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ABSTRACT

Traditional approaches for assessing wave climate variability have been broadly focused on aggregated or

statistical parameters such as significant wave height, wave energy flux, ormeanwave direction. These studies,

although revealing the major general modes of wave climate variability and trends, do not take into con-

sideration the complexity of the wind-wave fields. Because ocean waves are the response to both local and

remotewinds, analyzing the directional full spectra can shed light on atmospheric circulation not only over the

immediate ocean region, but also over a broad basin scale. In this work, the authors use a pattern classification

approach to explore wave climate variability in the frequency–direction domain. This approach identifies

atmospheric circulation patterns of the sea level pressure from the 31-yr long Climate Forecast System Re-

analysis (CFSR) and wave spectral patterns of two selected buoys in the North Atlantic, finding one-to-one

relations between each synoptic pattern (circulation type) and each spectral wave energy distribution

(spectral type). Even in the absence of long-wave records, this method allows for the reconstruction of long-

term wave spectra to cover variability at several temporal scales: daily, monthly, seasonal, interannual, de-

cadal, long-term trends, and future climate change projections.

1. Introduction

The surface wave field at any point in a wide basin is

the result of the superimposition of the local wind waves

and one or more swells propagating from distant sour-

ces. As a result, wave spectra often yield two or more

wave energy peaks that are commonly ignored when the

entire spectrum is treated as one wave system. For this

reason, when analyzing wave climate in mixed seas–

dominated areas by means of spectral parameters only,

some results may be misleading. This lack of infor-

mation is more evident when dealing with wave statistics

or wave climate variability studies.

In recent years, wave spectra characterization has

gained considerable relevance as a result of increasing

demand for detailed wave information from the marine

renewable energy industry. Large efforts have been made

in order to offer more comprehensive wave spectrum

characteristics, most of them focused on the partitioning

of the directional spectrum into components (sea and

swell) that physically represent uncorrelatedwave systems

(Gerling 1992; Wang and Hwang 2001). This approach,

although being useful for some specific applications,

relies on the ability to tune various adjustable parame-

ters. On the other hand, because the number of peaks in

the directional spectrum is not always the same, inde-

pendent wave system statistics may not correctly de-

fine the real picture of the whole ocean wave energy

distribution.

Since the 1970s, the synoptic climatology (Barry and

Perry 1973) has facilitated the understanding of the local

behavior of a wide range of geophysical variables and its

relation with synoptic-scale atmospheric circulation

patterns. Nowadays, most of the climatic oscillating

modes like ENSO, the Arctic Oscillation (AO), and

others are obtained by means of principal component

analysis (PCA), which is especially useful in reducing

the dimensionality of complex spatial patterns like, for

example, the sea level pressure (SLP) fields in the North

Atlantic (NA). This linear approach assumes that pre-

ferred atmospheric circulation states come in pairs, in

which anomalies of opposite polarity have the same

spatial structure (Hurrell and Deser 2009).

An additional or complementary approach is the

cluster analysis, which is a nonlinear multivariate sta-

tistical technique that groups together the target spatial

fields of a geophysical variable into a small number of
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representative states or regimes. Several statistical

methods have been developed in the field of data mining

to efficiently deal with huge amounts of information.

These techniques extract features from the data, pro-

viding a more compact and manageable representation

of some of the important properties contained in the

multivariate space (Camus et al. 2011b). Clustering

methods have been applied in the field of meteorology

identifying atmospheric patterns and deriving relations

with local precipitation (Cavazos 2000; Gutierrez et al.

2005), as well as in the field of oceanography in order to

select the most representative multivariate sea states for

nearshore wave climate characterization (Camus et al.

2011a). Other examples of clustering application can be

found in Izaguirre et al. (2012) where by means of the

self-organizing maps algorithm, the authors relate ex-

treme wave height anomalies in the NA with certain

identified atmospheric situations.

