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Abstract 

A new constitutive model for soft structured clays is developed based on an existing 

model called S-CLAY1S, which is a Cam Clay type model that accounts for anisotropy 

and destructuration. The new model (E-SCLAY1S) uses the framework of logarithmic 

contractancy to introduce a new parameter that controls the shape of the yield surface as 

well as the plastic potential (as an assumed associated flow rule is applied). This new 

parameter can be used to fit the coefficient of earth pressure at rest, the undrained shear 

strength or the stiffness under shearing stress paths predicted by the model. The 

improvement to previous constitutive models that account for soil fabric and bonding is 

formulated within the contractancy framework such that the model predicts the 

uniqueness of the critical state line and its slope is independent of the contractancy 

parameter. Good agreement has been found between the model predictions and 

published laboratory results for triaxial compression tests. An important finding is that 

the contractancy parameter, and consequently the shape of the yield surface, seem to 

change with the degree of anisotropy; however, further study is required to investigate 

this response. From published data, the yield surface for isotropically consolidated clays 

seems “bullet” or “almond” shaped, similar to that of the Cam Clay model; while for 

anisotropically consolidated clays, the yield surface is more elliptical, like a rotated and 

distorted Modified Cam Clay yield surface. 

 

Keywords: constitutive modelling; soft soils; critical state; anisotropy; logarithmic 

contractancy; yield surface. 
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1. Introduction 

Extensive experimental testing of soils under different stress paths and conditions as 

well as the increase in computing power have led to the development of advanced 

constitutive models that reproduce more accurately the mechanical behaviour of soils. 

Since the pioneering work of Roscoe and co-workers [1-3], many constitutive models 

have been proposed in the framework of Critical State soil mechanics. The first Critical 

State model was the (original) Cam Clay model, whose plastic potential surface was 

obtained on the basis of assuming a simple frictional form for the plastic work. 

Associated flow conditions were assumed and therefore, the yield and plastic potential 

surfaces coincide. 

 

The original model was modified (Modified Cam Clay) [4] using a different 

formulation of the dissipated energy during plastic straining to get an elliptical yield 

surface that overcomes some of the limitations of the original surface, e.g. the 

singularity on the mean effective stress axis (q=0). Further yield and plastic potential 

surfaces have been proposed in the literature since then, e.g. [5,6]. Hence, the shapes of 

the yield and plastic potential surfaces vary from model to model. A constitutive model 

that is able to reproduce a variety of shapes (yield surfaces) could provide predictions 

that are more accurate. Following that idea, Lagioia et al. [7] developed a versatile 

expression for the yield and plastic potential surfaces based on a mathematical relation 

between the dilatancy and the stress ratio. However, this model is limited to isotropic 

soils and does not account for natural soil features such as fabric and some apparent 

bonding that will be progressively lost during loading. 
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Natural soft soil deposits exhibit inherent anisotropic behaviour due to its deposition 

history. Therefore, the extent of anisotropy can be modelled by a rotated and distorted 

elliptical yield surface (e.g. Dafalias [8], S-CLAY1 model [9], MIT-E3 model [10] or 

Sekiguchi-Ohta model [11]) by considering inter-dependence (coupling) of volumetric 

and deviatoric plastic strains in the plastic work equation. The major differences 

between these models are shape of the yield surface and rotational hardening rule. The 

S-CLAY1 model [9] was further extended to include soil structure (S-CLAY1S [12]) 

through an intrinsic yield surface. The S-CLAY1S model has proven its ability to 

reproduce the behaviour of normally or slightly overconsolidated structured soft clays 

[12-15]. Despite its good performance, especially for settlement prediction, horizontal 

displacements are generally not well matched, e.g. [15]. Those differences may be 

attributed to the shape of the yield surface (i.e. associates with flow rule), or similarly, 

to the horizontal/vertical stress ratio predicted by the model for compression loading. 

 

Ohta et al. [16] presented a unified framework for different shapes of the yield surface, 

assuming associated flow conditions. The framework is based on curve fitting of 

experimental results of the contractancy (compressive volumetric strain, εv) during 

drained shear at constant mean effective stress (p’) of normally consolidated clays. 

Those experimental results were first presented by Shibata [17]. Ohno et al. [18] 

proposed two categories of contractancy models, namely exponential and logarithmic 

contractancy models, depending on the type of function used to fit the experimental 

results. (Original) Cam Clay (CC) and Modified Cam Clay (MCC) models are particular 

cases of the general contractancy models. Ohta et al. [16] extended the contractancy 

models to anisotropic conditions using the stress parameter introduced by Sekiguchi and 

Ohta [11]. Therefore, they are called Extended Sekiguchi-Ohta models [16]. These 
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models do not account for evolution of anisotropy with loading and apparent bonding of 

natural soils. Further, the Extended Sekiguchi-Ohta models fail to predict unique critical 

state line (CSL) as for example in triaxial compression and extension in p'- q space.  

 

According to Dafalias and Taiebat [19], introducing a non-associated flow rule can 

provide improved predictions regardless of the rotational hardening rule employed 

while it is able to obtain unique CSL. However, the introduction of a non-associated 

flow rule may be either not necessary or convenient. Therefore, development of an 

adequate but simple constitutive model for anisotropic and structured clays is still 

relevant. 

 

This paper extends the S-CLAY1S model [12] using the framework of logarithmic 

contractancy [16] to include some flexibility in the shape of the yield surface. The new 

model introduces an additional parameter, called the contractancy parameter, which 

controls the shape of the yield surface. The contractancy parameter can be related to the 

coefficient of earth pressure at rest for normally consolidated conditions, K0NC, the 

undrained shear strength, cu, or the stiffness under shearing stress paths. In this way, the 

proposed model, called E-SCLAY1S, extends the predictive capabilities of the S-

CLAY1S model, while including just an additional parameter with clear physical 

meaning. 

