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ABSTRACT 

This paper presents a new analytical criterion for brittle failure of rocks and heavily 

overconsolidated soils. Griffith’s model of a randomly oriented defect under a biaxial 

stress state is used to keep the criterion simple. The Griffith’s criterion is improved 

because the maximum tensile strength is not evaluated at the boundary of the defect but 

at a certain distance from the boundary, known as the critical distance. This fracture 

criterion is known as the Point Method, and is part of the Theory of Critical Distances, 

which is utilized in fracture mechanics. The proposed failure criterion has two 

parameters: the inherent tensile strength, σ0, and the ratio of the half-length of the initial 

crack/flaw to the critical distance, a/L. These parameters are difficult to measure but 

they may be correlated with the uniaxial compressive and tensile strengths, σc and σt. 

The proposed criterion is able to reproduce the common range of strength ratios for 

rocks and heavily overconsolidated soils (σc/σt=3-50) and the influence of several 

microstructural rock properties, such as texture and porosity. Good agreement with 

laboratory tests reported in the literature is found for tensile and low confining stresses. 

 

KEYWORDS: Brittle failure; crack; critical distance; failure criterion; rock strength. 
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NOTATION 

a,b  Major and minor semi-axes of an elliptical flaw 

a  Half-length of a crack 

m  Ratio of minor to major axis of an elliptical flaw 

mi Parameter of the Hoek-Brown criterion 

n  Porosity 

r Pearson’s correlation coefficient 

t  Time 

w  Moisture content 

G  Grain size 

L  Critical distance 

b  Angle between the direction of the major principal stress and x-axis 

σ  Normal stress 

σt  Uniaxial tensile strength 

σc  Unconfined compressive strength 

σ0  Inherent tensile stress 

τ  Shear stress 

 

Subscripts: 

avg  Average 

max  Maximum 

1,3  Major and minor principal stresses 

x,y  Cartesian coordinates 
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r,  Polar coordinates 

 

Sign convention: 

Compressive stresses are assumed as positive throughout the paper. 
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1. INTRODUCTION 

The development of failure criteria is of primary importance in engineering practice. 

They are used as simple rules to predict failure in brittle materials or yielding in ductile 

materials. Rocks behave as ductile materials at high confining compressive stresses, 

while at low confining stresses or under tension, they show brittle failure. The 

propagation of cracks, which act as stress risers in the material, leads to rock’s brittle 

behaviour. Crack propagation and damage are studied by the theory of fracture 

mechanics, which was initiated by Griffith (1921; 1924), focusing on brittle failure of 

glass. His work also included the development of a failure criterion, which will be 

explained in detail in the next section. 

 

The application of fracture mechanics to rocks historically evolved with that of the 

practice of rock mechanics and the ground control challenges arising from deep mining 

in South Africa. This required the detailed study of brittle rock failure together with the 

development of indirect tests to measure tensile strength and triaxial cells for systematic 

rock testing (Hoek 1965; Bieniawski 1967; Jaeger 1967). Since then, fracture mechanics 

and its application to rocks has progressed with focus on: different types of cracks 

(Bobet 2000), mixed modes of fracture (Shen and Stephansson 1993), fluid pressure, 

rock anisotropy, three-dimensional effects, friction between the lips of the crack, crack 

density, crack propagation (Kemeny 1991) and crack coalescence (Bobet 1998). Intact 

rocks share many common features with unreinforced concrete and, therefore, advances 

in the modelling of concrete fracturing (e.g. Karihaloo et al. 1993; Elices et al. 2000; 

Bažant 2002) are also relevant. In recent years, numerical approaches (e.g. Ingraffea and 
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Heuzé 1980; Wu and Wong 2012) have benefited from the increase in computing 

power. Despite this body of research, the most popular failure criterion for rocks is 

probably the Hoek-Brown shear criterion (Hoek and Brown 1980), which is based on 

empirical fitting of triaxial test results using an algebraic expression related to Griffith’s 

formulation (Hoek 1968), as commented in Section 2 below. The Mohr-Coulomb shear 

failure criterion, which employs cohesive and frictional strength components, and a 

tension cut-off to model the proper uniaxial tensile strength, is another simple 

alternative. There are some other empirical criteria, such as Johnston (1985), with 

higher degrees of freedom, i.e. more fitting parameters, and consequently, better 

agreement but higher uncertainty in the selection of the fitting parameters. Empirical 

criteria are generally used to study shear failure but they may also consider lower 

confining stresses, including brittle failure. Therefore, in the case of non-linear criteria, 

their curvature is partly caused by the brittle-ductile transition of the material under high 

confinement (Paterson and Wong 2005). 

 

Following the general idea of the Griffith’s criterion, some authors have also proposed 

advanced micromechanical models (e.g. Baud et al. 2014). The analysis of rock 

behaviour at the microscale level helps to understand and explain phenomena at the 

macroscopic level. One of the most powerful and recent advances in fracture mechanics 

is the development of the Theory of Critical Distances, or TCD (Taylor 2007). This 

theory allows an analysis of crack initiation using just stress fields, which is more 

convenient in rock mechanics than using energy dissipation concepts or stress intensity 

factors. A brief review of this theory is presented in Section 3. 
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In this paper, the theory of critical distances and a micromechanical model similar to 

that of Griffith are used to develop a simple failure criterion for brittle failure of rocks 

under a low confinement biaxial stress state. This model, despite its simplifying 

hypotheses, is theoretically based, uses rock parameters with physical meaning, and 

captures quite well the ratio between unconfined compressive strength and uniaxial 

tensile stress (σc/σt) observed in brittle rock failure. 