A few studies assessing spectral wave climate variability

have been found in the literature, basically because spec-

tral buoy records are not long enough to cover an entire

climate period of at least 30 years. Bromirski et al. (2005)

used PCA techniques to find SLP modes over the North

Pacific, relating these modes to the total energy contained

in several frequency bands in selected buoys in the North

Pacific (short-period waves, medium, and long period),

assuming different spatial origins for each component.

Seasonal, interannual, and long-term temporal scales were

then addressed, enhancing the effect of El Niño phenom-
ena on the wave spectrum structure in the North Pacific.
Our proposed analysis relies on the directional wave

records of two buoys in the easternNA (Fig. 1) that are the

target points formost of thewave energy propagating from

west to east in this basin. As these records are not long

enough to correctly capture the whole wave climate vari-

ability (less than 10 years), we combine clustering tech-

niques looking for recurrent measured wave spectrum

types (ST) and circulation types (CT) from the Climate

Forecast System Reanalysis (CFSR; Saha et al. 2010),

establishing unambiguous relations between them. Once

the relations between atmospheric patterns and spectrum

types are established, this newmethod allows reconstructing

wave spectra time series during the atmospheric reanalysis

temporal domain and thus exploring seasonal to long-term

variations of wave energy in the frequency–direction do-

main. Working with the whole spectrum discloses some

nuances of wave climate variability in the NA that would

remainhidden if conventionalwave statistical analysis based

on aggregated parameters were used.

The rest of this paper is organized as follows: In

section 2, the buoy data used to characterize spectral

wave climate and the SLP fields to find recurrent atmo-

spheric patterns are briefly described. Section 3 presents

the proposed methodology to reconstruct long-term time

series of directional wave spectra as a result of the com-

bination of buoy and SLP reanalysis data. The spectral

wave climate and its climate variability analyses are

presented in section 4. Conclusions are given in section 5.

2. Study location and data

Instrumental deep-water buoy spectral data along the

northeast (NE) Atlantic have been provided by Puertos

del Estado (Spain). Buoys are a Seawatch type that in-

corporates an accurate three-axis fluxgate compass for

buoy orientation measurements. This is important for

obtaining high-quality wave directional data (errors

below 0.38). The frequency sensor range is between 2

and 30 s, with errors below 2%. Temporal coverage for

the Villano station, located in the northwestern corner

of Spain at 386-m depth, spans from 1998 to 2009, while

the Cadiz buoy, located close to the Strait of Gibraltar at

450-m depth, starts in 2003. Both provide hourly data to

construct the directional full spectra. Time series of the

significant wave height Hs determined from the zero-

order momentm0 of the full spectrum asHs 5 4
ffiffiffiffiffiffi
m0

p
are

shown in Fig. 1. The data available present some gaps

(in gray) due to a few periods of different lengths of

FIG. 1. Locations and Hs time series of the two selected buoys. The CFSR lattice used as a wave predictor is also

shown.
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nonoperation. Nevertheless, each buoy has experienced

a number of intense storm events representative of the

extreme wave conditions at each location (more than 10

events withHs. 10m at Villano andHs. 4m at Cadiz),

so it is reasonable to assume that wave climate vari-

ability of both the mean and the extreme wave condi-

tions are well captured in these records.

To investigate the synoptic variability of the wave cli-

mate and its relation with the atmospheric forcings, the

CFSR has been used. This database has been generated

by the National Centers for Environmental Prediction

(NCEP), covering the 31-yr period from 1979 to 2009.

The CFSR was executed as a global, high-resolution,

coupled atmosphere–ocean–land surface–sea ice system

to provide the best estimate of the state of these coupled

domains over this period.All available conventional and

satellite observations were included in the CFSR. Out-

put products are available at an hourly time resolution

and 0.58 horizontal resolution.
The selected atmospheric forcing area spans from 258

to 708N and 608W to 108E (see Fig. 1) based on the CFSR

SLP fields degraded to a 18 3 18 lattice. Selection criteria

were based on covering the complete wave generation

area of the target points and capturing the most prom-

inent synoptic oscillation modes in the NA, such as the

North Atlantic Oscillation (NAO), with blocking or fluid

phases, or the east Atlantic Oscillation that characterizes

those storms located southwest of the United Kingdom.