 

The paper presents the formulation of the new model (Section 2) and its numerical 

implementation (Section 3). Section 4 highlights the main features of the model, such as 

the slope and uniqueness of the CSL and the influence of the contractancy parameter on 

the coefficient of earth pressure, the undrained shear strength, the yield surface and the 
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soil stiffness. The model is validated against laboratory tests on two clays, namely 

Kaolin clay and Santa Clara clay (Section 5) and finally some discussion and 

conclusions are provided. 

 

2. Proposed model: E-SCLAY1S 

The proposed model extends S-CLAY1S [12], which is a Modified Cam Clay [4] type 

model that accounts for anisotropy and destructuration. Anisotropy of plastic behaviour 

is represented through an inclined and distorted yield surface and a rotational hardening 

law to model the development or erasure of fabric anisotropy during plastic straining; 

while interparticle bonding and degradation of bonds (structure) is reproduced using 

intrinsic and natural yield surfaces [20] and a hardening law describing destructuration 

as a function of plastic straining. For the sake of simplicity, the mathematical 

formulation is presented in the following in triaxial stress space, which can be used only 

to model the response of cross-anisotropic samples (cut vertically from the soil deposit) 

subject to oedometer or triaxial loading. The original inclined yield surface of the S-

CLAY1S model is elliptical [8] (see Figure 1): 
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The above yield function often cannot describe experimental data of yield points with 

enough accuracy as well as undrained stress paths [19]. An improvement can be 

achieved by modifying the yield function. The proposed model (E-SCLAY1S) 

introduces a degree of freedom in the shape of the yield surface (Eq. 1) using the 

framework of logarithmic contractancy [16] (see Appendix I): 
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where Ψ is an intermediate parameter to simplify Eq. (2) 
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and nL is a new parameter (contractancy parameter) that controls the shape of the yield 

surface. The subscript “L” refers to logarithmic contractancy, following the notation by 

Ohta et al. [16]. So, the shape of the yield surface in the E-SCLAY1S model depends on 

the contractancy parameter, nL (see Figures 2 and 3). It is worth mentioning that it 

corresponds to the shape of both the natural and intrinsic yield surfaces and also the 

plastic potential surface, since an associated flow rule is assumed. For the sake of 

brevity, hereafter it is referred to as the yield surface. The E-SCLAY1S preserves the 

hierarchical development of S-CLAY1S, as the former reduces to the later for nL=2, i.e. 

Eq. (2) reduces to Eq. (1) as Ψ=1. 

 

The shape of yield surfaces may be classified as: 

 “Bullet” or “almond” shape (e.g. original Cam Clay) 

 Elliptical (e.g. Modified Cam Clay) 

 “Tear” or “Sheared” shape (e.g. Lade and Kim [6]) 

 

For the E-SCLAY1S model, and in general for logarithmic contractancy models, the 

yield surface is elliptical for nL=2, “bullet” shaped for nL<2 and “tear” shaped for nL>2. 

Most of the anisotropic models (e.g. S-CLAY1S and MIT-E3) use elliptical surfaces, 

but empirical evidences show the limitations associated with elliptical yield surfaces 
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(e.g. [21]). Similarly to (original) Cam Clay model, the yield surfaces for nL<2 have a 

singularity at η=α (Figure 2). 

 

As in the S-CLAY1S model, the effect of bonding in the E-SCLAY1S model is 

described by an intrinsic yield surface [20], which has the same shape and inclination of 

the natural yield surface but with a smaller size (see Figure 1). The size of the intrinsic 

yield surface is specified by the state parameter mip , which is related to the size mp of 

the natural yield surface by the state parameter   as the current amount of bonding 

 1m mip p    (4) 

 

The last letter of the model (“S”) refers to the soil structure. So, when the hierarchical 

version of the model without destructuration is used, the model is simply called E-

SCLAY1. 

 

The three hardening rules of the original S-CLAY1S model, namely isotropic 

hardening, rotational hardening and degradation of bonds rule, are kept as the original 

[9, 12]. The first rule relates the increase in the size of the intrinsic yield surface to the 

increments of plastic volumetric strain ( p
vd ) 

pmi
mi v

i

vp
dp d

 


 


 (5) 

where   is the specific volume, i  is the gradient of the intrinsic normal compression 

line in the compression plane ( pln  space), and   is the slope of the swelling line in 

the compression plane. 
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The second hardening law is the rotational hardening law, which describes the rotation 

of the yield surface with plastic straining 
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where η is the tensorial equivalent of the stress ratio defined as p /dση , p
dd  is the 

increment of plastic deviatoric strain, dα is the deviatoric fabric tensor, which has the 

same form as the deviatoric stress vector [9], and   and d  are additional soil 

constants that control rotational hardening. 

 

The third law for destructuration is formulated in such a way that both plastic 

volumetric strains and plastic shear strains tend to decrease the value of the bonding 

parameter  towards a target value of zero, it is defined as 

 p p
v d dd d d        (7) 

where   and d  are additional soil constants. As full details of the hardening laws and 

determination of the soil constants is beyond the scope of this paper, they can be found 

in [9, 12]. 

 

The extension of the model from triaxial stress space to general (multiaxial) stress space 

is also equivalent to that of S-CLAY1S [22]. The model has been implemented using 

the Euler backward implicit integration scheme [22], in such a way that it can be 

incorporated directly into finite element codes (e.g. PLAXIS [23]) for engineering 

applications. The implementation is presented in the following section. 
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3. Discretization and numerical implementation 

The decomposition of total strains in classical elasto-plastic theory using an additive 

rule can be expressed in terms of elastic and plastic components of strains as 

pe ddd εεε   (8) 

where d remarks an incremental operator, the boldface characters are used to denote 

tensor quantities and superscript “e” denotes the elastic component and “p” denotes the 

plastic component. 

 

The plastic strain increment can be calculated using the plastic multiplier ( d )  

 
σ

ε
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 yp f

dd  (9) 

The plastic potential is the yield function because an associated flow rule is assumed. 

