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Abstract Satellite rainfall measurements, nowadays commonly available, provide valuable information
about the spatial structure of rainfall. In areas with low-density rain gage networks, or where these networks
are nonexistent, satellite rainfall measurements can also provide useful estimates to be used as virtual rain
gages. However, satellite and rain gage measurements are statistically different in nature and cannot be
directly compared to one another. In the present paper, we develop a methodology to downscale satellite
rainfall measurements to generate rain-gage-equivalent statistics. We apply the methodology to four loca-
tions along a strong rainfall gradient in the Kalahari transect, southern Africa, to validate the methodology.
We show that the method allows the estimation of point rainfall statistics where only satellite measure-
ments exist. Point rainfall statistics are key descriptors for ecohydrologic studies linking the response of veg-
etation to rainfall dynamics.

1. Introduction

Mathematical models of rainfall are idealized representations of the rainfall process that in hydrologic appli-
cations may serve different purposes. On the one hand, such models serve to mathematically reproduce
the main statistical characteristics of the rainfall process by means of a reduced set of parameters. On the
other hand, the models may provide a conceptual framework to explain rainfall as a physical process, simpli-
fying the understanding and interrelation of the underlying dynamics that produce rain.

Many hydrological applications make use of the statistical structure of rainfall dynamics at a point. In eco-
hydrologic studies, such point rainfall characterization is needed for studying the response of vegetation
to different climatic conditions [Rodr�ıguez-lturbe and Porporato, 2004; Herrera et al., 2001; Wright et al.,
2012], but is also important in other types of dynamics like the prediction of waterborne disease reinfec-
tions, as rainfall (only available as remotely sensed data in most underdeveloped countries or in times of
emergency) prompts washout of open-air defecation sites charging water reservoirs with pathogens
[Rinaldo et al., 2012].

Rainfall characterization at a point is readily derived from rain gage data where this information is available.
However, there are many regions in the world where rain gage data are scarce and thus a proper point rain-
fall characterization may be elusive.

In this paper, we will deal with point rainfall characterization derived from satellite observations. Satellite
imagery is available with global coverage, so it may be used to characterize rainfall in remote, ungaged
locations. Although we recognize the importance of bias and errors in satellite measurements, we will not
deal with bias correction in this work, as our main objective is the downscaling of satellite data in regions
where no rain gage data exist. For regions where rain gage information exists, M€uller and Thompson
[2013] present a methodology for bias correction using stochastic rainfall modeling. They also develop an
upscaling methodology for the above situation. However, the pioneering work of M€uller and Thompson
[2013] cannot be applied in the absence of rain gage information and is thus outside the scopes of this
work.

Satellite measurements are not direct measures of the point process of interest (rainfall) but result from the
integration of the rainfall process throughout the observation window (given by the satellite spatial resolu-
tion). For this reason, satellite-derived rainfall statistics cannot be directly translated into point rainfall
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statistics, and thus, satellite measurements cannot be directly used to derive the parameters of rainfall point
models, which need to be implemented in the type of studies mentioned before.

In ecohydrologic studies, one needs to consider that vegetation responds to the local characteristics of rain-
fall and not to the integrated ones over areas of hundreds of square kilometers. In a statistically homogene-
ous region, i.e., a region small enough for synoptic variations of rainfall to be negligible and without strong
topographical features, the mean value of the point rainfall and the integrated rainfall is obviously the
same. Nonetheless, important second-order properties like variance and autocorrelation may easily differ by
more than 50% for pixel areas of 20320 km2. Moreover, other properties of key importance to study vegeta-
tion response to climate, such as the percentage of dry time, may be greatly different at the point level and
at the pixel level.

This paper presents a framework to downscale satellite-derived rainfall statistics to rain-gage-equivalent
statistics. A spatiotemporal rainfall point model [Cox and Isham, 1988] is used as the basis for the down-
scaling process. This model was used in previous studies [Isham et al., 2005; Rodr�ıguez-lturbe et al., 2006]
to characterize rainfall over a savanna-like ecosystem in southern Italy. The equations relating the proper-
ties of the point rainfall and the integrated process (equivalent to the satellite observations) are derived
in section 2. These equations are then used to estimate the parameters of the spatiotemporal rainfall
model that reproduce, when properly aggregated, the satellite statistics. In section 3, the parameter fit-
ting procedure is cast in the form of an optimization problem where the total root squared error of the
model-derived satellite statistics is minimized. Particle Swarm Optimization (PSO) [Kennedy, 2010] is used
to solve the optimization problem. The parameters of the spatiotemporal model are then linked to the
rainfall dynamics at a point.