 

2. GRIFFITH’S CRITERION 

Griffith (1921; 1924) used thermodynamic concepts to study the growth of a thin crack 

due to an applied load. A key aspect of his analysis is that some energy is dissipated 

through the development of new crack faces as a crack grows. However, the so-called 

Griffith’s criterion for brittle failure does not use those thermodynamic concepts and is 

purely based on stresses, i.e. the stress field around an elliptical defect or flaw and the 

maximum tensile stress at the defect boundary that is necessary for crack initiation. 

Jaeger et al. (2007) clearly explained that, although both approaches are due to Griffith, 

they are fundamentally different, as the failure criterion assumes a “critical stress” at the 

defect boundary for crack initiation, rather than a criterion based on energy release. 

 

Griffith (1924) used the conceptual model of a material containing a randomly oriented 

thin elliptical flaw (Figure 1). This model simplifies the problem to two dimensions, 

neglects the interaction between adjacent flaws, and assumes a homogenous elastic 

material. It can be shown that very high tensile stresses occur at the boundary of a 

suitably oriented thin ellipse, even under compressive stress conditions (e.g. Maugis 
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1992). The selection of an elliptical flaw by Griffith was done to avoid the singularity in 

1/√r of the stresses at the tip of an infinitely sharp crack (Sneddon 1946). 

 

The development of the Griffith’s criterion slightly varies depending on the 

mathematical treatment of the stresses around the ellipse. For example, Hoek (1968) 

follows the original approach and presents the maximum tensile stress as a function of 

the normal and shear stresses. A summary of the derivation is given below. Hoek (1968) 

uses the local axes of the ellipse (where the x axis is aligned with the major axis; see 

Figure 1): 
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     
   




2sin2

2cos2

2cos2

31

3131

3131





xy

y

x

 (1) 

Using the solution developed by Inglis (1913) for the stresses at the boundary of an 

elliptical flaw, assuming that it is very flat, i.e. a very small ratio of the minor to major 

axes of the ellipse b/a=m, and neglecting terms of minor importance, the tangential or 

hoop stress at the boundary of the elliptical flaw and near its tip is given by the 

following approximate expression: 

 
 

22

2
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where α is the eccentric angle, which is related to the global polar angle, θ’: 

 m/'tantan    (3) 

Note that both a global polar coordinate system, centred at the centre of the elliptical 

cavity (r’, θ’), and a local polar coordinate system, centred at the focal point of the 

ellipse (r, θ), are used (Figure 2). 
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The value of α, i.e. the coordinate of the point at the cavity boundary and near the tip, 

that gives the maximum tensile stress is substituted in Eq. (2): 

 22
max, xyyym    (4) 

Griffith’s criterion assumes that a crack will initiate from the boundary of the elliptical 

flaw when the maximum tensile stress at the boundary (σθ,max, Eq. 4) reaches a limiting 

value, which is usually referred to as the local tensile strength of the material 

surrounding the elliptical flaw. Furthermore, this crack initiation is identified with 

“failure” of the rock. To avoid using the local tensile strength and the axis ratio, m, they 

are related to the uniaxial tensile strength, σt, applying Eq. (4) to the case of uniaxial 

tension (σy=σt and τxy=0): 

 tm  2max,   (5) 

Substituting Eq. (5) into Eq. (4), the equation of the Griffith’s criterion in the Mohr’s 

diagram is obtained: 

  yttxy   42  (6) 

Note that, in substituting a numerical value of the uniaxial tensile strength, σt, a negative 

sign has to be included in order to satisfy the sign convention adopted in this paper 

(compressive stresses are positive). 

 

The Griffith’s criterion may also be expressed in terms of principal stresses: 
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The criterion for crack initiation used in the Griffith’s model has been referred to as the 

Maximum Tangential Stress (MTS) criterion and has been used to determine the 

direction of crack propagation (Erdogan and Sih 1963). Nevertheless, it has long been 

recognised that this criterion requires another length constant to be strictly valid and to 

account for “size effects” (e.g. Williams and Ewing 1972; Lajtai 1972; Chang 1981); 

i.e. the influence of the absolute size of the defect or elliptical flaw usually called the 

critical distance. In the following, the theory of critical distances is briefly presented to 

provide the theoretical background of an applicable criterion for fracture initiation based 

on the stress field around a defect. 

3. THEORY OF CRITICAL DISTANCES 

In fracture mechanics, failure criteria may be considered as global or local fracture 

criteria (Bao and Jin 1993; Pluvinage 1998). The common example of global criteria is 

that used by linear-elastic fracture mechanics (LEFM) for the analysis of cracks, where 

failure occurs when the stress intensity factor reaches a critical value, known as fracture 

toughness: 

 ICI KK =  (8) 

On the contrary, local criteria use the stress value of a single point, line, area or volume 

close to the crack tip, but they do not globally consider the stress field through, for 

example, KI. Among local criteria, those criteria belonging to the Theory of Critical 

Distances (TCD) stand out. The TCD is essentially a group of methodologies, all of 

which use a characteristic material length parameter (the critical distance, L) when 

performing fracture assessments (Taylor 2007). The origins of the TCD date back to the 

middle of the twentieth century with the works of Neuber (1958) and Peterson (1959), 
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but it has been in the last years, driven by the proliferation of finite element stress 

analyses, that this theory has been scientifically analysed and applied to: different types 

of materials (metals, ceramics, polymers and composites); failure or damage processes 

(fracture and fatigue); and conditions (linear-elastic vs. elastoplastic). Examples include 

Taylor (2007), Cicero et al. (2012; 2013), Madrazo et al. (2012), Susmel and Taylor 

(2010), and Taylor and Wang (2000). Recently, the authors have successfully applied 

the TCD to two rock types, namely limestone and granite (Cicero et al. 2014). 