 

To derive the plastic multiplier of the E-SCLAY1S model, the consistency condition of 

the yield function ( 0ydf ) is used 
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By substituting stress increment and isotropic, rotational hardening rules as well as 

destructuration law, the plastic multiplier is derived as 
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where elastic stiffness matrix eD  is  



  11 














































G

G

G

GGG

GGG

GGG

e

00000

00000

00000

000
'21

'1
2

'21

'
2

'21

'
2

000
'21

'
2

'21

'1
2

'21

'
2

000
'21

'
2

'21

'
2

'21

'1
2




























D                                                (12) 

where '
1

'1

'21

2

3 0 p
e

G 





 















 and ' is Poisson's ratio. 

 

For a small increment in implicit integration scheme, it can be further simplified in 

terms of value of yield function ( 0
yf ) as 
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where superscript T corresponds to a matrix transpose and hardening moduli 0Η ,  

αΗ and χΗ  are derived as 
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Using the Euler backward implicit integration scheme, the trial stress is modified under 

consideration of the occurring plastic strains as long as convergence is reached. The 
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convergence criterion is fulfilled when the iterative stress state returns to the yield 

surface ( yf < 10-7). If the plasticity is associated with a given strain increment, it is 

essential to calculate the following system of equations 

''' 1 σσσ dnn   (17) 

By using the plastic multiplier in Eq. (13), given the strain increment is applied to arrive 

at the elastic predictor, the stress increment 'σd  can be calculated as 

σ
DεDσ




 y

ee

f
ddd '   (18) 

 

In this implementation, size of load (strain) increment is controlled by sub-stepping 

within the subroutine in order to obtain solutions. Maximum strain increment used to 

simulate the results presented in this paper is %1.0εd . Figure 4 presents a summary 

of the Euler backward algorithm to implement the proposed model. 

 

4. Model features 

4.1 Slope and uniqueness of the CSL 

The strength at the ultimate state after large strains have developed, i.e. at critical state, 

is controlled by the plastic potential surface. For isotropic contractancy models, the 

slope of the critical state line (CSL) is equal to M (e.g. [18]). However, for anisotropic 

contractancy models, the slope of the CSL in stress space (p’ - q) is not usually M (e.g. 

Extended Sekiguchi-Ohta models [16]) and it depends on both M and nL. The E-

SCLAY1S model has been developed to preserve M as the slope of the CSL in stress 

space, which is a main advantage with respect to the Extended Sekigucha-Ohta models. 

The slope of the CSL is demonstrated in the following. 
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and rearranging terms in Eq. (19) 
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the slope of the CSL is given by η 

0
1  LLLL

n

L

nnn nM   (21) 

Eq. (21) may be developed substituting the value of Ψ (Eq. 3). 
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From Eq. (22), it is clear that the slope of the CSL for triaxial compression is η=M. For 

triaxial extension, the slope of the CSL seems to depend not only on M but also on nL, 

see for example the shape of the yield surface in p’ - q plots (Figure 2). However, for 

triaxial extension, the yield surface rotates towards the extension side, and at critical 

state, the inclination of the yield surface (α) is on the extension side, i.e. α is negative, 

and Eq. (22) gives the same result for extension and for compression (η=M). Only for 

the unrealistic case of initial fabric anisotropy but without evolution of that fabric 

during plastic straining, i.e. deactivating the rotational hardening rule, the CSL would 

be different for compression and triaxial extension depending on nL in stress space: 
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 higher than M for nL<2 

 equal to M for nL=2 

 lower than M for nL>2 

 

The constant slope of the CSL in stress space for any value of nL, if rotational hardening 

is allowed, is also valid for any other direction in the π–plane, i.e. for any Lode’s angle. 

In the current implementation of the model, no attempt has been made to distinguish 

between compression and extension, i.e. Mc=Me, or include any dependency on Lode’s 

angle, so it corresponds to the Drucker-Prager criterion (see Figure 3). 

 

The E-SCLAY1 model also preserves the uniqueness of the CSL as illustrated in Figure 

5, where the solid lines with arrows on p’-axis show the uniqueness of the CSL in stress 

space. To highlight and confirm the uniqueness of the CSL in stress space, undrained 

triaxial compression and extension tests were simulated from a K0 consolidated state 

(Figure 6). The rotation of the initial yield surface to the extension side during triaxial 

extension tests leads to the same slope both in compression and in extension, which is 

equal to M (Figure 6a). If the yield surface is not allowed to rotate, i.e. no rotational 

hardening (ω=0), the slope of the CSL at extension depends on the nL value as 

previously mentioned (Figure 6b). However, this is a very unrealistic case, which 

should not be modelled and has been presented only for illustrative purposes. 

 

The rotational hardening rule of the S-CLAY1 model was developed to predict a unique 

CSL in the e-ln p’ space. In the case of the proposed E-SCLAY1S model, the 

uniqueness of the CSL in the e-ln p’ space is preserved for a given nL value too. The 
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vertical separation from the isotropic normal compression line (NCL) to the CSL in the 

e-ln p’ space predicted by the E-SCLAY1S model is given by 

 

    
 







































  1)(

)()(
)(

)(
1ln

L

LLL

LL

L

n
dL

n
d

n
d

n
n

d
n

n
d

iN
MMMn

MMMM
MM

MM

ee






         (23) 

where eN is the void ratio on the NCL that corresponds to a unit stress and eГ is the void 

ratio of the CSL at a unit stress. )(Md  is the predicted unique inclination of the yield 

curve at critical states, which is equal to M/3 [9].  

For nL=2 (S-CLAY1), the above equation reduces to equation (6) of Wheeler et al. [9], 

and for nL=2 and =0 (MCC) the above equation reduces to   2ln  eeN . The 

normalized vertical separation 








 

i

N ee
 to the NCL in the e-ln p’ space at critical state 

with the nL value is presented in Figure 7. For comparison, (original) Cam Clay (CC), 

modified Cam Clay (MCC) and S-CLAY1 are also presented in the figure. It can be 

seen that the proposed model has flexibility in predicting the CSL in the e-ln p’ space 

compared to the previously developed models. According to Wheeler et al. [9], the 

experimental data from tests on Otaniemi clay do not provide evidence for a unique 

CSL in the e-ln p’ space.  