Once the mathematical framework has been developed, section 4 of the paper focuses on a practical appli-
cation to the Kalahari transect, South Africa [Shugart et al., 2004], where only a very sparse rain gage net-
work exists. The Kalahari transect was selected because of its lack of strong orographic effects which results
in the appropriate conditions to assume rainfall statistical homogeneity at the satellite pixel scale. We apply
the methodology to compute statistics of point rainfall within this region starting from processed satellite
observations and then continue to compare the results with existing rain gage data. Finally, section 5
presents the conclusions of the study.

2. Model Description

A continuous spatiotemporal rainfall model [Cox and Isham, 1988] is used to characterize the structure of
rainfall, which is assumed to be statistically homogeneous over extensive regions. The model is most appro-
priate for regions dominated by convective precipitations, although it can also capture the statistical charac-
teristics of frontal precipitation. The mathematical scheme attempts to represents the rainfall structure at
any point within this homogeneous region, incorporating the space-time correlation structure of the rainfall
within the region.

Satellite observations will be interpreted as integrated measurements of the spatiotemporal rainfall
model. The integration of the satellite observations is both in space and time, with the integration
domain defined by the satellite spatial and temporal resolutions. The statistics of satellite observations
can be related to the statistical structure of the integrated spatiotemporal model, and thus to the parame-
ters of the latter. Statistics of point rainfall, e.g., rain gage, can then be estimated based on rainfall statis-
tics derived from satellite imagery.

2.1. Spatiotemporal Rainfall Model
Rainfall is assumed to be generated by rain cells, which appear in the domain following a Poisson distri-
bution in space and time of rate k (cells/km2/d). Rain cells are assumed to be circular in shape and static,
i.e., they cover the same region from the moment they are born until they fade away. Every rain cell is
characterized by means of three mutually independent random variables: (1) cell radius, (2) cell duration,
and (3) cell rainfall intensity. Cell rainfall intensity is assumed to be constant throughout the duration of
the rain cell. These three random variables are assumed to follow exponential distributions with parame-
ters q (1/km), g (1/d), and b (d/mm), respectively. These parameters are the inverse of the mean values of
their distributions.
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2.2. Point Rainfall Characteristics
A brief description of the most useful model properties is presented here. For an in-depth derivation of
these properties please refer to Cox and Isham [1988] and Isham et al. [2005]. We denote rainfall intensity at
position x and time t by r(x, t). From Isham et al. [2005], the mean of r(x, t) is given by

E½rðx; tÞ�5lr5
k0

gb
(1)

where k052pk=q2 is the rate at which rain cells arrive to an arbitrary point in space. The variance of rainfall
intensity at a point is given by:

r2
r 5

2k0

gb2 (2)

The correlation, !, between rainfall intensity at location xA at time t, and at location xB at time t 1 h is
approximately given by [Isham et al., 2005]:

!½rðxA; tÞ; rðxB; t1hÞ�5 11
qd
4

� �
e2qd=2e2gh (3)

where d is the distance between locations xA and xB and h is the time lag between both variables.

2.3. Aggregated Rainfall in Space and Time
Satellite measurements are average values of the variable of interest over fixed areas (pixels) and time inter-
vals. The aggregation domain is fixed by the satellite spatial and temporal resolutions. Thus, satellite rainfall
measurements can be interpreted as the average, during the satellite measurement interval, of the rainfall
occurring within a pixel. Mathematically this can be expressed as:

RDðx; y; tÞ5 1
DxDyDt

ðx1Dx
2

x2Dx
2

ðy1
Dy
2

y2
Dy
2

ðt1Dt
2

t2Dt
2

rðx; y; tÞ dx dy dt (4)

where r(x, y, t) is the rainfall intensity of the spatiotemporal process at location (x, y) at time t, RD(x, y, t) is
the rainfall intensity of the integrated process over domain D centered at the same location and time, and
Dx, Dy, and Dt are the aggregation intervals, whose cartesian product defines the aggregation domain
D5Dx3Dy3Dt. Dx and Dy are the sides of the satellite measurement pixel (its spatial resolution) and Dt is
the length of the averaging period (temporal resolution).