 

The critical distance may be obtained through the following expression: 

 
2

0

1











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L  (9) 

where KIC is the material fracture toughness and σ0 is a characteristic material strength 

parameter named the inherent strength, usually larger than the ultimate tensile strength 

(σt), which requires calibration. 

 

Among the different methodologies included within the TCD, two of them are 

particularly simple to apply: the Point Method (PM), also known as the Stress Method, 

and the Line Method (LM). Both of these are based on the stress field at the defect tip. 

Other methodologies, such as Finite Fracture Mechanics (FFM) and the Imaginary 

Crack Method are based on the stress intensity factor and their application is not so 

straightforward. In any case, as stated by Taylor (2007), the predictions made by all 

these methodologies are very similar, so that only the PM and the LM, those with a far 

simpler application, will be considered here. 
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The Point Method (PM) is the simplest methodology and it assumes that fracture occurs 

when the stress reaches the inherent strength (σ0) at a certain distance (rc) from the crack 

tip. Assuming linear-elastic behaviour, then based on the stress field at the crack tip at 

failure (Taylor 2007; Anderson 2004) and the definition of L (Eq. (9)), it is 

straightforward to demonstrate that rc equals L/2: 
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The PM failure criterion is therefore: 
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For comparison, the Line Method (LM) assumes that fracture occurs when the average 

stress along a line extending a certain distance, d, from the crack tip reaches the inherent 

strength, σ0. Again, from the stress field at the crack tip at failure and the definition of L, 

it is easy to demonstrate that d is equal to 2L: 
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Therefore, the LM failure criterion is: 

   
L

drr
L

2

0

02
1          (13) 

The TCD, applying the PM and the LM, allows the fracture assessment of components 

with any kind of stress riser to be performed. As an example, when using the PM it 

would be sufficient to perform two fracture tests on two specimens with different types 

of defects (e.g. sharp notch and blunt notch). The corresponding stress-distance 



 13

curves at fracture, which can be determined by using analytical solutions or finite 

element methods, cross each other at a point with coordinates (L/2,σ0), as shown in 

Figure 3. The prediction of the fracture load of any other component made of the same 

material and containing any other kind of defect would require the definition of the 

corresponding stress field, the fracture load being that one for which Eq. (11) is 

fulfilled. In some cases with linear-elastic behaviour at both the micro and the macro 

scales, σ0 coincides with σt and the application of the TCD is even simpler, given that 

there is no need to calibrate σ0  and L (directly provided by Eq. (9) once both KIC and σt 

are known). 

 

Despite the potential of the TCD for the analysis of fracture processes, to date the 

application of this theory to rocks has been limited. To the knowledge of the authors, 

Lajtai (1972) was the first author to apply the PM to rocks. He successfully reproduced 

rock fracture around a circular defect using the stress gradient at the defect boundary to 

calculate the stress at the critical distance. Lajtai (1972) considered the PM as an 

approach that accounts for the stress redistribution across a process zone ahead of the 

crack tip. Another successful application of the PM has been done by Ito and Hayashi 

(1991) and Ito (2008) to study hydraulic fracturing from a wellbore. These applications 

involve Mode I fracturing (tension), where the crack propagates along its plane 

following a straight path; the TCD was originally developed for Mode I fracturing 

(Taylor 2007). 

 

In rocks, compressive and shear stresses are common and lead to mixed modes of 

fracture. However, crack initiation is always caused by tensile stresses and crack 
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propagation follows a pure Mode I fracturing path (Cotterell 1965; Cotterell and Rice 

1980). Based on this, the PM has been successfully applied to mixed mode fracturing 

(Williams and Ewing 1972; Smith et al. 2001), assuming that the maximum tangential 

stress is reached along the fracturing path, which forms an angle θ0 with the flaw plane. 

The application of the PM to mixed modes of fracture is illustrated in Figure 4. The 

method is equivalent to that used in pure mode I (Eq. 10), but now, the direction of the 

maximum tangential stress, θ0, has to be found. Smith et al. (2001) called the method 

the Generalised Maximum Tangential Stress (GMTS) criterion as an extension of the 

MTS criterion (Erdogan and Sih 1963). Recently, the authors of the GMTS and their co-

workers have extensively applied the method to different materials, including Harsin 

marble (Aliha et al. 2012) and Guiting limestone (Aliha et al. 2010). It is worth noting 

that these authors always assume that the inherent tensile strength (σ0) coincides with σt 

and in this paper it will be assumed, as shown later, that the tensile strength at the macro 

scale (σt) is lower than the inherent tensile strength (at the micro scale) because σt is 

influenced by the small-scale flaws and microfractures present in the intact rock. 