3. Methodology

Statistical downscaling methods are based on ob-

served relationships between one large-scale atmospheric

circulation pattern of some known variable (predictor:

sea surface temperature, geostrophic winds, etc.) and

the local behavior of some derived variable (the pre-

dictand: rainfall, wave height, etc.). These methods have

been broadly applied to wave climate analysis obtaining

highly satisfactory results (Wang and Swail 2006; Caires

et al. 2006; Camus et al. 2011a; Izaguirre et al. 2012). As

a first step, the predictor must be chosen based on

physical principles, data availability, and the objective

temporal scale to rebuild the predictand. Once the

predictor has been selected, the spatial and temporal

variability is explored. For this purpose clustering

techniques, commonly known as data mining, are useful

tools to explore multidimensional spaces. Finally, facing

only a number of discrete recurrent states (clusters) of

the predictor and by statistically analyzing the pre-

dictand values corresponding to each cluster, one-to-one

relations between, in our case, the SLP fields in the NA

and the full directional spectra at the two study sites can

be established. Figure 2 shows the general framework

used in this work. Further explanation of the method is

conducted in the following sections.

a. Building the predictor

Although the surface marine wind is the driving force

of waves, the SLP fields are the variable commonly used

when relating ocean waves with synoptic atmospheric

states. Moreover, SLP is dynamically related to wind,

containing information about wind speed (spacing of the

isobars) and direction (orientation of the isobars). Be-

cause the swell traveling times in the NA are about 3

days (Alves 2006), a 72-h lag is assumed when relating

waves at the target points and the previous 3-day

FIG. 2. General framework used to obtain long time series of daily wave spectra.
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atmosphere circulation. To more effectively differenti-

ate synoptic atmospheric maps based on the wind speed

field and its spatial pattern, the squared SLP gradients

are used instead the SLP values (Wang et al. 2012). The

squared SLP gradients are determined at each point

from the values of the four nearest grid points using

the weights proportional to the inverse of the distance.

The squared SLP gradient anomalies are determined

next by subtracting the baseline climatology of the en-

tire reanalysis period (1979–2009). The resulting high-

dimensional fields are defined by 71 3 46 grid points.

Therefore, a principal component analysis is applied

to eliminate data dependency and redundancy with the

minimum loss of variance. PCA finds the minimum

d linearly empirical orthogonal functions (EOFs), so

that the transformation of the original data explains the

maximum variance of the whole multidimensional data

space (see Preisendorfer 1988). The reduction of the

dimensionality is achieved by creating a new set of or-

thogonal and ordered variables, the principal compo-

nents [PCs(t)], which, when multiplied by the d EOFs

(or spatial patterns), produce any of the 3-day squared

SLP gradients of the original data space.

To find representative patterns of synoptic climatol-

ogy, the k-means clustering algorithm has been selected.

Clustering methods provide a complementary nonlinear

alternative to the more frequently used linear methods

such as PCA, with the main advantage of handling

nonlinear relationships. Besides, it supports the de-

velopment of synoptic climatologies with an arbitrary

number of smoothly transitioning atmospheric states,

becoming a powerful tool to provide an easy in-

terpretation of the results by visual inspection.

The k-means clustering technique divides the high-

dimensional data space (in our case the PCs vectors)

into a number of clusters, each one defined by a pro-

totype and formed by the data for which the prototype is

the nearest (Hastie et al. 2001). Given a database of

n-dimensional vectors X 5 fx1, x2, . . . , xNg, where N is

the total amount of data (in our case N 5 10 958 days)

and n is the dimension of each vector xk5 fx1k, . . . , xnkg
(n5 47 PCs needed to explain the 95% of the variance),

k means is applied to obtain M groups defined by

a prototype or centroid yk 5 fy1k, . . . , ynkg of the same

dimension of the original data, where k 5 1, . . . , M.