Assuming that rainfall is a statistically homogeneous process over the measurement pixel, i.e., that the
parameters of the underlying point process are constant over the pixel, the properties of the point process
can be derived by using satellite measurements by means of the relation established in equation (4). To this
end, the general results presented in Vanmarcke [2010] will now be used.

The mean values of the point and the integrated processes are equal. Thus, equation (1) applies also to the
integrated process. However, second (and higher)-order properties of the point process and the integrated
processes are quite different. They are related by the variance function, which measures the reduction of
the point variance (r2) under the averaging process. The magnitude of this reduction is a function of the
size and shape of the averaging domain.

The relation between the variances of the point and the integrated processes is expressed mathematically
as follows:

r2
XX

5cðXÞr2 (5)

where r2
XX

is the variance of the integrated process, r2 is the variance of the point process, cðXÞ is the var-
iance function, and X is the vector defining the averaging domain.

The variance function is related to the correlation function of the process [Vanmarcke, 2010, equations
(5.1.6) and (6.1.6)]. In the one-dimensional case, this relation can be expressed as follows:
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cðXÞ5 1

X2

ðX

0

ðX

0
!ðt12t2Þdt1 dt2 (6)

where c(X) is the variance function, ! is the correlation function, and X is the size of the averaging domain,
which in the one-dimensional case is simply a distance.

Note that sometimes it is convenient to work with the variance function of the local integral process, D(X),
rather than with the local average one, c(X). The local integral process is generated by the integral of the
point process over the aggregation domain, rather than by its average. It is directly obtained from the inte-
gral in equation (4), without dividing by the domain size. Both variance functions are related by the follow-
ing relation:

DðXÞ5X2 cðXÞ (7)

Equation (6) implies that in the one-dimensional case in order to compute the variance function a double
integral is needed. This pattern is kept for higher-dimensional cases, which implies that in our case a sextu-
ple integral is required. However, by means of a change of variables s 5 t1– t2, integrating over t1 and realiz-
ing that !ðsÞ is an even function, equation (6) can be rewritten as follows:

cðXÞ5 2
X

ðX

0
12

s
X

� �
!ðsÞ ds (8)

where the double integral has been simplified into a single one.

When the limits of integration of the double integral (or the sextuple integral in the three-dimensional case)
are not equal, for instance when computing covariances, a domain decomposition must be carried out prior
to the change of variable [Vanmarcke, 2010]. The domain decomposition increases the number of integra-
tions, but the overall computation complexity is reduced as the dimensionality of the new integrals can be
reduced. These manipulation simplify our sextuple integral into a sum of triple ones.

For the three-dimensional case, the covariance can be computed by using the following expression
[Vanmarcke, 2010, p. 309]:

Cov½RD; RD0 �5
r2

23DD0
X3

i50

X3

j50

X3

k50

ð21Þið21Þjð21ÞkDðX1i;X2j;X3kÞ (9)

where r2 is the variance of the point process, D and D0 are the aggregation domains in space and time of
RD and RD0 , respectively, which in our case are equal, and DðX1i;X2j;X3kÞ is the variance function related
to the three-dimensional vector ½X1i;X2j;X3k� extracted from matrix W, described below, which defines
the aggregation domains and their relative positions.

Equation (9) involves 64 addends (three summations, indexed by i, j, and k, with four elements per summa-
tion, as described below), every one with a potentially different value for the three-dimensional vector
½X1i;X2j;X3k�, as the indices of the summations are linked to the subindices defining the three-
dimensional vector. For a particular term of the summation, characterized by three values of the indices (io,
jo, ko), the vector ½X1io ;X2jo

;X3ko � is constructed by taking from matrix W the io column from the first row,
the jo column from the second row, and the ko column from the third row. The 64 potentially different ½X1i;

X2j;X3k� vectors are constructed in this way.

In the particular case of this study where integration domains are of equal size and shape, nonoverlapping
and located in a square grid, the matrix W containing the complete information about averaging size and
relative position is:

W5

ðl21ÞL; L; ðl11ÞL; L

ðm21ÞL; L; ðm11ÞL; L

ðn21ÞT ; T ; ðn11ÞT ; T

2
664

3
775 (10)

where l indicates the distance (in pixel-side lengths) along the X axis, m indicates the distance (in pixel-side
lengths) along the Y axis, n indicates the distance (in satellite time resolution sizes) along the time axis, L is
the length of a pixel side, and T is the time resolution of the satellite measurements.
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To compute equation (9), r2 is substituted by its value given by equation (2), D and D0 are substituted by
their values, both equal to the volume of the averaging domain, L2T, and the variance function of the local
integral process, DðT1i; T2j; T3kÞ, is computed using the following expression [Vanmarcke, 2010]:

DðX1i;X2j;X3kÞ58
ðX1i

0

ðX2j

0

ðX3k

0

ðX1i2js1jÞðX2j2js2jÞðX3k2js3jÞ!ðd; hÞds1 ds2 ds3 (11)

where !ðd; hÞ is the correlation function of the point process given in equation (3), with d5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

11s2
2

p
and

h 5 s3.