 

The physical meaning of L and σ0 is not fully clear, but it should be somehow related 

with the material microstructure (Figure 5). The high tensile stresses near the defect tip 

predicted by the mathematical theory of elasticity, which assumes a perfectly 

homogenous material, are not realistic. What is more probable is that those stresses are 

redistributed over an area near the defect tip; several authors (e.g. Dyskin 1997; Zhou 

and Gou 2009) refer to this area as the fracture process zone (FPZ). The redistribution 

of stresses near the defect tip may be related to local plasticity and/or microstructural 

features, such as the grain size. So, some proportionality between the critical distance 
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and the grain size is expected. Moreover, Figure 6 presents the physical observation on 

which the TCD is based: crack propagation is more of an intermittent process than a 

continuous phenomenon. That is, it takes place through small crack size increments 

whose length is, precisely, two times the critical distance (2L) and constitutes a material 

parameter. This is the basis of Finite Fracture Mechanics (FFM), the methodology 

belonging to the TCD that provides a more satisfactory physical (mechanistic) 

explanation of the fracture process. Details on this may be found in Taylor (2007). 

 

Taylor (2007) also presents a summary of works that have analysed the physical 

meaning of the critical distance. The first comment on this is that, depending on the 

material being analysed, L may take values that range from the atomic separation 

(Pugno and Ruoff 2004) up to meters (Dempsey et al. 1999) for certain specific 

situations such as nanomaterials and sea ice, respectively, with typical values from tens 

of microns up to a number of centimetres. Taylor (2007) distinguishes here two 

situations when trying to relate the critical distance to the material characteristics: small 

values of L (e.g. ceramics and steels) are simply related to the microstructure, especially 

to the grain size (D), which acts as a barrier to crack propagation and thus generates the 

above mentioned discontinuous crack growth; large values of L are associated with a 

damage zone (e.g. composites and certain polymers). 

 

Concerning the published relations between the critical distance and the microstructure, 

Usami et al. (1986) provided relations on which the critical distance ranges between one 

and ten times the grain size (D) in ceramics. The values of L in rocks obtained in 

(Cicero et al. 2014; Ito and Hayasi 1991; Dempsey et al. 1999) have the same order of 
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magnitude of the grain size. In the case of metals, simple relations between grain size 

and the critical distance have also been found. In Wilshaw et al (1968), L and D are 

equal, whereas Yokobori and Konosu (1977) obtained L=1.2D for the same material 

subjected to different heat treatments, and then, presenting different grain sizes. 

 

To conclude, the TCD may be considered as an extension of LEFM. Therefore, it shares 

some of the advantages of LEFM: it can be used to predict brittle failures that happen 

from different micromechanisms. On the other hand, the TCD also has some of the 

limitations of LEFM: basically, it is an elastic approach, although its application to the 

analysis of ductile fracture in metals has provided good results (Susmel and Taylor 

2008). 

 

4. PROPOSED FAILURE CRITERION 

The Griffith’s criterion is modified here using a criterion for fracture initiation that 

considers the critical distance based on the PM. Therefore, the proposed criterion shares 

most of the simplifying assumptions assumed when applying Griffith’s criterion: 

- A randomly oriented flaw is considered; 

- The problem is simplified to two dimensions and the influence of the 

intermediate stress is neglected; 

- Fracture initiation is identified with “failure” of the rock; 

- Fracture propagation is not assessed; 

- Crack closure is not considered; 
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- Dry static conditions are assumed. 

 

The conceptual model by Griffith (Figure 1) is slightly modified because now there is 

no need for an elliptical cavity and, to simplify the stress field around the defect, a sharp 

crack is considered, which is more damaging for the strength of the material than an 

elliptical or circular defect. In any case, the results for fracture initiation of a sharp crack 

and a very flat elliptical cavity are the same because notch effects are not visible for 

notch radii considerably smaller than the critical distance (Taylor 2007). 

 

Maugis (1992) presents a detailed analysis of the stresses and displacements around 

cracks and elliptical cavities. The common approximate solution for the tangential or 

circumferential stress in the neighbourhood of the crack tip is: 
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This relationship is written as a function of the normal and shear stresses on the crack 

plane (σy and τxy). Please, note that σy and τxy are far-field stresses. This approximation is 

known as the Williams series expansion, and the first term was given by Williams 

(1957). Here, for the sake of simplicity, only the two first terms will be used. The 

second term does not depend on r, and is usually called the constant term or the T-

stress. Some authors have discussed improved accuracy including that of the third term 

(Ayatollahi and Akbardoost 2013) or using an exact solution (Maugis 1992). Eq. (14) 

may be expressed using stress intensity factors (SIF) 
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or principal stresses 

 
 

     arf
r

a

r
a









2
31

2
31

2
3

2
1

3

sin2sin
2

cos
2

sin2sin
22

3

cossin
2

cos
2

 (16) 

The maximum tangential or hoop stress at the crack tip (Figure 4) and the fracture 

initiation angle, θ0, is given when 

 0
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So, differentiating Eq. (14) 
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As shown by Maugis (1992), τrθ is not exactly zero in this direction, and consequently, 

at a distance r from the crack boundary σθ is no longer a principal stress as it is at the 

crack boundary. The stress trajectory starting from the crack tip turns rapidly, and its 

tangent at a distance r/a is not exactly directed towards the crack tip. However, Eq. (18) 

is a fair approximation to evaluate θ0.  