 

4.2 K0 prediction 

The (original) CC model clearly overpredicts the coefficient of lateral earth pressure at 

rest for normally consolidation conditions, K0NC [24]. Although the MCC model predicts 

more realistic values than the (original) CC model, it is well known to still overpredict 

K0NC (e.g. [24]). Therefore, some authors (e.g. Federico et al. [25]) have used plastic 

potential surfaces with higher degrees of freedom to fit the desired K0NC value. Federico 
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et al. [25] also present a wide analysis of the analytical expressions that give K0NC for 

isotropic critical state models. The analytical expression that gives the value of K0NC for 

E-SCLAY1S is derived in Appendix II. The variation of the K0NC stress path with nL is 

illustrated in Figure 8 for an initially isotropically consolidated soil sample. 

 

The isotropic version of E-SCLAY1 (α=ω=0) is a hierarchical extension of MCC that 

introduces the additional parameter nL, which may be correlated with K0NC using Eq. 

(II.7). The variation of K0NC with nL is shown in Figure 9a. Although a perfect fit of nL 

could be applied for each case, a value of nL around 3.5 gives similar values to those of 

Jaky’s empirical formula (K0NC=1-sin ϕ). However, the yield function for that value 

(nL=3.5) could lead to unrealistic high undrained shear strengths (Figure 9b). To avoid 

that, a non-associated flow rule could be proposed, using a nL value lower than 2 for the 

yield surface (e.g. 1.3) and a high nL value (e.g. 3.5) for the plastic potential surface. 

Nevertheless, the isotropic version of E-SCLAY1 has been presented to show its similar 

capabilities to other previous studies (e.g. [25]), but, even initially remoulded soils show 

some fabric under one dimensional compression (e.g. [26,27]), and the authors believe 

that trying to fit K0NC values with isotropic plastic potential surfaces is not realistic. 

 

Once soil anisotropy is introduced, the proper K0NC can be fitted adjusting the 

inclination of the yield surface, α0 (e.g. [9]), because it is difficult to have enough 

accurate data to determine the initial inclination of the yield surface (α0) and this 

inclination seems to be related to one dimensional compression of the soil during its 

deposition through K0NC. The E-SCLAY1 model, through the nL parameter, introduces 

more flexibility in the possibilities to fit K0NC and the initial inclination of the yield 

surface (α0). However, in practical situations, there are not enough data about the initial 
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inclination of the yield surface and the practical approach here proposed is to fit all the 

parameters similarly to S-CLAY1 [9] and the additional parameter of the E-SCLAY1 

model (nL), using the undrained shear strength. 

 

4.3 Undrained shear strength 

One of the most important risks associated with the numerical simulation of 

geotechnical engineering problems under undrained conditions using soil constitutive 

models formulated in effective stresses is the possible unrealistic prediction of the 

undrained shear strength. That occurred, for example, in the numerical simulation of the 

deep excavation near the Nicoll Highway, Singapore that collapsed in 2004 (Whittle 

and Davies [28]). The additional parameter (nL) of the E-SCLAY1 model allows for a 

perfect matching of the undrained shear strength (cu) as it will be shown in the 

comparison with laboratory measurements in Section 5. The variation of cu with nL may 

be seen in Figure 6a. 

 

For an initially isotropically and normally consolidated soil sample, cu may be 

normalized by the initial mean effective pressure, p’0. Figure 10 shows the predicted 

values by the isotropic version of E-SCLAY1 model depending on nL. For the sake of 

simplicity, the isotropic version of E-SCLAY1 is used. Then, it may be demonstrated 

that 
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4.4 Yield loci 

The E-SCLAY1 model, through the nL parameter, provides an additional flexibility in 

comparison with the conventional S-CLAY1 model to fit the initial yield surface. 
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However, in practical situations there is little information about the initial yield surface 

and even for the well-documented cases, there are some problems associated with its 

determination, for example regarding the homogeneity of the natural soil samples and 

the identification of soil yielding (e.g. [27]). 

 

Most published yield loci (e.g. McGinty [29]) have been determined using bilinear 

interpretation of e-ln p’. This methodology is similar to the Casagrande method used to 

calculate the preconsolidation pressure and is summarized, for example in Graham et al. 

[30]. The methodology involves some ambiguity because the behavior of clay is non-

linear except at very small strains and some engineering judgment is necessary. Besides, 

for soils with evolving anisotropy and different loading stress ratios, the methodology is 

not appropriate (e.g. McGinty [29]). For loading stress ratios that deviate from the 

initial loading stress ratio, yield curve rotation starts to develop under small volumetric 

strains before the strains get larger due to isotropic hardening. Consequently, the 

bilinear interpretation of e-ln p’ curves tend to overestimate yield stresses for stress 

paths that notably deviate from the initial one (e.g. Figure 11). To overcome these 

limitations, arithmetic stress scale (e.g. e-p’) is generally used (e.g. [27,31]). 

 

Being aware of the limitations of most published yield loci and as an example of the 

improved capabilities of the E-SCLAY1 model, the yield surfaces of some well-

documented soils are fitted in Figure 12. The initial inclination of the yield surface was 

determined as proposed by Wheeler et al. [9] based on M, i.e. K0NC determined using 

Jaky’s expression. The experimental data are taken from Graham et al. [32], Wheeler et 

al. [9] and Díaz-Rodríguez et al. [33]. No attempt to get the best fit was made, and only 

for illustration, the yield surfaces using nL=2.5, which match better the experimental 
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data than those using nL=2.0, are presented in Figure 12. The size of the yield surface, 

p’m, was kept constant. 

 

4.5 Soil deformation 

For normally consolidated conditions under constant stress ratios (η), the parameter λ 

controls compressive volumetric strains because E-SCLAY1 is as a Cam Clay model. 

For shearing stress paths, compressive volumetric strains depend on the additional 

contractancy parameter (nL). As an illustrative example, Figure 13a shows the results of 

simulated drained triaxial compression tests for different nL values. The soil response is 

stiffer for higher nL values. The influence of nL on the soil stiffness during shearing is 

summarized in Figure 13b, using the E50/Eoed ratio, where E50 is the secant Young’s 

modulus at 50% of the failure load in a conventional drained triaxial test at a given cell 

pressure (pref) and Eoed is the tangent Young’s modulus for confined compression at the 

same pressure (pref), which does not depend on nL (   /1 epE refoed  ). 