In this case, to facilitate the example, we have con-

sidered M 5 25 clusters or circulation types to charac-

terize the climate variability in the NA (see Fig. 3). In

each one of the maps, colors indicate the squared SLP

anomalies in pascals squared per meter (related to the

wind speed) with the isobars superimposed. As can be

observed, this clustering algorithm identifies 25 synoptic

types spanning from relative stable atmospheric states

with high pressure dominance (in the lower-right corner

of the lattice) to the most energetic situations with ex-

tremely deep lows centered over different parts of the

NA. A further analysis reveals the existence of well-

known climate regimes such as the fluid phase of1NAO

(CT 6) (see Hurrell and Deser 2009). Moreover, dif-

ferent nuances with remarkable effects on waves of

the 1NAO are displayed in the lattice, which demon-

strates nonlinearities in the NAO variability. Note the

asymmetries of several possible 1NAO states, exhibit-

ing different orientation of the isobars between CT 1,

CT 2, and CT 3. In contrast, strong anticyclonic ridges

are also displayed: the blocking phase in CT 18 or the

Atlantic Ridge in CT 20 (see Cassou et al. 2004). As

mentioned before, the most striking advantage of

working with squared SLP gradients rather than with

SLP is that the classification is focused on exploring

spatial wind patterns that are more directly linked with

waves than SLP fields themselves. The number of se-

lected clusters dictates howmuch intracluster variability

is explained. Increasing the range of patterns produces

a wider range of atmospheric situations that may be

important at the local scale. A sensitivity analysis has

been undertaken to propose a number of classes. Al-

though better results are obtained when increasing the

number of clusters (more intermediate atmospheric

states appear), large lattices make the methodology

more cumbersome to describe.

According to the representative centroid of each

3-day SLP field, the probability of occurrence of each

CT can be determined. Similarly, using the corre-

sponding SLP dates within each cluster, the predictand

values can be projected into the CT lattice. Thus, for

each CT, the average value (or some desired percentile)

of the predictand can be determined. This facilitates

establishing relationships between the CTs and the

frequency–direction wave energy distribution.

b. Clustering the wave spectra

Although Hs is the most common parameter used to

describe wave climate variability, wave spectral density

provides significantly more information, making it pos-

sible to differentiate between distant and local wave

generation areas. Variations in the wave energy at

a target point depend on the location, fetch parameters,

wind speed and direction, and deep-water wave propa-

gation processes. Because long-period waves are only

generated by high sustained winds over a large fetch, the

behavior of the energy contained in these low frequen-

cies gives an idea about the extreme storm characteris-

tics (Bromirski et al. 2005). On the other hand, because

short-period waves experience a more rapid reduction

of the wave height (Janssen and Viterbo 1996), the
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behavior of the energy traveling in these high fre-

quencies provides information about local or regional

storms. Supported on this principle, the directional

spectrum is discretized in four frequency intervals (from

2 to 5, 5 to 10, 10 to 15, and .15 s) and 22.58 di-

rectional intervals. Wave energy contained within

each frequency direction is expressed in terms of

equivalent significant wave height as hi,j 5 4
ffiffiffiffiffiffiffiffiffi
m0i,j

p
,

with m0i,j 5
Ð fi11

fi

Ð uj11

uj
S( f , u) df du, where S( f , u) is the

average daily wave spectrum and H2
s 5�i�jh

2
i,j. Al-

though this discretization seems to be appropriate for

a good description of the NA wave climate, it should be

tuned for capturing major wave climate features at other

sites. Figure 4 displays the discretization scheme and an

example of a typical mixed sea state from the Cadiz buoy.

In this case, wave parameters obtained from this mixed

wave spectrum are misleading, especially the wave mean

direction that indicates waves coming from the south,

when in fact there are two well differentiated wave sys-

tems, one young sea from the southeast (SE) and another

more developed swell from the west (W). These details

show the relevance of exploring the full directional

spectrum rather than the wave parameters to better as-

sess wave climate variability.