The variance of the pixel-integrated process is computed by fixing l 5 0, m 5 0, n 5 0. The lag-1, time covari-
ance is obtained by setting l 5 0, m 5 0, n 5 1. Last, the lag-1 spatial covariance is obtained with l 5 1,
m 5 0, n 5 0 or l 5 0, m 5 1, n 5 0, assuming, as it is the case here, that the process is homogeneous and
isotropic in space.

2.4. Properties of the Integrated Model
As mentioned before, the process at a point and the integrated process have the same mean value. How-
ever, second-order statistics such as the variance, spatial covariance, and temporal covariance are different.
They are related by equation (9).

A statistic of great ecohydrologic interest is the probability of a point (local scale) being dry during a fixed
time period. Competition among different species of plants, as well as vegetation water stress, are closely
related to this feature. The probability of a pixel being dry during a fixed period of time may be estimated
directly from satellite information and will now be linked to the same probability at a point by using the
spatiotemporal stochastic rainfall model described earlier in this section.

The probability of a pixel being dry during a given period of time is the product of: (1) the probability that
no rain occurs in the pixel during the specified time interval (P1) and (2) the probability of the pixel being
initially dry, which equals the probability of the pixel being dry at any randomly chosen time (P2).

We first calculate the former. No rain occurs in a pixel during an interval of time (T) if two conditions are
met: (1) no cell center is born within the pixel during the interval (probability P11) and (2) no cell center
occurring outside the pixel possesses a cell radius larger than the distance from the cell center to the pixel
(probability P12).

The probability of no storm center occurring within the pixel during the interval T is easily computed. The
number of cell centers occurring within a pixel of area A during a time interval T follows a Poisson distribu-
tion [Cox and Isham, 1988] of parameter k005k � A � T . Therefore, the probability that a cell center is born
within the pixel during the interval T equals:

P115exp 2k A Tð Þ (12)

The calculation of the probability that no rain occurs within the pixel from cell centers located outside the
pixel requires that we assume a circular pixel to simplify computations. The real pixel (a square) and the ideal-
ized one will have the same area, and thus the square length (L) and the circle radius (R) will verify L5

ffiffiffi
p
p
� R.

Consider now an annulus of infinitesimal area located at a distance R 1 r from the center of the pixel (see
Figure 1). The number of cell centers born in the annulus during an interval of duration T follows a Pois-
son distribution with parameter, K52pkTðR1rÞdr. Note that the parameter of the Poisson distribution
increases as the annulus is located further away from the pixel because the area of the annulus increases
linearly with r.

Multiplying K by the probability that a cell radius is larger than a specified threshold, rc, given by
exp ð2qrcÞ, one obtains the parameter of the Poisson process of cell centers being born in the annulus dur-
ing the interval T whose radii are larger than rc, ksr>rc :

ksr>rc 52pkTðR1rÞ exp ð2qrcÞ dr (13)

We now need to specify a threshold for the radius of a cell below which the cell does not contribute to rain
inside the pixel. In fact, detecting rainy days via satellite measurements involves the use of thresholds below
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which rainfall is assumed not to occur.
Although it may be raining, intensity may be
so low that the satellite cannot distinguish it
from background noise. When rain cells
occur within the pixel it is likely that satel-
lites will capture the event. However, when
rainfall is coming from cell centers located
outside the pixel, successful identification of
the event will depend on the amount of
rainfall produced inside the pixel which in
our mathematical representation is related
to the area of overlap between the storm
cell and the pixel. This area of overlap can
be approximated by

Ao5pR2 ra2r
2R

for r � ra � r12R (14)

where Ao is the area of overlap between the
storm cell and the pixel, R is the radius of
the pixel, ra is the radius of the cell, and r is

the minimum distance from the cell center to the edge of the pixel (see Figure 1). The threshold area of
overlap, Acrit, is obtained when ra is substituted by rc.

