.	(99.99%, 5 mm	used)	
			un ough the concontinuously.	diameter). Reference	useu)	
				electrode: SCE		
Shi et al.	[BMIm][CF ₃ S	CO	Cathode compartment (120	Cathode: Ag sheet	Electrolysis cell	The FE of CO_2 formation, initially as
2014^{121}	O_3	00	mL) filled with a CO_2 saturated	$(99.99\%, 2.5x2.5 \text{ mm}^2).$	with two	high as 90.1%, gradually decayed to
2014	03]		solution of [BMIm][CF ₃ SO ₃]	Anode: graphite rod	compartments	84.8% after 180 min electrolysis, while
			diluted in the organic solvent	(99.99%, 5 mm	separated by a	FE of H_2 formation increased from 8.6
			propylene carbonate (PC) (49	diameter). Quasi-	Nafion 117 ion-	to 13.5%. These variations in the FEs
			vol% IL solution).	reference electrode: Pt	exchange	were attributed to the increase of water
			Anode compartment (80 mL)	wire.	membrane	in the catholyte (caused by the water
			filled with $0.1 \text{M H}_2\text{SO}_4$	wite.	memorane	naturally produced in the CO ₂ reduction,
			aqueous solution.			and the water transferred from the anode
			Potentiostatic electrolysis			across the ion-exchange membrane. The
			during 3h at ambient			current density was stabilised at around
			temperature and -1.72 V vs. Pt			4.6 mA cm ⁻² during the 3h electrolysis.
			wire (which was the cathodic			The high FEs of CO formation obtained
			limiting potential detected in			were attributed to the high solubility of
			the catholyte).			CO_2 in the nonaqueous electrolyte.

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10

Page 55 of 59	Energy & Environmental Science					
riptary Library Education Library Ganesh	[BMIm][BF ₄] CO	Controlled potential electrolysis	Cathode: 50 wt.% Cu-	Custom-made two-	Faradaic efficiencies to CO of 82% and	
Ganesh et al. 2014 ¹²² Watkins & Bocarsly 2014 ¹²³		(applied voltage -2.5V vs ref. electrode). Catholyte: acetonitrile + 0.1 M TBAPF ₆ + 20 or 50 mM [BMIm][BF ₄]. Anolyte: 1M NaPi (sodium phosphate buffer) + 0.1M Co(NO ₃) ₃ or 0.1M NaClO ₄ . High purity CO ₂ gas (99.99%), was sparged at a constant flow rate of 20 scc/min into catholyte.	doped TiO ₂ thin film deposited on conductive FTO-coated soda-lime glass substrate ("50CDTT electrode"). Anode: Pt rod. Reference electrode: $Ag/AgNO_3+ 0.01 M$ TBAPF ₆ in acetonitrile	compartment all- glass gas-tight electrochemical cell, with Nafion membrane to separate anodic and cathodic compartments	CO selectivity of \approx 96% were obtained when the "50CDTT electrode" was pre- reduced in an aqueous electrolyte solution comprising 0.2 M acid- phthalate buffer(pH = 3.5) solution + 0.1 M NaCl under Ar atmosphere for 20 min at -2000 mV, and employed as a cathode in conjunction with [BMIm][BF ₄] (50 mM) in acetonitrile. Liquid products formed could not be identified.	
		Bulk electrolyses were conducted until 20C of charge had passed. Throughout electrolysis the headspace of the solution (2 mL of [EMIm][TFA] and 1 mL of water) was purged with CO ₂ . Applied potential varied between -1.55V and -2.15V vs. Ag/AgCl	Working electrode: indium electrode (surface area $\approx 2 \text{ cm}^2$), which was prepared by pressing indium shot (99.9%) into a foil and pressing a copper wire into one side of the foil. Lead and tin electrodes were also investigated. Counter electrode: unfritted zinc foil (99.99%) Reference electrode: Ag/AgCl (3M NaCl)	Degassed 5 mL two-necked flask	Voltammetry results showed that the addition of a water co-solvent lowered the overpotential for the reduction of CO_2 as well as increased the rate of CO_2 reduction. In bulk electrolyses with indium electrode, a maximum FE for formate of around 90% was found at -1.95V.Tin showed very similar behaviour to that of indium; lead required a higher potential for CO_2 reduction although efficiencies rose to 100% with an applied potential of -2.15V. Yields for formate of up to 3 mg h ⁻¹ cm ⁻² were reported for [EMIm][TFA] with 33% water as cosolvent.	
Grills et al. 2014 ¹²⁴	[EMIm][TCB CO]	Controlled potential electrolysis for over 20h at -1.8V vs $Fc^{+/0}$ and 25±3°C under a CO ₂ atmosphere, of [EMIm][TCB] (2 mL) containing 2 mM of <i>fac</i> - ReCl(2,2'-bipyridine)-(CO) ₃ and 50 mM of water	In standard three- electrode cell: ultramicro disc electrode (carbon fiber) or disc electrode (glassy carbon, 3 mm diameter) as a working electrode, a Pt wire as a counter	Standard three- electrode cell for voltammograms. Custom-made air- tight electrochemical cell for bulk electrolysis experiments	First example of IL-enhanced electrocatalytic CO ₂ reduction with a homogenous catalyst: <i>fac</i> -ReCl(2,2'- bipyridine)-(CO) ₃ . In cyclic voltammograms, [EMIm][TCB] was observed to decrease in 0.45V the potentials required for <i>fac</i> - ReCl(2,2'-bipyridine)-(CO) ₃ to catalyze	