 

A higher nL value reduces the space between the NCL and the CSL (Eq. 23 and Figure 

7) and, therefore, the soil response is stiffer for shearing stress paths. The proposed 

model (E-SCLAY1S) is a logarithmic contractancy model [18], which means that uses a 

logarithmic description of the compressive volumetric strains, εv, during drained shear at 

constant mean effective stress and normally consolidated conditions (Eqs. I.1 and I.4). 

So, nL controls the volumetric strains during shearing and its variation with the stress 

ratio, η. Ideally, nL could be calibrated by fitting experimental laboratory results of 

drained triaxial shear tests at constant mean effective stress. The influence of nL in the 

contractancy results is shown in Figure 14. Volumetric strains (εv) are normalized by the 

volumetric strain at critical state (εvM) and the stress ratio (η) is normalized by the stress 
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ratio at critical state (M) to isolate the influence of nL from other model parameters. As 

an example, laboratory data on isotropically consolidated remolded kaolin clay by 

Hattab and Hicher [34] are also presented in Figure 14. 

 

4.6 Destructuration 

For the sake of completeness, the model has been formulated including soil structure 

and loss of bonding. This model feature performs similarly to that of the S-CLAY1S 

model [12], so it has not been considered necessary to include here any specific 

simulation or comment about it. 

 

5. Comparison with experimental data 

In this section, the proposed model (E-SCLAY1S) is validated against some laboratory 

results published in the literature. As some of the capabilities of the proposed model are 

similar to those of the well-studied S-CLAY1S model, the focus here is on the 

improvement provided by the additional contractancy parameter (nL). All the parameters 

of the model but nL coincide with the S-CLAY1S model, so the approach proposed by 

Wheeler et al. [9], which gives satisfactory results for most cases (e.g. [12-15]), is here 

used to determine those parameters. The additional parameter nL has been vary to get a 

better fit of the experimental results, usually, of the undrained shear strength. 

 

5.1 Kaolin clay 

Stipho [26] conducted a series of undrained triaxial tests on isotropically and 

anisotropically consolidated specimens of Kaolin clay. Several degrees of 

overconsolidation (from 1 to 4 or 12) and initial anisotropy (K0 ranging from 1 to 
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K0NC=0.57) were used. The tests were stress controlled and consequently, failure may 

not have been properly captured. Several researchers have used the results for verifying 

their constitutive models (e.g. [35,36]). The parameters used in the numerical 

simulations are summarized in Table 1. They have been directly taken either from 

previous studies [35,36] for standard critical state parameters or following Wheeler et 

al. [9] for anisotropy. The parameter that controls the rotation of the yield surface with 

the plastic strains, ω, was set equal to a very low value (0.5), typical for remolded 

Kaolin clay. Only the contractancy parameter was fitted to get a better agreement with 

the experimental results, particularly with cu. The best fit of nL is compared with S-

CLAY1 (nL=2) in Figure 15. For isotropically consolidated samples, the agreement is 

very good for nL=1.3. In addition to stress paths, the stress-strain curves and the 

generated pore pressures are also well predicted by the model (Figure 16). 

 

For anisotropically consolidated samples (K0<1), it was necessary to gradually increase 

the value of nL to get a good matching of the experimental results (Figure 15). For 

normally consolidated samples at K0=0.67 and 0.57, the matching was not possible and 

by observing the stress paths, it can be deduced that the waiting times after 

consolidation could have slightly overconsolidated the soil samples due to aging or 

creep effects. A good agreement was found for S-CLAY1 (nL=2), using the best fit 

value of OCR due to aging (1.1 for K0=0.67 and 1.2 for K0=0.57). For the sake of 

comparison, the stress paths for OCR=1 are also included in Figure 15 and the starting 

points are the same because the applied initial stresses were p’/p’0=1. 

 

The initial rotation of the yield surface (α0) for anisotropically consolidated samples was 

obtained by simulation of the K0 stress paths with nL=2. The proposed model (E-
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SCLAY1) is an extension of S-CLAY1 and, therefore, it shares some of the limitations, 

such as a good behaviour only for normally or slightly overconsolidated soft soils. For 

high degrees of overconsolidation, the flexibility introduced by nL improves the 

numerical predictions only for isotropically consolidated samples. 

 

5.2 Santa Clara clay 

Venda Oliveira and Lemos [27] present laboratory results of a sandy lean clay from 

Santa Clara dam area, Portugal. The clay was reconstituted prior to testing. They 

performed triaxial tests on isotropically and K0 consolidated clay samples to evaluate 

several elastoplastic models. Stress path controlled drained triaxial tests were performed 

to determine the position of the initial yield surface and the direction of plastic strain 

increments (dεp). The specimens used to study the isotropic behavior were initially 

normally consolidated to an isotropic effective stress (p’m) of 200 kPa and subsequently 

unloaded and consolidated to an effective isotropic pressure of 100 kPa, which resulted 

in an OCR (p’m/p’) of 2.0. Four drained triaxial tests with stress paths, dq/dp’, equal to 

1.0, 2.5, 3.0 and 5.0 were then performed (Figure 17). 

 

The specimens used to analyze the anisotropic behavior were initially subjected to K0 

consolidation (K0=0.47) to reach a normally consolidated state of a vertical effective 

stress of σ’vc=200 kPa (σ’hc=94 kPa). Then, the specimens were unloaded and 

consolidated to a vertical effective stress of σ’v0=160 kPa (σ’h0=80 kPa), corresponding 

to an OCR (σ’vc/σ’v0) of 1.25. Four drained triaxial tests with stress paths, dq/dp’, equal 

to -1.5, -0.5, 1.0 and 3.0 were then performed (Figure 18). 