Normalizing the area of overlap by the area of the pixel, the threshold percentage of overlap, ac, is obtained.
Rearranging terms in equation (14), the threshold cell radius required to ensure ac is given by:

rc5r12Rac (15)

Using this as the critical radius in equation (13), the parameter of the Poisson process of cell centers being
born during an interval T in the annulus of width dr located at a distance R 1 r from the center of the pixel
which contribute to rainfall inside the pixel can be written as:

ksr>rc 52pkTðR1rÞexp ð2q r12Racð ÞÞ dr (16)

The parameter of the Poisson process of the number of cell centers producing rain within the pixel from its
outside is, thus, the sum of the contributions from every annulus, that is, the integration of equation (16)
from 0 to1, which results in:

Ksr>rc 52pkT
11Rqð Þexp ð22RqacÞ

q2
(17)

The probability of no rain coming from outside the pixel, P12, equals the probability that no storm cell cen-
ter with an associated radius larger than the distance defined in equation (15) is born during the interval of
time considered. This probability is:

P125exp 22pkT
11Rqð Þe22Rqac

q2

� �
(18)

Therefore, the probability, P1, that no rain will occur within the pixel during a time interval of duration T is
the product of P11 (equation (12)) and P12 (equation (18)):

P15exp 2kT A12p
ð11RqÞe22Rqac

q2

� �� �
(19)

Note that the effect of considering the possibility of rainfall coming from outside the pixel corresponds to
an increase of the effective area of the pixel.

The probability of a pixel being dry at a randomly chosen moment, P2, must be computed next. P2 is also
made up of two factors. The first factor is the probability (P21) that no cell center born in the past within the
pixel is still producing rainfall in the pixel at the instant of interest, that is, the duration of any cell center

Figure 1. Sketch to compute the contribution to the probability of rain
coming from outside the pixel of an annulus located at a distance R 1 r.
The gray circle is the pixel of radius R under consideration. The red annulus
is one infinitesimal area from which rainfall may be coming. The pale blue
circle is a storm whose center is within the annulus. If the radius is smaller
than r, its rainfall will not affect the pixel.
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having occurred in the past within the pixel must be smaller than the time lapse existing between the
moment the cell center was born and the instant of interest. The second factor is the probability (P22) that
no cell center born in the past outside the pixel is still producing rainfall in the pixel at the instant of inter-
est. This probability involves not only the duration of the cell center but also its radius.

Let us assume that the instant of interest is t 5 0, and let us consider a pixel of area A located at time 2t,
that is, a distance t into the past. The number of cell centers born in the pixel during an infinitesimal time
interval, dt, around that time instant, 2t, follows a Poisson distribution with parameter, kAdt. The parameter
of the Poisson distribution does not depend on the past time instant in which the pixel is considered and
remains constant in time.

Multiplying this parameter, kAdt, by the probability that a cell being born at 2t is still producing rain at
t 5 0, one obtains the average number of cell centers born in a pixel during an infinitesimal time interval in
the past that still produce rain at the instant of interest. A cell born at 2t will produce rain at t 5 0 if its dura-
tion is larger than t. As cell durations are assumed to follow an exponential distribution, the probability of a
duration larger than t is exp ð2gtÞ, and therefore the average number of cell centers born in a pixel during
an infinitesimal time interval in the past that still produce rain at the instant of interest is:

kd>t5kA exp ð2gtÞdt (20)

To obtain the parameter of the Poisson distribution of the number of storm cells having occurred in the
past within the pixel that still produce rain at the instant of interest, one needs to sum all the contributions
from past instants, from the most recent ones (t 5 0) to the most remote ones (t 51). Integrating equation
(20) between these limits, the aforementioned parameter is obtained:

Kd>s5
kA
g

(21)

The probability of the pixel being dry from cell centers born inside the pixel is then:

P215exp 2
kA
g

� �
(22)

Finally, the probability that no rain will be produced from cell centers born in the past outside the pixel of
interest needs to be computed. In this case, an infinitesimal annulus covering an infinitesimal time interval
in the past will be considered. Similarly to the derivation of equation (21), the parameter of the Poisson dis-
tribution of cell centers born in an interval dt in the past in an annulus outside the pixel whose duration
and size are such that produces rainfall in the pixel is:

kNRds52pkðR1rÞe2q r12Racð Þe2gt dr dt (23)

which after integration yields the parameter of the distribution of all cell centers from the past and outside
the pixel that produce rain at the considered time instant:

KNRds5
2pk
g

11Rqð Þe22Rqac

q2
(24)

The probability that none of these cell centers contributes to rain inside the circular pixel is then:

P225exp 2
2pk
g

11Rqð Þe22Rqac

q2

� �
(25)

Therefore, the probability of a pixel of area A being dry during a time interval of duration T is the product of
equations (19), (22), and (25), which results in:

Pdry5exp 2k T1
1
g

� �
A1

2p
q2

11Rqð Þe22Rqac
� �� �� �

(26)

Equation (26) can be used to relate the parameters of the space-time rainfall model to the probability of dry
intervals at a pixel. This will be used in the next section toward the characterization of the statistical struc-
ture of rainfall at a point which is commonly needed in ecohydrological studies.
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3. Methodology

The goal is to use satellite rainfall data toward the statistical characterization of the rainfall process at a
point. This will allow the estimation of the parameters of point models of rainfall, commonly required for
many ecohydrological purposes [Rodr�ıguez-lturbe and Porporato, 2004]. For every location of interest, the
satellite pixel containing a specific rain gage site is selected. From the time series of daily average rainfall
over the pixel, obtained from satellite information, the mean, standard deviation, lag-1 temporal autocovar-
iance, and percentage of dry days are then estimated. The spatiotemporal rainfall model described in sec-
tion 2 is then fitted to the satellite observations using its integrated characteristics.

The model parameters thus obtained allow us to statistically describe the rainfall process at a point. The
goodness of the methodology, which is based on a simple space-time rainfall model, is evaluated through a
comparison of the point statistics thus derived with those obtained from rain gages existing inside the pix-
els under consideration and whose data have not been used at all for the estimation based on satellite inte-
grated measurements.

This study uses rainfall data derived from TRMM using the 3B42 algorithm [Huffman et al., 2009]. TRMM-
3B42 rainfall estimates provide 3 hourly time series of rainfall intensity on a global grid with a resolution of
0:25

�
30:25

�
. For the purposes of this paper, rainfall data are aggregated to daily values which are the most

commonly used in ecohydrological studies. Rainfall statistics were computed for four locations in the Kala-
hari transect during the growing seasons of the period 2000–2013. The growing season, assumed statisti-
cally homogeneous, runs from October to April in the Kalahari transect [Porporato et al., 2003]. Different
seasons in a region may be dominated by different types of precipitation, i.e., convective or frontal. The
parameters of the model will be different and their estimation should be carried out separately for each
season.

The rainfall model described in section 2 incorporates four parameters: k, q, g, and b. We thus need a mini-
mum of four equations to estimate these parameters. These four equations result from equating four statis-
tics of the integrated model in space and time with the statistics of satellite observations. The statistics
chosen are mean daily rainfall, variance of daily rainfall, lag-1 temporal autocovariance of daily rainfall, and
percentage of dry days over the pixel under analysis. The integration process in space and time forces the
four equations to be solved simultaneously.

The parameter ac, described in the previous section and related to the minimum overlap between a storm
cell and the pixel, could, in principle, vary from one region to another, although one would expect little
change of its value within topographically homogeneous regions, like the ones studied in this paper. Thus,
ac is calibrated here for only one of the locations under study (although it could have been estimated inde-
pendently for each region). The estimation procedure for the model parameters k, q, g, and b is repeated
for several values of the parameter ac at the pixel located at Mongu, retaining the value which best reprodu-
ces the satellite statistics related to that location. That value of ac is used for the other locations without fur-
ther calibration.

The mean of the integrated model is computed by means of equation (1) and equated to the average
observed by the satellite. The variance of the integrated process is computed from equation (9), where
l 5 0, m 5 0, and n 5 0. Lag-1 autocorrelation is also computed from equation (9) with l 5 0, m 5 0, and
n 5 1. In all cases, daily rainfall data integrated over the pixel are used in the calibration. The percentage of
dry days of the integrated model is calculated making use of equation (26).

The nonlinear nature of the equations preclude direct solutions. However, it is easy to compute the proper-
ties of the integrated process given the parameters of the spatiotemporal process. For this reason, the
parameter estimation problem is cast as an optimization problem.