				electrode, and a reference electrode of Ag/AgNO ₃ (0.01 M) in [TBA][PF ₆] (0.1 M) MeCN solution. In the custom-made air- tight cell: glassy carbon disc working electrode (3 mm diameter), a platinum coil counter electrode immersed in wet (50 mM H ₂ O) IL, & the same ref. electrode		the selective reduction of CO_2 to CO compared with CH_3CN as a solvent. In bulk electrolysis experiments, CO was obtained with a selectivity of > 98% and FE of 88± 10%.
Medina- Ramos et al. 2014	[BMIm][PF ₆], [BMIm][BF ₄], [BMIm][Cl], [BMIm][Br], or [BMIm][OTf]	CO	Controlled potential electrolysis (CPE) experiments were performed at an applied potential of -2.0V vs SCE for CO ₂ - saturated solutions of MeCN containing 300 mM IL.	Working electrode: Bi- CO evolving catalyst (Bi-CMEC) electrodeposited (either ex-situ or in-situ) onto a glassy carbon electrode substrate. Counter electrode: platinum gauze (99.9%). Ag/AgCl reference electrode (1.0 M KCl)	Gas-tight two- compartment cell divided by a Nafion 212 membrane	In CPE experiments with Bi-CMEC deposited ex-situ, FEs from 74 to 87% for CO with partial current densities for CO that ranged from 17 to 31 mA cm ⁻² were obtained using the ILs tested, with energy efficiencies above 70%; best results were observed with [BF ₄] ⁻ , [PF ₆] ⁻ and [OTf] ⁻ . In CPE experiments with in- situ generated Bi-CMEC (using an organic soluble Bi ³⁺ precursor) and [BMIm][OTf], reduced FE (approx. 75%) and partial current densities for CO (approx. 20 mA cm ⁻²) were obtained compared to when the Bi-CMEC was deposited ex-situ. The rate of CO production ranged from 0.1 to 0.5 mmol·cm ⁻² ·h ⁻¹ at an applied overpotential of ~250 mV for a cathode with surface area equal to 1.0 cm ² .
Zhou et al. 2014	[BMIm][BF ₄], [TEA][BF ₄],	CO	Controlled potential electrolysis (CPE) experiments were	Cathode: Ag, Cu, Pt or Au (areas about 1.6 cm^2)	Glass cell with proton exchange	Best results were obtained with Ag metal and [BMIm][Cl] with 20wt.%
126	[MOEMIm][BF ₄],		conducted in pure ILs or their aqueous	Anode: Pt Reference: SCE	membrane	water: >99% selectivity (FE > 99%) in the electroreduction of CO_2 to CO. With