 



  23 

Careful evaluation of the yield loci based on both ε1–p’ and εv-p’ plots was performed 

and the probable limits of the yield zone are provided (inverted triangles). They also 

performed undrained compression triaxial tests to evaluate undrained stress paths (blue 

crosses) under normally consolidated conditions. 

 

Using the proposed model (E-SCLAY1), the results of those undrained compression 

triaxial tests were numerically simulated. The soil parameters for the numerical model 

are shown in Table 1 and were directly taken from [27]. Figure 17 compares the 

laboratory results with the numerical predictions for the isotropically consolidated Santa 

Clara clay. For the numerical simulations, two nL values, namely nL=2 (S-CLAY1) and 

nL=1.3 (best-fit value) were used. Although the undrained stress path measured in the 

laboratory (blue crosses) is slightly irregular at the beginning, the best fit value (nL=1.3) 

provides a good match of the laboratory results and notably improves the results for 

nL=2. The initial yield surfaces of the model for nL=1.3 (“bullet” shape) and 2 

(elliptical) are also shown for evaluation against the yield zone (inverted triangles) and 

plastic strain increments (arrows). The soil exhibits some rotational hardening (ω=200 

and ωd=0.91), which causes some deviation of the numerically simulated undrained 

stress paths from the initial yield surfaces. The agreement between the limits of the 

yield zone and the initial yield surface for nL=1.3 is not as good as for the undrained 

stress path, which may be explained by the difficulties associated with the determination 

of yield loci. 

 

Figure 18 compares the results for the K0 consolidated Santa Clara clay. In this case, it 

is difficult to get a good fit of the experimental undrained stress path (blue crosses), and 

the best fit value (nL=1.8) was determined to match the undrained shear strength. As for 
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the Kaolin clay, it was necessary to use a different nL value (1.8) than that of the 

isotropic case (1.3). For anisotropic conditions, the differences with S-CLAY1 (nL=2) 

are not very important. As for the initially isotropic case, the initial yield surfaces of the 

model are also shown for evaluation against the yield zone and plastic strain increments.  

Plastic strain increments are plotted in (Figures 17-18) for completion, but it is worth 

noting that plastic strain vectors are difficult to determine in practice because it is 

necessary to assume an elastic law and the strain increments need to be small but at the 

same time large enough to eliminate noises in the measurements. 

 

6. Discussion on the shape of the yield surface 

The contractancy parameter (nL) controls the shape of the yield surface, yet, in practical 

situations, nL may be conveniently calibrated to fit cu or the stiffness along shearing 

paths. From the comparison with experimental results (Figures 15-18), it seems that the 

nL value may not be constant and may depend on the degree of anisotropy because for 

isotropically consolidated soils, its value is around 1.3, while for anisotropic conditions 

it is close to nL=2, which corresponds to S-CLAY1. Although there may be some 

uncertainties related to the quality of the experimental data, the shape of the yield 

function for isotropic conditions seems to be closer to the original Cam Clay model than 

to the Modified Cam Clay model, while for anisotropic conditions a rotated and 

distorted yield surface seems appropriate (e.g. S-CLAY1). As an additional example, 

Figure 19 shows experimental values of yield stresses for Bothknennar clay (data after 

McGinty [29]). For intact soil samples (Figure 19a), the yield surface of the S-CLAY1 

model fitted through the experimental data points using M=1.4 and αK0=0.31 (after 

McGinty [29]). The size of the yield surface ( mp' =85 kPa) was obtained by McGinty 

[29] optimizing the best fit to the experimental data. As explained in Section 4.4, the 
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yield points (black dots) have been determined using bilinear interpretation of e-ln p’ 

curves and this may lead to an overestimation of the yield stress for those stress paths 

that cause significant rotation of the yield surface, e.g. triaxial extension for this case. 

Consequently, a good fitting of the yield points for triaxial extension could only be 

possible introducing a different slope of the CSL for extension (Me) i.e. introducing a 

Lode’s angle dependent failure criterion. 

 

McGinty [29] also checked the yielding points of Bothkennar clay after isotropic 

consolidation (Figure 19b). The single square point indicates the maximum stress in the 

common first loading stage (210 kPa), while circular points represent yield points 

identified from individual second loading stages. The yield points in Figure 19b are 

reasonably symmetric about the p’-axis, suggesting that, as expected, the isotropic 

loading in the first stage had rotated the yield curve clockwise to an isotropic orientation 

i.e. symmetrical about the p’-axis. To improve the accuracy of the yield points, the 

authors have reinterpreted McGinty [29] data using arithmetic stress scale and 

volumetric and axial engineering strains (Figure 20). Only compression tests and 

isotropically consolidated samples have been reinterpreted because those are 

particularly relevant for the comparison here presented about the shape of the yield 

surface. In the reinterpretation, instead of a yield point, a yield zone has been identified. 

This yield zone has been included in Figure 19b as a line between crosses. In most tests, 

an initial non-linear stress-strain behaviour is observed for low stresses. After that, a 

linear part may be identified, and later, the data show the initiation of an exponential 

curve, which marks the yield stress (see Figure 20). The linear part has been fitted by a 

straight line (dashed) to precisely identify the initiation of the exponential behaviour. A 

yield zone was chosen, as the results for volumetric and axial strains seem to be slightly 
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different. Although McGinty [29] yield points tend to generally underestimate the yield 

stress, e.g. for isotropic consolidation (Figure 19b), the reinterpretation confirms that the 

yield stress is overestimated for stress paths that notably differ from the initial one, if a 

logarithmic stress scale is used, e.g. for η2=1.3. 

 

The yield curve expression for S-CLAY1 (nL=2) with αK0=0.0 and mp' =210 kPa 

(corresponding to the Modified Cam Clay yield curve expression) is a poor match to the 

experimental data (Figure 19b). The E-SCLAY1S model using nL=1.4 gives a good 

matching of the experimental data and confirms the differences in the shape of the yield 

surface between anisotropic and isotropic consolidated samples. The experimental yield 

points in extension give lower values that those predicted by the model as expected, 

because no dependency on the Lode’s angle has been introduced in the model. 