The function to be optimized is the total relative root squared error, �, measured over the properties of the
integrated process that match with satellite measurements:

�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r int2�r sat

�r sat

� �2

1
r2

int2r2
sat

r2
sat

� �2

1
sð1Þint 2sð1Þsat

sð1Þsat

 !2

1
pdry

int 2pdry
sat

pdry
sat

 !2
vuut (27)
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In equation (27), the ‘‘int’’ sub-
script denotes an integrated
model magnitude and the ‘‘sat’’
subscript denotes a satellite-
derived magnitude. �r refers to
the average of daily rainfall, r2

refers to the daily rainfall var-
iance, sð1Þ refers to the daily lag-1
autocovariance, and pdry refers to
the percentage of dry days.

The optimization process is car-
ried out using the Particle Swarm
Optimization (PSO) technique
[Kennedy, 2010]. PSO is a compu-
tational method to solve optimi-
zation problems iteratively. The
method uses a population
(swarm) of candidate solutions
(particles). The particles keep
track of the best position that
they ever visited, and also keep
track of the best position ever
visited by any particle in the

whole swarm. Optimization is achieved by moving the particles through the search space. The velocity of
every particle is constructed as a combination of three vectors: (1) its previous velocity, (2) the vector joining
the particle with the swarm best visited position, and (3) the vector joining the particle with its own best vis-
ited position. The information exchange between particles allows them to share the optimum position and
tends to drive the solution to the overall optimum. This study uses a swarm of 1000 particles.

4. Study Site Description

For the present study, four locations (shown in Figure 2) have been selected in southern Africa to carry out
the satellite to point rainfall downscaling. These four locations, identified in Table 1, were selected in the Kala-
hari transect, a region where many ecological and hydrological studies have been carried out [Shugart et al.,
2004; Scanlon et al., 2007; Caylor et al., 2003], allowing a comparison of results with those of previous studies.

Table 2 lists rainfall statistics, derived from satellite observations, for every location that has been analyzed
in the present study [National Climatic Data Center, 2014]. A strong north-south precipitation gradient can
be observed along the transect between Mongu and Tshane. The reduction of precipitation is accompanied
also by a reduction of the frequency of rainfall events, therefore increasing the percentage of dry days at
the different locations.

5. Results

The parameter estimation procedure described in the previous section is used to compute the parameters
of the spatiotemporal rainfall model for the locations analyzed in this study. The value of the parameter ac,

representing the minimum overlap required in
the model between a cell and a pixel for the sat-
ellite to identify it as a rainfall event, is 0.6 for all
the four locations. This value was estimated as
the one providing the best reproduction of sat-
ellite statistics for the Mongu location.

Parameter values are transformed to storm char-
acteristics in order to simplify their

Figure 2. Location of the four rain gage stations in the Kalahari transect, southern Africa.

Table 1. Name and Location of the Rain Gage Stations Used for the
Study From Caylor et al. [2006]

Location Latitude (�) Longitude (�)

Mongu 215:44 23:25
Pandamatenga 218:66 25:50
Ghanzi 221:78 21:57
Tshane 224:17 21:89
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interpretation. They are listed in Table 3. The inverse of each parameter is computed with the exception of
the frequency of arrivals which remains unchanged. It can be observed that the most important factor con-
trolling the rainfall gradient is the reduction in the frequency of storms from north to south along the Kala-
hari transect. This same feature has been captured in the previous studies [Porporato et al., 2003; Caylor
et al., 2006]. Table 4 shows the comparison of satellite rainfall statistics and the integrated model statistics.

It should be mentioned that the direct interpretation of parameter values as the physical characteristics of
storms should be carefully weighted by the fact that the model is a very simplistic representation of very
complex atmospheric dynamics.

The parameters q, g, and b, which describe the physical characteristics of rain cells, do not show a clear trend
along the transect. This is also compatible with data reported in previous studies [Porporato et al., 2003; Caylor
et al., 2006] where the average amount of rain per rainy day remains relatively stable along the transect gages.

A major advantage arising from the characterization of rainfall through a spatiotemporal model lies on its
possible use to describe precipitation patterns at different levels of aggregation on space and time. For eco-
hydrologic analyses, the local characterization of daily rainfall at a point is of key importance. We now pro-
ceed to estimate the daily rainfall statistics at a point for each of the four locations in Table 1, based on the
results from the integrated space-time rainfall model calibrated on the basis of satellite measurements. The
results will then be compared with the statistics resulting from daily rainfall data collected by rain gages
located inside the pixel used for the calibration of the space-time rainfall model.