 

Application of the PM (Eq. 11) to Eq. (14) gives 
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where θ0 is implicitly given by Eq. (18) at r=L/2 (Figure 4). 
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Rearranging terms in Eq. (19), the proposed failure criteria may be expressed as 
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Following Griffith’s approach, the critical tensile strength, σ0, may be expressed in 

terms of the tensile strength, σt, applying Eq. (18) and (19) to that case (σy=σt and τxy=0), 

the direction is θ0=0 and  

 tL
a 0          (21) 

Note that tensile strengths must be negative as compressions are considered positive 

throughout the paper. Combining Eq. (20) and (21), the resulting equation is 
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The proposed failure criterion (Eq. 18 and 20 or 22) is compared with the Griffith’s 

criterion (Eq. 6) in Figure 7 in a Mohr’s diagram. Similar comparison may be done 

using the triaxial stress space (Figure 8). The proposed failure criterion using principal 

stresses may be obtained from Eq. (16). Some relevant features of the proposed criterion 

are: 

 The failure envelope depends on the crack length and the critical distance (a/L). 

 The shape of the failure envelope varies with a/L from a near straight line to a 

near parabolic curve (Figure 7). 

 The slope of the failure envelope in the triaxial stress space is proportional to the 
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strength ratio (σc/σt). 

 The uniaxial compressive and tensile strengths (Eq. 21) decrease with a/L 

(Figure 9). 

 The strength ratio varies with a/L from less than 3 up to more than 50 (Figure 

10). 

 The proposed criterion depends on microstructural properties, namely σ0 and 

a/L, which are difficult to measure, but the failure criterion may also be obtained 

from σt and σc. 

 Similar to Griffith’s criterion, the proposed model is developed under important 

simplifying assumptions. However, introducing the critical distance notably 

improves the predictive capabilities of the failure criterion. It also accounts, at 

least indirectly, for some microstructural rock features, such as grain size and 

porosity. 

 

5. COMPARISON AND DISCUSSION 

5.1. Input parameters 

The input parameters of the proposed criterion (Eq. 18 and 20) are σ0 and a/L. Based on 

the TCD, the critical distance, L, may be calibrated using any of the following 

approaches: 

 Perform several fracture toughness tests with different notch radii and get the 

value of the critical distance that gives the best fitting of the results (e.g. Cicero 

et al. 2014). 
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 Perform two fracture toughness tests with two notch radii and get the stress 

fields around the defect tip (using either analytical solutions or numerical 

methods). The intersection between these two stress fields corresponds to half 

the critical distance and the inherent strength (see Figure 3). 

Once the value of the critical distance is obtained, the inherent strength, σ0, may be 

obtained from Eq. (9) using the material fracture toughness, KIC. Lastly, to get the a/L 

ratio, it is necessary to estimate the length of the initial or pre-existing cracks (2a), 

which requires the microstructural analysis of the rock sample. 

 

Alternatively, σ0 and a/L may be correlated with σc and σt. The mathematical 

relationships are complex and, therefore, for the sake of simplicity they may be 

graphically obtained using Figures 9 and 10. For example, a/L may be obtained from 

the σc/σt ratio using Figure 10 or the following approximate expression 

 
5.2

49



tcL

a
         (23) 

and once a/L is assessed, σ0 is obtained using Eq. (21) or Figure 9. 

 

In the future, empirical correlations of the critical distance with the type of rock and the 

grain size may be developed. 

 

5.2. Brazilian test 

Direct tensile tests are difficult to perform, and they are usually engaged with pre-

mature failure due to gripping end effects. Therefore, the tensile strength is usually 
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obtained from indirect tests, such as the Brazilian splitting test. Many of the tensile 

strengths cited in literature were obtained using this test. In this test, failure occurs by 

tension along the vertical axis, aligned with the opposite line loads, W. Using the theory 

of elasticity, the stresses along this vertical diameter are (e.g. Jaeger et al. 2007): 
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where R is the radius of the Brazilian disk, and y is the vertical axis centred in the disk. 

At the centre of the disk (y=0), the two stresses are the major and minor principal 

stresses and equal to 

 3113 33;  
R
W

R
W

yx    (24) 

So, the results of a Brazilian test in principal stress space are not aligned with the 

horizontal axis (σ1 =0), as pointed out, for example, by Johnston (1985). Eq. (24) may 

be used as an approximation. 

 

5.3. Failure envelope 

The proposed failure criterion is here compared with published laboratory 

measurements. It should be clarified that there are many published data, but here the 

study limits to high-quality tests and well-documented rocks. Furthermore, the proposed 

criterion is based on brittle failure, so only tension or low confinement pressures are 

considered. For intermediate and high confinement stresses, shear failure and ductile 

behaviour influences rock strength. 

 

Westerly granite is one of the most investigated rocks, for example, Brace (1964) 
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presented extension and compression triaxial tests performed on dog-bone-shaped 

cylindrical specimens. Later, Hopkins (1986) performed similar extension triaxial tests 

at several temperatures and dry/wet conditions. Only dry specimens at room 

temperature are considered. Haimson and Chang (2000) tested Westerly granite under 

true triaxial conditions; only the provided data for conventional compression triaxial 

tests (σ2 = σ3) are used. Using these data, the parameters of the proposed criterion (σ0 

and a/L) were varied to give the best fit (Figure 11a). Similar results would be obtained 

using uniaxial compressive and tensile strengths (σc and σt). For brittle failure (σ3 < 50 

MPa), the best fit of the proposed criterion provides a squared Pearson’s correlation 

coefficient of r2=0.972, showing a good agreement with experimental data for low 

compressive confining stresses. For tensile stresses, the laboratory measurements 

present some scatter because of the difficulties associated with this type of test. 