With this procedure two remarkable facts are de-

termined. First, the wave energy density is not normally

distributed, especially in these frequencies and di-

rections where there is no energy throughout most of

the time. When the wave spectrum is grouped by bins

or packages, the wave energy distribution becomes

Gaussian, which is a precondition when a PCA analysis

is conducted. Second, results are more easily interpret-

able by visual inspection in terms of binned wave heights

than in the original energetic units.

Following the same procedure as in section 3a, a wave

spectral-type analysis has been carried out for the two

buoys. Although the k-means algorithm has been pre-

viously applied in order to classify a number of sea states

to relate its occurrence with climate variability indices

(Le Cozannet et al. 2011), it has also been applied to

a number of aggregated wave parameters. Nevertheless,

in this workwe have considered the spectrum as a spatial

grid of 16 directions and 4 periods, performing the

classification with 4 3 16 values and conserving the in-

formation about the spectrum structure. Figure 5 dis-

plays the 5 3 5 lattice of the discrete spectra obtained

from the Villano buoy record (1998–2009); colors in-

dicate the hi,j (cm). The Villano buoy is located in the

FIG. 3. Circulation-type lattice determined with the 3-day squared SLP gradient anomalies from CFSR between 1979 and 2009. Contours

represent isobars while the red–blue color shadings indicate positive–negative anomalies of the squared SLP gradients.
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most northwestern corner of the Iberia Peninsula, so it is

exposed to almost all the possible wave fields in the NA.

The wave spectra respond with northeasterly short-

period waves under anticyclone dominant periods over

the Bay of Biscay and with long-period swells under

active storm periods in the NA. As expected, the clas-

sification sweeps a wide range of wave conditions. From

the most extreme or energetic sea states (lower-right

corner) with significant wave heights above 10m and

large amounts of energy traveling on periods over 15 s to

almost flat conditions (upper-left corner) with Hs ,
0.3m and Tp , 10 s. Moreover, pure swells (ST 18) and

mixed sea states (ST 21) are also identifiable. In the case

of the ST 21, a remarkable amount of energy from the

northeast sector (wind seas with periods below 10 s) is

combined with a moderate swell from the northwest

(NW) (with periods over 10 s). Another example is the

ST 15, in this case resembling one distant swell from the

NW and a closer one from the southwest (SW).

Figure 6 shows the STs determined from the Cadiz

buoy record. Waves in this region are deeply governed

by the Strait of Gibraltar configuration and the rela-

tively sheltered effect from the northwesterly swells

produced by the San Vicente Cape in Portugal. As can

be seen, waves in this area tend to be smaller, so most of

the ST significant wave heights are below 1m. Another

interesting feature is that wave directionality is confined

to a narrow distribution. NW swells are transformed into

westerlies due to land shadow, and easterly winds

manifest their wave energy in the east-southeast (ESE)

direction. Again, pure swells (ST 18), wind seas (ST 12)

and mixed seas (ST 15 and ST 19) are recognized by the

k-means algorithm. Even so, those waves coming from

the southwest generated by rare storms that used to

travel on anomalous southerly tracks in the NA are also

detected (ST 25).

c. Probabilistic relationships between predictor and
predictand

In this section the establishment of the connections

between the CTs and the STs at the two studied sites is

performed. First, regarding the corresponding CTs

dates, the STs are identified. Note that a 3-day lag is used

when relating waves and atmospheric patterns (see

Alves 2006). For each CT, the occurrence probability of

each SP is determined, obtaining a multi-lattice as

shown in Fig. 7 for the Villano site. This graphical rep-

resentation is composed of 53 5 subgrids corresponding

to the CT lattice structure. Each subgrid represents the

occurrence probability of each ST into each CT. Thus,

one can see how CT 4, exhibiting a deep and large low

located southwest of Iceland, is expected to produce (P5
20%) the ST 10, which indicates high energetic waves

on the longest periods from the west-northwest (WNW)

sector and a strong action of the local west-southwest

(WSW) winds, transposing energy to the short-period

waves in theWSW sector. In the same manner, the most

energetic selected wave conditions, ST 25, is related to

CT 1 in which the maximum dimensions of the effective

fetch in the NA is reached. The same procedure has

been followed to determine occurrence probabilities of

the STs at Cadiz (not shown here).