 

Conclusions 

An anisotropic model for structured clays (E-SCLAY1S) has been formulated to extend 

a previous model (S-CLAY1S [12]) for normally or slightly overconsolidated soft clays 

by introducing the framework of logarithmic contractancy. 

 

In addition to a complete description of the proposed model in triaxial stress space, an 

implicit Euler backward algorithm for the stress integration has been presented. A major 

advantage of this framework is that by suitable adjustment of the parameter (nL) a wide 

range of yield surface shapes can be achieved. It is important to acknowledge the fact 

that the proposed model requires only an additional parameter (nL) and it can be 

determined from conventional laboratory tests (drained or undrained triaxial tests). As 

compared to the non-associated flow rule presented by Dafalias and Taiebat [19] for 
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improved predictions, the present model has the advantage of being simpler to calibrate 

and to implement into a finite element code. 

 

The main features of the model can be summarized as follows: 

1. Uniqueness of the critical state line (CSL) at stress space and constant slope of 

CSL as M, independently of nL value - this is a major advantage of the proposed 

model compared to previous anisotropic logarithmic contractancy models (e.g. 

Extended Sekiguchi-Ohta models [16]). 

2. K0 prediction and yield loci – the proposed model through the additional 

parameter (nL) introduces more flexibility in predicting K0 and the yield points in 

p'-q space. 

3. Undrained shear strength (cu) – an improved prediction of cu can be obtained by 

adjusting the logarithmic contractancy parameter nL. 

4. Stiffness– the additional parameter (nL) may be also used to fit the stiffness 

under shearing stress paths. 

 

The comparisons with laboratory test data of two remoulded clays for different stress 

and overconsolidation ratios under undrained shearing revealed the predictive 

capabilities of the proposed model. The experimental data on Bothkennar clay, Santa 

Clara clay and Kaolin clay suggest that the model parameter nL, which controls the 

shape of the yield surface, may not be a soil constant and it can be a hardening 

parameter that varies with the amount of fabric (degree of anisotropy) of clays. 

However, further experimental studies on yield points are required to conclude that the 

parameter nL varies with the degree of anisotropy. 
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The model verification is limited to soils that do not exhibit bonding and destructuration 

behaviour with plastic straining. Since triaxial tests were used for validation, additional 

work should be conducted to verify the model for other stress paths, and also in 

boundary value problems. Further extension of the model to account for rate-dependent 

(creep) natural soft soil response can be made along the lines presented by 

Sivasithamparam et al. [37]. 
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APPENDIX I: Yield surface  

In the general contractancy framework proposed by Ohno et al. [18], the negative 

strains (contractancy) developed during drained triaxial tests at constant mean stress (p’) 

may be fitted by a general function H: 

 Heeee M 00  (I.1) 

where e0 is the initial void ratio after isotropic loading and eM is the void ratio at critical 

state. H is a function of the stress ratio η (=q/p’) and indicates the relative position of 

any of the parallel lines between the NCL and the CSL. Following the development by 

Ohta et al. [16], the yield function may be found as 
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Where εvM is the volumetric strain at critical state and may be demonstrated to be 
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when M  (critical state). 

Here, the following logarithmic contractancy function is proposed 
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The value of H=0 for isotropic loading (where η=0 and α=0) and the value of H=1 for 

the CSL (e.g. triaxial compression, where η=M). 

Differentiating H with respect to p’ and substituting for critical state conditions (η=M) 
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the yield function is obtained using Eq. (I.3), (I.4) and (I.5) 
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where, for the sake of brevity, Ψ is the following constant 
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Combining the logarithms in Eq. (I.6) 
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and eliminating the logarithm, the yield function may be expressed as 

0
'

'
1 






















p
p

M
f m

nn

n

y LL

L




 (I.8) 

 

APPENDIX II: K0 value 

The proposed model (E-SCLAY1S) allows for an analytical derivation of the K0 value 

as presented below. 

The rates of shear and volumetric plastic strains are related by the associated flow rule: 
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The plastic potential surface is given by Eq. (2), which may be rearranged to give 
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Differentiating Eq. (II.2) with q 
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and differentiating Eq. (II.2) with p’ (Eq. 20), the quotient between Eq. (II.3) and Eq. 

(20) gives the slope of the associated flow rule 
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Under confined one dimensional consolidation (K0 consolidation), the rate of horizontal 

strains is null and then 
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Assuming that the elastic strains are much smaller than the plastic strains, Eq. (II.5) may 

be approximate by 
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Substituting Eq. (II.4) into Eq. (II.1), and then into Eq. (II.6), the equation that 

implicitly gives ηK0 is obtained 
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K0 may be obtained from ηK0 

0

0
0 23

3

K

KK 





  (II.8) 

For nL=2 (Ψ=1), Eq. (II.7) reduces to equation (13) of Wheeler et al. [9]. 
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List of symbols 

uc  Undrained shear strength 

D Elastic stiffness matrix 

d Incremental operator 

e Void ratio 

eM Void ratio at critical state 

fy Function of the yield surface 

H Contractancy function 

H0, Hα, Hχ Hardening moduli 

K0NC Coefficient of lateral earth pressure at rest in normally consolidated conditions 

0K  Coefficient of lateral earth pressure 

M  Slope of the critical state line 

nL Contractancy or additional parameter of the model that controls the shape of the 

yield surface 

'p  Mean effective stress 

mp'  Preconsolidation pressure 

mip'  Intrinsic preconsolidation pressure:   1'' mmi pp  

q  Deviatoric stress 

 

  Inclination of the yield surface 

dα  Deviatoric fabric tensor 

ΔΛ Plastic multiplier 

ε Strain 

η Stress ratio: η=q/p' or p /dση  (tensor) 
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  Slope of swelling line from 'ln p  space 

  Slope of post yield compression line from 'ln p  space 

i  Slope of intrinsic post yield compression line from 'ln p  space 

  Specific volume 

 ’ Poisson’s ratio 

ξ, ξd Absolute and relative  effectiveness of destructuration 

'  Effective stress 

 Friction angle 

  Amount of bonding 

Ψ Intermediate parameter of the model to simplify equations 

ω, ωd Absolute and relative effectiveness of rotational hardening 

 

CSL Critical state line 

NCL Normal compression line 

OCR Overconsolidation ratio 

 

Subscripts/superscripts: 

 

0  Initial 

d,v  deviatoric, volumetric 

e,p  plastic 

T  matrix transpose 
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Table captions 

Table 1. Parameters for Kaolin clay [26] and Santa Clara clay [27] 
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Figure captions 

Figure 1. Yield surfaces of the SCLAY1S model [12]. 