The comparison proceeds as follows. The probability of a dry day at a point, e.g., at a rain gage, corresponds
to the product of two probabilities: (1) the probability of a random space-time point being dry given by exp
ð22pk

gq2 Þ [Cox and Isham, 1988] and (2) the probability of no rain occurring during a day at the point given by
exp ð22pk

q2 Þ. Multiplying both probabilities one obtains the probability of a dry day at a given point derived
from the spatiotemporal model:

Pdry5exp
22pk
gq2

ð11gÞ
	 


(28)

The expressions for the daily rainfall variance at a point and daily lag-1 autocorrelation at a point corre-
sponding to the space-time rainfall model are given by Rodr�ıguez-lturbe et al. [2006]:

Table 2. Satellite Rainfall Statistics for the Pixel Containing the Rain Gage Locations Listed in Table 1

Location Average (mm/d) Std. Dev.(mm/d) Lag-1 Temp. (autocorr.) Dry Days (%)

Mongu 4.81 8.43 0.18 37
Pandamatenga 2.97 6.61 0.22 57
Ghanzi 2.21 6.02 0.22 59
Tshane 1.70 4.66 0.16 70

Table 3. Parameters of the Spatiotemporal Rainfall Model (See Section 2) for the Rain Gage Locations Listed in Table 1, Expressed as
Storm Characteristics

k (cells/d/km2) 1/q (km) 24/g (h) 1/b (mm/d)

Mongu 8:5231024 10.92 6.72 26.95
Pandamatenga 6:7331024 9.43 7.92 23.75
Ghanzi 6:3031024 7.63 8.00 28.90
Tshane 4:6531024 9.71 6.02 24.51

Table 4. Comparison of Satellite Statistics (Obs.) and Integrated Model Statistics (Mod.) for the Four Study Locations Listed in Table 1

Statistic

Mongu Pandamatenga Ghanzi Tshane

Obs. Mod. Obs. Mod. Obs. Mod. Obs. Mod.

Average (mm/d) 4.81 4.81 2.97 2.97 2.21 2.21 1.70 1.70
Standard deviation (mm/d) 8.43 8.71 6.61 6.61 6.02 6.02 4.66 4.65
Lag-1 autocorrelation 0.18 0.18 0.22 0.22 0.22 0.22 0.16 0.16
% time dry 37 37 57 48 59 55 69 60
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r2
T 5

8pk

g3b2q2
e2g1g21ð Þ (29)

cT 5
e2g e2g221egð Þ

2 e2g1g21ð Þ (30)

Comparisons of the statistics resulting from rain gage observations at the different locations and model derived
statistics are shown in Table 5. The point rainfall statistics obtained from the spatiotemporal model after the
appropriate transformations are judged to be an adequate representation of the rain gage information.

6. Conclusions

Because of the integrated character of rainfall satellite measurements, their statistics cannot be directly
translated to point, i.e., rain gage statistics. Satellite rainfall estimates are becoming widely available
throughout the world and, in regions with very sparse or nonexistent rain gage coverage, translation of
pixel integrated statistics to point rainfall properties is necessary for many types of hydrologic and ecohy-
drologic studies where vegetation responds to local rainfall conditions rather than to spatial averages.

This paper presents a downscaling methodology to derive rainfall statistics at a point from integrated satel-
lite measurements. Moreover, the inverse problem, that of estimating areal characteristics of rainfall from
point measurements, is also approachable using the analytical framework presented here.

The downscaling procedure is flexible enough to accommodate transformations among different variables
measured with different degrees of aggregation. We focused in how to transform statistics from pixel inte-
grated daily rainfall satellite observations into rain-gage-equivalent characteristics at the daily scale, but dif-
ferent spatial and temporal resolutions could have been used.

The procedure based on a very simple space-time rainfall model has been shown to yield satisfactory results
for four different locations along a strong rainfall gradient in the Kalahari transect. The results reproduce
general rainfall patterns observed in previous studies, such as the reduction in storm frequency along the
transect, and the relative homogeneity of average rainfall depth of rainy days along the transect. Most
importantly, it also satisfactorily reproduces crucial rainfall characteristics for ecohydrological applications,
such as the variance, temporal autocorrelation, and the percentage of dry days at this local scale.

A most important assumption of the methodology is the one related to the statistically homogeneous structure
of the rainfall process over the area in consideration. Its extension to mountainous regions would require a more
complex space-time rainfall model with spatially varying parameters throughout the region under analysis.
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