It is worthwhile to point out that this work is focused

on exploring wave climate variability rather than ex-

treme waves. Thus, although a 53 5 classification seems

to be appropriate for this purpose, it is expected to

FIG. 4. (left) Wave spectrum discretization scheme and (right) an example of the discretized spectrum (cm)

corresponding to a mixed swell and sea at the Cadiz buoy. Directions are expressed following nautical convection

(08 indicates waves coming from the north, 908 from the east).
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smooth the most extreme wave conditions. Nevertheless,

when more wave data are available, it is possible to in-

crease the number of clusters and to improve the extreme

wave climate characterization (see Izaguirre et al. 2012).

d. Validation

In this section, the monthly moving average Hs is de-

termined from the original data and compared with the

reconstruction using the statistical spectral approach. As

can be seen in Fig. 8, both series show a similar behavior

at amonthly time scale, reproducing satisfactorilymost of

the stormy periods registered by the buoys and correctly

reflecting seasonal to interannual variations. To assess the

ability of the method to refill gaps several error statistics

have been determined (see Fig. 8): the slope of the best

linear fit b, Pearson’s correlation r, root-mean-square

(RMS) error, bias, and scatter index (SI). The b co-

efficient is always very close to 1 showing that themethod

is able to adequately reproduce both mean and stormy

conditions. The RMS indicates that the major errors in

the monthly Hs reconstruction do not exceed 25 and

14 cm at Villano and Cadiz, respectively. The bias is very

close to 0, showing that the method does not systemati-

cally fail. Last, the scatter index indicates low dispersion

FIG. 5. Spectral-type lattice determined with the daily wave spectra (cm) from the Villano buoy record (1998–2009).
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of the data for Hs and Tp. Because downscaling of the

wave spectra has been carried out with only 25 CTs,

several discrepancies are obviously expected. This is ap-

parent in the Cadiz buoy, in which the buoy record is not

long enough. Moreover, because of the narrow configu-

ration of the Strait of Gibraltar, and the reduced di-

mension of the easterly wave fetch, local atmospheric

structures, which are not captured in the lattice, begin to

gather importance. The assumed time 3-day lag seems to

work prettywell at themore swell dominatedVillano site.

Meanwhile, at Cadiz the 3-day time lag looks to be ap-

propriate for the westerly swells but not for the easterly

extreme events. Additionally, we have compared the

obtained wave spectra with the spectra from the Interim

European Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-Interim) wave reanalysis

(Dee et al. 2011) in terms of the annual and seasonal

averages (not shown here). Quantitatively, we found that

for the Villano location, which is well represented by

ERA-Interim, both climatologies match quite well, with

the exception that the low-frequency energy is slightly

larger in the reanalysis (J. R. Bidlot 2014, personal com-

munication). At the same time, we found that for the

Cadiz location, global reanalyses might present some

FIG. 6. As in Fig. 5, but from the Cadiz buoy record (2003–09).
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important deficiencies resulting from the coarse resolu-

tion. Our method can be used in these cases without the

need of rerunning costly reanalyses at a finer resolution.

Akey overall finding of the validation is the great ability

of the statistical downscaling to refill gaps in instrumental

wave records, obtaining longer and more homogeneous

time series needed for climate variability studies.

4. Results

Once the daily spectra have been reconstructed dur-

ing the atmospheric reanalysis temporal domain, wave

climate variability is analyzed covering seasonal, in-

terannual, and long-term trends time scales based on

daily SLP fields from the CFSR reanalysis. Figure 9

displays the mean annual wave spectrum at the two lo-

cations and corresponding seasonal anomalies. As can

be seen, the Villano mean spectrum exhibits a clear

energy peak in theWNW sector and periods between 10

and 15 s (h5 65 cm), with a significant amount of en-

ergy surrounding this bin with a small displacement to-

ward the NW and north-northwest (NNW) directions.