 

Lac du Bonnet granite is another well documented rock (e.g. Carter et al. 1991). It is a 

strong, very brittle rock, and consequently, the best fit value of a/L is very low, namely 

3.7 (Figure 11b). The proposed criterion fits well (r2=0.998) the measurements for low 

confinement pressures (σ3 < 15 MPa), when tensile stresses dominate rock failure. 

 

Heavily overconsolidated soils also exhibit brittle behaviour at low confining pressures. 

Bishop and Garga (1969) performed compression and extension triaxial tests on London 

clay. The best fit of their experimental results provides a value of a/L=14.5 (Figure 

11c). The a/L parameter is highest in clays and weak clayey rocks, which is related with 

the grain texture as discussed in the following. 
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Figure 12 shows the best fits of the experimental data by Carter et al. (1991) on Lac du 

Bonnet granite using the proposed analytical criterion for brittle failure and using the 

Hoek-Brown empirical criterion. For the proposed criterion, the best fit was done 

considering only brittle failure (σ3 < 15 MPa), while the Hoek-Brown criterion allows to 

consider shear failure at higher confining stresses. However, the Hoek-Brown criterion 

underestimates tensile strengths as discussed, for example, by Cai (2010). The fitting of 

the experimental results in Figure 12 with the Mohr-Coulomb shear criterion depends 

on the confining stress range considered; similar results to the proposed criterion would 

be obtained if only brittle failure points are considered. 

 

In summary, the proposed failure criterion gives a reasonable estimation of laboratory 

measurements for tensile fracture, i.e. below the brittle–ductile transition, which is also 

called the spalling limit (around σ1/σ3=10). So, the criterion may be applied for those 

situations involving brittle failure, such as intact rock brittle failure, spalling or intact 

rock bridges or pillars. 

 

5.4. Crack initiation 

The proposed criterion follows the same approach as the Griffith’s criterion and, 

therefore, it is technically a crack initiation criterion. There are few data on crack 

initiation in the triaxial stress space. The experimental data on Lac du Bonnet granite by 

Nicksiar and Martin (2013) are here used to validate the proposed theoretical criterion 

(Figure 13). The unconfined compressive strength reported by Nicksiar and Martin 

(2013) (σc=220 MPa) agrees well with that of Carter et al. (1991). The differences in 

tension are likely to be caused by the scatter of the experimental data because in tension, 
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crack initiation is quickly followed by unstable crack propagation and failure (e.g. Cai 

2010). 

 

The best fit parameters of the proposed criterion for the peak strength values used in 

Figure 11b, namely σ0=-29 MPa and a/L=3.7, are also considered in Figure 13. For the 

crack initiation values, the proposed criterion was adjusted assuming that the inherent 

tensile strength does not change (σ0=-29 MPa), and the value of a/L was varied to give 

the best fit (a/L=7). The best fits of the proposed criterion match reasonably well the 

crack initiation and peak strength experimental values for low confining stresses (σ3 < 

15 MPa). Squared Pearson’s correlation coefficient is lower for crack initiation values 

(r2=0.962 for crack initiation and r2=0.998 for peak strength), but that is caused by the 

slightly larger scatter of the experimental data for crack initiation. Using best fit values 

of the model parameters or the uniaxial compressive and tensile peak strengths or crack 

initiation values, the proposed criterion is able to match experimental data for both peak 

strength and crack initiation. However, if the model parameters (σ0 and a/L) are 

experimentally measured as presented in Section 5.1, the proposed criterion would give 

an estimation of the crack initiation values only. 

 

5.5. Texture and strength ratio 

The range of strength ratios of the proposed failure criterion (σc/σt=3-50) covers that 

usually measured in rocks and overconsolidated soils (e.g. Johnston 1985). The constant 

mi of the Hoek and Brown (1997) criterion is related to the strength ratio. Its value for 

different type of rocks is presented in Table 1 (Hoek and Brown 1997). The constant mi 

and, consequently, the strength ratio, are somehow related to the grain size. Fine 
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textures usually correspond to lower values of mi and lower strength ratios. That trend is 

especially evident for sedimentary clastic rocks. In those rocks, the micromechanical 

model of Figure 5 seems particularly valid. So, small grain sizes correspond to smaller 

critical distances, and consequently, higher a/L ratios. Since a/L is inversely 

proportional to the strength ratio in the proposed criterion, the predicted strength ratios 

agree with the trend in Table 1. However, the size of existing cracks, 2a, may also vary 

with grain size (e.g. Wong et al. 1996) and other factors, such as porosity or stress-

induced microfracture damage during core drilling (i.e., sample disturbance; Eberhardt 

et al. 1999). 

 

Using the micromechanical model of Figure 5 and assuming that most cracks are related 

to grain boundaries, the critical distance would be related to the minimum grain size and 

the crack length to the maximum grain size, because a lower critical distance and a 

higher crack length would be prone to fracture at lower stress thresholds. So, the a/L 

parameter of the proposed model is proportional to the variance of the grain size 

distribution curve. In this way, the proposed model predicts that the rock strength 

decreases with a/L (Figure 9), and consequently with the heterogeneity of grain sizes. 