Figure 2. Different shapes of the yield surface for E-SCLAY1S. 

Figure 3. E-SCLAY1 yield surface in general stress space (M=1.5, α=0.4). 

Figure 4. Euler backward implicit algorithm for the proposed model. 

Figure 5. Uniqueness of the CSL. 

Figure 6. Undrained triaxial stress paths: (a) With rotational hardening; (b) Without 

rotational hardening. 

Figure 7. Separation between NCL and CSL. 

Figure 8. K0NC stress paths. 

Figure 9. Isotropic E-SCLAY1: (a) K0NC prediction; (b) Yield surfaces. 

Figure 10. Predicion of cu for isotropically normally consolidated samples. 

Figure 11. Deviation in the prediction of yield points in soils with evolving anisotropy. 

Figure 12. Yield surfaces for several clays: (a) Winnipeg clay (data after [32]); (b) 

Otaniemi clay (data after [9]); (c) Drammen clay (data after [33]); (d) Pornic clay (data 

afer [33]). 

Figure 13. Influence of nL on soil stiffness: (a) Drained triaxial test simulations; (b) 

Stiffness ratio for confined compression and triaxial stress paths. 

Figure 14. Influence of nL on contractancy under drained shearing at constant mean 

effective stress (Laboratory data after Hattab and Hicher [34]). 

Figure 15. Undrained triaxial stress paths for Kaolin clay (data after [26]). 

Figure 16. Isotropically consolidated Kaolin clay (data after [26]): (a) stress–strain and 

(b) excess pore water pressure. 

Figure 17. Isotropically consolidated Santa Clara clay (data after [27]). 

Figure 18. K0-consolidated Santa Clara clay (data after [27]). 
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Figure 19. Yield surfaces for Bothkennar clay (data after [29]): (a) K0 and (b) 

isotropically consolidated. 

Figure 20. Reinterpretation of yield zone using arithmetic stress scale. Bothkennar clay, 

isotropically consolidated samples, compression tests (data after [29]). 
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Table 1. Parameters for Kaolin clay [26] and Santa Clara clay [27]. 

Parameters Kaolin  Santa Clara
M 1.05 1.35 
κ 0.05 0.0065 
λ 0.14 0.045 
ν' 0.2 0.2 
eref* 1.84 1.77 
α0NC** 0.40 0.52 
ω ≈0 200 
ωd 0.57 0.91 

*Reference pressure for the void ratio (1 kPa) 
**Using Wheeler et al. [9] 
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Figure 1. Yield surfaces of the S-CLAY1S model [12]. 
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Figure 2. Different shapes of the yield surface for E-SCLAY1. 
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Figure 3. E-SCLAY1 yield surface in general stress space (M=1.5, α=0.4). 

 



  44 

 

Get: initial stress 0'σ , strain increment εd  and state variables 

Calculate εd  

If ( %1.0εd ) determine sub increment 'n_sub' 

 Subdivide strain increment subndd n _/εε   
End If 
 

Do i = 1, n_sub 
 nt dd εε   and 0pdε    
 converged = .false. 
 While (not converged) Do 
  p

i
t
i

t
i ddd 11   εεε   

  t
i

t
i dd εDσ     

  t
i

tt
i dσσσ  0   

  Calculate yf  (yield function) 

  If ( 7101 yf ) Then 

   Purely elastic behaviour, Return 
   converged = .true. 
  End If 
   

  If ( 7101 yf ) Then 

            Calculate plastic multiplier d  in Eq. (13) 
            Calculate plastic strains pdε  
            Update state variables 
            converged = .false. 
  End If 
 End While 
End Do 
Return 
 

Figure 4. Euler backward implicit algorithm for the proposed model 
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Figure 5. Uniqueness of the CSL. 
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(a) With rotational hardening 
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(b) Without rotational hardening 

Figure 6. Undrained triaxial stress paths. 
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Figure 7. Separation between NCL and CSL. 
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Figure 8. K0NC stress paths. 
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Figure 9. Isotropic E-SCLAY1: (a) K0NC prediction; (b) Yield surfaces. 
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Figure 10. Predicion of cu for isotropically normally consolidated samples. 
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Figure 11. Deviation in the prediction of yield points in soils with evolving anisotropy. 
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Figure 12. Yield surfaces for several clays: (a) Winnipeg clay (data after [32]); (b) 

Otaniemi clay (data after [9]); (c) Drammen clay (data after [33]); (d) Pornic clay (data 

afer [33]). 
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(b) 

Figure 13. Influence of nL on soil stiffness: (a) Drained triaxial test simulations; (b) 

Stiffness ratio for confined compression and triaxial stress paths.
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Figure 14. Influence of nL on contractancy under drained shearing at constant mean 

effective stress (Laboratory data after Hattab and Hicher [34]). 
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Figure 15. Undrained triaxial stress paths for Kaolin clay (data after [26]). 
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(b) 

Figure 16. Isotropically consolidated Kaolin clay (data after [26]): (a) stress–strain and 

(b) excess pore water pressure.
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Figure 17. Isotropically consolidated Santa Clara clay (data after [27]). 
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Figure 18. K0-consolidated Santa Clara clay (data after [27]).
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Figure 19. Yield surfaces for Bothkennar clay (data after [29]): (a) K0 and (b) 

isotropically consolidated. 
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Figure 20. Reinterpretation of yield zone using arithmetic stress scale. Bothkennar clay, 

isotropically consolidated samples, compression tests (data after [29]). 

 