As expected, seasonal positive anomalies are more

prominent during winter (more than 20 cm on periods

FIG. 7. Occurrence probabilities of the Villano STs projected into the WT lattice.
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over 10 s in the WNW–NNW directional sector), while

generalized negative anomalies take place in summer,

reflecting the seasonal fluctuation of the atmosphere

circulation in the NA (see Semedo et al. 2011). Spring

negative anomalies on the fourth quadrant long periods

reflect the small probability of the occurrence of ex-

treme storm events during this season compared to

winter. A smooth positive anomaly in the NE short pe-

riods (Dh5 5 cm) reflects the NA ridge dominance that

occurs during the spring months. Fall months exhibit

positive anomalies in the fourth quadrant intermediate

periods due to the moderate stormy events announcing

the winter period. Farther south, the Cadiz wave climate

presents two clearly differentiable energy peaks: one in

the SW–WNW sector and another in the SE. The wave

climate in this region is not as severe as at Villano;

consequently, much less energy is found in the longest

periods. Again, seasonal anomalies are stronger in

winter responding to the major SLP gradients in this

season.

Aswas said before, there is not a uniquemanifestation

of the wave climate variability of one climate index.

With the nonlinear clustering techniques, it is easy to

determine occurrence probabilities of each selected ST

depending on the value of the climate index. Never-

theless, in order to analyze the relationship of the wave

climate to universally accepted climate patterns such as

the NAO (Barnston and Livezey 1987), it seems in-

sightful to proceed with the linear approach, calculating

correlation values of the monthly standardized wave

height anomalies of the most prominent climate indices

governing the climate in the NA. Figure 10 shows

the correlation values of the wave spectra and AO

(Thompson and Wallace 1998), NAO, and the east At-

lantic index (EA; Barnston and Livezey 1987). Signifi-

cant values at the 95% confidence interval are dotted.

The AO and the NAO indices have been taken as the

dominant modes of the Northern Hemisphere and the

NA climate variability, respectively. The EA index has

been chosen as a more local predictor of the atmosphere

circulation over the eastern part of the NA. As can be

observed, major correlation values are found with the

most local climate index. The positive phases of EA,

characterized by low pressures southwest of the British

FIG. 8. Scatterplots of the monthly average (left) Hs and (right) Tp from buoys and reconstructed with the model at

(top) Villano and (bottom) Cadiz. The number of data pairs is 2573 and 1576, respectively.
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Isles correlates positively (b . 0.4) with the energy

composed in all the frequency bands of the third di-

rectional sector, reflecting the strong southwesterly

winds blowing directly over the Villano buoy location

(Charles et al. 2012). At Cadiz, waves generated during

active phases of the AO tend to reach the target point

with a strong decay in the short periods. Comparing the

effect of the AO and NAO on waves, it is important to

remark that the index correlation spectral patterns are

similar for both climate indices at Villano, while some

nuances appear at Cadiz. While the AO seems to be

more related with the zonal migration of the storm

tracks, farther to the north during 1AO and farther to

the south during 2AO (see upper-left panel), at Cadiz

there is an east–west shift of the wave field dominance,

while at Villano the oscillation is north–south. Re-

garding the NAO, a western migration of the positive

anomalies is observed at Villano when comparing it with

the AO. On the other hand at Cadiz, the reinforcing of

the high pressure systems during positive phases of the

NAO is observed in the positive correlation appearing

in the ENE short periods. Significant positive correla-

tion also appears in the WNW intermediate periods.

These results agree with the recent works of Charles

et al. (2012) and Le Cozannet et al. (2011) in which they

argue that in the Bay of Biscay larger waves and periods

propagate from the NNW during 1NAO and from the

W during 1EA.

Last, in Fig. 11 seasonal long-term trends are displayed.

Although the rates of change are smoothed by the

downscaling technique, these results provide a qualitative

representation of the general picture of changes in the

frequency–directionwave energy distribution throughout

the 31-yr period. In agreement with previous works

(Wang and Swail 2001; Wang and Swail 2002; Woolf

et al. 2002; Dupuis et al. 2006; Semedo et al. 2011), no

significant trend has been obtained for the annual-mean

Hs in the Bay of Biscay. Similar to Charles et al. (2012),

we only found significant summer trends at both loca-

tions. The spectral pattern of the summer trend is quite

similar in both sites, exhibiting an increase of the short-

period waves from the west and a decrease of the east-

erly seas.