The compressive strength (Figure 9b) is more severely affected than the tensile strength 

(Figure 9a). Experimental data after Hatzor et al. (1997) are presented in Table 2, 

showing the different values of σc of two samples with similar percentage of dolomite 

and porosity but different grain size distributions. The sample with the more uniform 

grain size distribution (AD43) provides the higher strength. Similar to the grain size 

distribution, the aspect ratio of the grains also influences the rock strength (Tandon and 

Gupta 2013). 
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The proposed model shows that the rock strength, particularly in compression (Figure 

9), depends not on the grain size but on its heterogeneity, i.e. grain size distribution or 

a/L ratio. Nicksiar and Martin (2014) have also reached this conclusion using numerical 

models. Their results may be correlated with those predicted by the proposed model 

(Figure 14). For the purpose of comparison, the sorting coefficient is associated with the 

a/L ratio along the x-axis, to demonstrate the general trend that strength decreases with 

the grain size heterogeneity. 

 

a/L ratio is difficult to estimate but the crack length (2a) may be several times the grain 

size (Hopkins 1986), which is related to the critical distance. The maximum and the 

average grain sizes of Westerly granite are 0.75 and 0.5 mm, respectively (Brace 1964). 

Its fracture toughness is around KIC=1.4 MPa·m1/2 (Nasseri et al. 2009). Using the fitted 

values in Figure 11a of σ0 =-40 MPa and a/L=5, the critical distance (Eq. 9) and the 

crack length may be estimated (2L=0.78 mm and 2a=3.9 mm). Although crack length is 

difficult to measure, some illustrative images (Figure 15) are provided, for example, by 

Chen (2008). Similar analysis may be done for Lac du Bonnet granite, whose fracture 

toughness is KIC=2.45 MPa·m1/2 (Li and Lajtai 1998). Using the fitted values in Figure 

11b (σ0 =-29 MPa and a/L=3.7), the critical distance and the crack length are obtained, 

2L=4.5 mm and 2a=16.8 mm, which are in the range of the rock grain size, namely 0.5-

20 mm (Carter et al. 1991). 

 

5.6. Porosity 

As reported by many authors (e.g. Tugrul and Zarif 1999), rock strength decreases 
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with its porosity. This effect seems obvious and may be considered in the proposed 

model equating pore size to crack length. Rocks with higher porosity are expected to 

have longer cracks. The experimental data on arenites for different porosities by Vernik 

et al. (1993) are fitted with the proposed criterion assuming different crack lengths 

(Figure 16). Although a detailed comparison is not possible because of the lack of data 

for tensile stresses, the proposed criterion captures well the decrease of strength with 

increasing porosity. 

 

5.7. Sample size and rock weathering 

The influence of sample size on rock strength could be explained using the Griffith’s 

criterion based on the probability of having a crack critically oriented. With the 

proposed criterion, that can be improved using the length of the critically oriented crack. 

As the sample diameter increases, the probability of having a longer crack increases, 

and consequently, a/L increases. That effect is shown in Figure 17 for an Australian 

coal (Medhurst and Brown 1998). As there are few laboratory data, the proposed fitting 

by Medhurst and Brown (1998) using the Hoek-Brown (1997) criterion is also shown, 

as well as an estimation of rock mass strength. The proposed criterion has been fitted 

varying just a/L. A slightly better fitting would be achieved if σ0 were also changed. 

Rocks are not perfectly homogeneous, so σ0 varies, and the probability of having a 

weaker zone in a bigger specimen is also higher. Ultimately, that value is affected by 

rock weathering for rock mass. 

 

A set of well-documented Brazilian and triaxial tests in a weak mudstone from 

Melbourne are provided by Johnston and Chiu (1984). Rock strength decreases with the 
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moisture content, as rock weathering increases (Figure 18). Rock weathering is 

expected to decrease the internal tensile strength, σ0, and increase crack length, 2a. The 

fitting of the proposed criterion captures those trends (Figure 18). 

 

6. CONCLUSIONS 

A new criterion for brittle failure has been developed introducing the critical distance in 

the Griffith’s model of a randomly oriented crack under a biaxial stress state. The 

proposed criterion is analytical and based on intrinsic properties, such as the inherent 

tensile strength, σ0, and the half-length of the crack to the critical distance ratio, a/L. 

These parameters are difficult to measure but they may be correlated with the uniaxial 

compressive and tensile strengths, σc and σt.The proposed criterion accounts for the 

influence of the crack length (“size effect”) and is able to reproduce the common range 

of strength ratios for rocks and heavily overconsolidated soils (σc/σt=3-50). 

 

For the sake of simplicity, the proposed failure criterion ignores several processes, such 

as crack propagation, crack closure, interaction between cracks and influence of the 

intermediate principal stress. However, a reasonable agreement with laboratory 

measurements reported in literature is found for tensile and low confining stresses. 

Furthermore, the model is able to reproduce, by means of its parameters σ0 and a/L, the 

influence of several microstructural rock properties, such as texture and porosity. It also 

reproduces the influence of sample size and rock weathering. 
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TABLE CAPTIONS 

Table 1. Values of the constant mi of the Hoek-Brown criterion (Hoek and Brown 1997). 

Table 2. Influence of grain size distribution on σc (Hatzor et al. 1997). 
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Table 1. Values of the constant mi of the Hoek-Brown criterion (Hoek and Brown 

1997). 