Library on 17/06/2 0 5 10	9			Ener	gy & Environmental S	Science	
aded by Imperial College Londor		[TBA][BF ₄], [BMIm][Cl], [TBA][Cl], [BMMIm][Cl]] or [BMIm][Br]		solution under a slow stream of CO_2 (30 mL·min ⁻¹) for 10 h under atmospheric pressure at 25°C, at -1.5V (vs. SCE)			increasing water content in [BMIm][Cl], selectivity for CO decreased significantly, and low proton concentration favored CO formation with higher selectivity. CO ₂ reduction on Ag electrode did not occur in aqueous solutions of quaternary ammonium ILs (e.g. [TEA][BF ₄] or [TBA][BF ₄])
voC	Quezada et al. 2014 ¹²⁷	[BMIm][BF ₄]	CO	Electrolysis was performed for 4 h at -0.8V vs. Ag/AgCl	Working electroe: optically transparent indium tin oxide, on whose surface a conducting polymer of cobalt 5,10,15,20 tetrakis(4- aminophenyl)porphyrin (Co-TAPP) was grown (area 1.5 cm ²). Counter- electrode: Pt wire (8 cm ²). Ag/AgCl reference electrode.	Undivided glass electrochemical cell	CO was the only reaction product detected by gas chromatography, with a FE of 64.9%. At times longer than 200 min there was a decrease in the CO produced, which was probably related to redisolution of the CO from gas phase to the IL medium.
	Asadi et al. 2014	[EMIm][BF ₄]	CO (or tunable mixture of H ₂ and CO (syngas))	amperometry experiments, CO ₂	Working electrode: bulk molybdenum disulphide (MoS ₂). Conunter- electrode: Pt gauze 52 mesh. Reference electrode: Ag wire	Custom made two- compartment three- electrode cell where the compartments were separated by a physical barrier using a glass frit	MoS ₂ showed superior performance than noble metal catalysts (e.g. Ag, Au), with a high current density and low overpotential (54 mV) in the IL. CO ₂ is converted at MoS ₂ into a tunable mixture of H ₂ and CO ranging in each component from 0 to ~ 100% depending on the applied potentials between -0.2 and -0.764V vs. reversible hydrogen electrode (RHE). A CO ₂ reduction <i>j</i> of 65 mA cm ⁻² with FE to CO of ~98% was obtained at -0.764V vs. RHE, and even a higher j of 130 mA cm ⁻² was observed at this potential using vertically aligned MoS ₂ . Water mole fraction affected the

Page	58	of	59
------	----	----	----

Sun et al. 2014 ¹²⁹	[EMIm][NTf ₂], or [MMMIm][N Tf ₂]	СО	Electrolysis at an applied potential of -2.25 V (vs Ag/AgNO ₃) for up to 3 hr were performed in CO ₂ saturated 0.1M [EMIm][NTf ₂] in acetonitrile solution. The electrolyte was kept saturated with CO ₂ . 10 mL and 5 mL of electrolyte solution were used in the cathodic and anodic compartment, respectively.	Working electrode: Pb sheet (99.998%) with geometrical surface area of 2.0 cm ² . Counter-electrode: 25 x 25 mm Pt gauze (99.9%, 52 mesh). Reference electrode: Ag/AgNO ₃	Two-compartment, three electrode glass cell, divided by a Nafion 117 membrane	decreased the reduction overpotential at a Pb electrode by 0.18 V as compared to tetraethylammonium perchlorate as the supporting electrolyte. In electrolysis using 0.1M [EMIm][NTf ₂] in acetonitrile, CO and an imidazolium - carboxylate species were the predominant products and the formation of oxalate was suppressed. FE of the CO was ~ 45% and that of the carboxylate was ~50%, with an amount of product
						was ~50%, with an amount of product formed of ~35 μ mol of CO and ~90
						µmol of carboxylate. In tests with [MMMIm][NTf ₂], for 1 h electrolysis at -2.25 V (vs Ag/AgNO ₃), an even higher FE of 57.2% for CO was obtained.

Notes: FE: Faradaic efficiency j: current density MeCN: acetonitrile SCE: Saturated Calomel Electrode

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10

Published on 16 June 2015. Downloaded by Imperial College London Library on 17/06/2015 10:17:31.

Ionic liquids in the electrochemical valorisation of CO2

Manuel Alvarez-Guerra, Jonathan Albo, Enrique Alvarez-Guerra, Angel

Irabien

Table of contents entry

Graphical abstract

Textual abstract

This work reviews the use of ionic liquids in electrochemical approaches for the valorisation of CO_2 into value-added products, highlighting the beneficial role that ionic liquids can play to improve CO_2 electrovalorisation processes.