5. Conclusions

In this study an analysis of the spectral wave climate in

the east NA has been presented. The work is based on

the combination of measured wave data from two deep-

water buoys and the CFSR atmospheric reanalysis that,

by means of clustering statistical methods, allows for the

reconstruction of the daily wave spectra throughout the

entire hindcast time coverage. Moreover, the proposed

method facilitates the establishment of direct relation-

ships between atmospheric synoptic states and the most

common spectral wave conditions at the target loca-

tions. Rather than working with the SLP produced by

the atmospheric model, the synoptic atmospheric clus-

tering has been conducted for the 3-day-averaged

squared SLP gradients, emphasizing the wind direction

and the configuration of the surface wind jets over the

NA. The 25 circulation types have been determined with

the principal component time series from the EOF de-

composition. It has been shown that even with a low

number of clusters, a wide rangeof atmospheric situations

are captured, differentiating between some important

FIG. 9. Mean annual wave spectrum and seasonal anomalies (cm) from the statistical model (1979–2009) at (top) Villano and (bottom)

Cadiz.
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nuances with dramatic effects on the wave generation

processes.

The same procedure has been followed to obtain the

most recurrent daily wave spectra at the two studied sites.

First, the directional full spectra have been discretized in

a reduced number of bins to make the information more

easily understandable. Again, the k-means algorithm

has shown excellent skill when working with wave

spectra. Moreover, the 25 identified spectral types at

each site provide considerably more information about

the wave conditions than the traditionally used aggre-

gated or statistical wave parameters. Wave sources can

be sensed when visually inspecting the discrete spectrum

by allowing some differentiation between the strength

and the position of the ocean storms.

The occurrence probabilities of the selected spectral

types have been determined for each identified circula-

tion type, obtaining multigrid maps linking the wave

spectra with the synoptic atmospheric patterns. This

crossed information allows for the identification of the

most unfavorable atmospheric situations able to gener-

ate extreme or anomalous sea states and facilitates the

understanding of the physical principles of wave gener-

ation and deep-ocean propagation. Moreover, by means

of this technique, 31 years of daily directional wave

spectra at the target points have been obtained. The

generation of long and homogeneous time series con-

tributes to overcoming the most limiting requirement

when studying wave climate variability. Thus, sea-

sonal, interannual, and long-term trends have been

investigated. Seasonal variations of the discrete wave

spectra capture the Iceland low and Azores high winter–

summer dominance. Furthermore, seasonal anomalies

reveal important details of the frequency–direction wave

energy distribution throughout the year. Interannual

variations of the spectral wave climate have been

explored by considering linear relationships of the

monthly standardized anomalies of the energy within

each bin of the discrete spectrum with respect to well-

known climate indices governing the climate variability

of the NA. Results disclose more aspects than tradi-

tional approaches based on aggregated or statistical

wave parameters, as, for example, specifying frequen-

cies and directions in which the analyzed climate pattern

has significant effects.

Last, the spectral long-term trends of the east NA

analysis have been evaluated on a seasonal basis. Re-

sults show increased summer medium-period westerly

FIG. 10. Correlation values of the wave spectra with the AO, NAO, and EA climate indices, (top) Villano and (bottom) Cadiz, significant

values at the 95% confidence interval are dotted.
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energy at Villano and a decrease of the easterly short-

period waves at both locations. No significant trends

have been found in other seasons.

The simple applicability of the circulation-type

framework provides a useful descriptive graphical tool

that helps to understand the effect of the atmospheric

circulation pattern on the directional wave spectra.

Going further, the application described in this paper

allows for the study of climate variability over a wide

range of time scales, from days to the exploration of wave

climate projections for different Intergovernmental

Panel on Climate Change (IPCC) scenarios from global

circulation models runs.
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