Rock type Class Group 
Texture 

Coarse Medium Fine Very fine

Sedimentary 

Clastic  
Conglomerate

(22) 
Sandstone 

19 
Siltstone 

9 
Claystone

4 
  ------- Geywacke (18) -------- 

Non-
clastic 

Organic ------- Chalk 7 -------- 
 ------- Coal (8-21) -------- 

Carbonate
Breccia 

(20) 

Sparitic 
Limestone

(10) 

Micritic 
Limestone 

8 
 

Chemical  
Gypstone 

16 
Anhydrite 

13 
 

Metamorphic 

Non-foliated 
Marble 

9 
Hornfels 

(19) 
Quartzite 

(24) 
 

Slightlty foliated 
Migmatite 

(30) 
Amphibolite

25-31 
Mylonites 

(6) 
 

Foliated* 
Gneiss 

33 
Schists 

4-8 
Phyllites 

(10) 
Slate 

9 

Igneous 

Light 

Granite 
33 

 
Rhyolite 

(16) 
Obsidian

(19) 
Granidiorite

(30) 
 

Dacite 
(17) 

 

Diorite 
(28) 

 
Andesite 

19 
 

Dark 

Gabbro 
27 

Dolerite 
(19) 

Basalt 
(17) 

 

Norite 
22 

   

Extrusive pyroclastic 
Agglomerate

(20) 
Breccia 

(18) 
Tuff 
(15) 

 

Notes: Values in parenthesis are estimates. 
*These values are for intact rock specimens tested normal to bedding or foliation. 
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Table 2. Influence of grain size distribution on σc (Hatzor et al. 1997). 

Sample Porosity 
(%) 

Mineralogy 
% dolomite 

Dmax

(µm) 
Davg 
(µm) 

Dmax/Davg σc 

(MPa) 
AD5 5.8 70 450 35 12.9 98 
AD43 5.4 75 64.3 24.4 2.6 274 

Dmax: Maximum grain size ; Davg: Average grain size. 



 39
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Figure 1. Griffith’s conceptual model. 

Figure 2. Global and local polar coordinate systems. 

Figure 3. Obtaining L and σ0 parameters. 

Figure 4. Application of the point method. 
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Figure 6. Discontinuous crack growth, on which the TCD (FFM) is based. 

Figure 7. Failure criterion in Mohr’s diagram. 

Figure 8. Failure criterion in principal stress space. 
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Figure 11. Application of failure criterion to: (a) Westerly granite; (b) Lac du Bonnet granite; (c) London 

clay. 

Figure 12. Comparison with Hoek-Brown criterion. 

Figure 13. Comparison between crack initiation (data after Nicksiar and Martin 2013) and peak strength 

values (data after Carter et al. 1991) on Lac du Bonnet granite. 

Figure 14. Influence of grain size distribution or a/L on uniaxial compression. 

Figure 15. Typical microcracks observed in an intact specimen of Westerly granite (Chen 2008): (a) 

Crossed nicols; (b) Observation by fluorescent method (brightest parts correspond to cracks). 

Figure 16. Influence of porosity on rock strength. 

Figure 17. Influence of sample size. 

Figure 18. Influence of moisture content on mudstone strength. 
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Figure 1. Griffith’s conceptual model. 
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Figure 2. Global and local polar coordinate systems. 
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Figure 3. Obtaining L and σ0 parameters. 
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Figure 4. Application of the point method. 
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Figure 5. Stress redistribution near the defect tip. 
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Figure 6. Discontinuous crack growth, on which the TCD (FFM) is based. 
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Figure 7. Failure criterion in Mohr’s diagram. 
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Figure 8. Failure criterion in principal stress space. 
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Figure 9. Variation of tensile and compressive strengths. 
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Figure 10. Compressive/tensile strength ratio. 



 45

0

200

400

600

800

1000

-20 0 20 40 60 80 100

Brace (1964)
Hopkins (1986)
Haimson and Chang (2000)

Brittle-ductile
transition

r2=0.972

(a) Westerly granite


0
=-40 MPa

a/L=5

Minor principal stress, 
3
 (MPa)

M
aj

or
 p

rin
ci

pa
l s

tr
es

s,
 

1 (
M

P
a)

 

 

0

100

200

300

400

500

600

-20 -10 0 10 20 30 40

Carter et al. (1991)

r2=0.998

Brittle-ductile
transition

Ductile failure

(b) Lac du Bonnet
     granite


0
=-29 MPa

a/L=3.7

Minor principal stress, 
3
 (MPa)

M
aj

or
 p

rin
ci

pa
l s

tr
es

s,
 

1
 (

M
P

a)

 

 



 46

0

100

200

300

400

-40 -30 -20 -10 0 10 20 30 40

Bishop and Garga (1969)

r
2
=0.985

0
=-125 kPa

a/L=14.5

(c) London clay

Minor principal stress, 
3
 (kPa)

M
aj

or
 p

ri
nc

ip
al

 s
tr

es
s,

 
1 (

kP
a

)

 

Figure 11. Application of failure criterion to: (a) Westerly granite; (b) Lac du Bonnet 

granite; (c) London clay. 
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Figure 12. Comparison with Hoek-Brown criterion. 
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Figure 13. Comparison between crack initiation (data after Nicksiar and Martin 2013) 

and peak strength values (data after Carter et al. 1991) on Lac du Bonnet granite. 
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Figure 14. Influence of grain size distribution or a/L on uniaxial compression. 
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Figure 15. Typical microcracks observed in an intact specimen of Westerly granite 

(Chen 2008): (a) Crossed nicols; (b) Observation by fluorescent method (brightest 

parts correspond to cracks). 
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Figure 16. Influence of porosity on rock strength. 
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Figure 17. Influence of sample size. 
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Figure 18. Influence of moisture content on mudstone strength. 


