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Jesús Araujo†and Juan J. Font‡

Abstract

Based on the vector-valued generalization of Holsztyński’s theo-
rem by M. Cambern, we provide a complete description of the linear
isometries of C(X,E) into C(Y, F ) whose range has finite codimen-
sion.

1 Introduction.

Throughout this paper, X and Y will stand for compact Hausdorff spaces,
and E and F for Banach spaces over the field K of real or complex num-
bers. C(X,E) and C(Y, F ) will be the Banach spaces of continuous E-valued
and F -valued functions defined on X and Y , respectively, endowed with the
supremum norm ‖·‖∞. If E = F = K, then we will write C(X) and C(Y )
instead of C(X,E) and C(Y, F ).

The classical Banach-Stone theorem states that if there exists a linear
isometry T of C(X) onto C(Y ), then there are a homeomorphism ψ of Y
onto X and a continuous map a : Y −→ K, |a| ≡ 1, such that T can be
written as a weighted composition map, that is,

(Tf)(y) = a(y)f(ψ(y)) for all y ∈ Y and all f ∈ C(X).
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An important generalization of the Banach-Stone theorem was given by W.
Holsztyński in [13] (see also [3]) by considering non-surjective isometries.
Namely, he proved that, in this case, there is a closed subset Y0 of Y where
the isometry can still be represented as a weighted composition map.

This result of Holsztyński was used in [11] (see also [2, 4, 9, 10, 12, 14,
16]) to classify linear isometries on C(X) whose range has codimension 1 as
follows: Let T : C(X) −→ C(X) be a codimension 1 linear isometry. Then
there exists a closed subset X0 of X such that either

(1) X0 = X \ {p}
where p is an isolated point of X, or

(2) X0 = X,
and such that there exists a continuous map h of X0 onto X and a function
a ∈ C(X0), |a| ≡ 1, such that (Tf)(x) = a(x) · f(h(x)) for all x ∈ X0 and all
f ∈ C(X).

In the context of continuous vector-valued functions, M. Jerison ([18])
investigated the vector analogue of the Banach-Stone theorem: If X and Y
are compact Hausdorff spaces and E is a strictly convex Banach space, then
every linear isometry T of C(X,E) onto C(Y,E) can be written as a weighted
composition map; namely, (Tf)(y) = ω(y)(f(ψ(y))), for all f ∈ C(X,E) and
all y ∈ Y , where ω is a continuous map from Y into the space of continu-
ous linear operators from E to E (taking values in the subset of surjective
isometries) endowed with the strong operator topology. Furthermore, ψ is a
homeomorphism of Y onto X. As in the scalar-valued case, Jerison’s results
have been extended in many directions (see e.g., [5], [1], [15] or [6]). In parti-
cular, M. Cambern obtained in [8] the following formulation of Holsztyński’s
theorem for spaces of continuous vector-valued functions.

Theorem 1.1 If F is a strictly convex Banach space, then every linear isom-
etry T of C(X,E) into C(Y, F ) can be written as a weighted composition map;
namely,

(Tf)(y) = Jy(f(h(y))),

for all f ∈ C(X,E) and all y ∈ Y0 ⊂ Y , where J is a continuous map from
Y into the space L(E,F ) of bounded operators from E into F endowed with
the strong operator topology, with ‖Jy‖ ≤ 1 for all y ∈ Y and ‖Jy‖ = 1
for y ∈ Y0. Furthermore, h is a continuous function of Y0 onto X. If E is
finite-dimensional, then Y0 is a closed subset of Y .
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Let us recall that there are counter-examples (see [7] or [18]) which show
that all the above results may not hold if the assumption of strict convexity
is not observed.

In this paper we provide, based on this theorem of Cambern, a complete
description of the linear isometries of C(X,E) into C(Y, F ), E and F strictly
convex, whose range has finite codimension n0.

2 Preliminaries and main results.

Given a continuous linear operator T : C(X,E) −→ C(Y, F ), the map

J : Y −→ L(E,F )

y 7→ Jy

given by Jy(e) := (T ê)(y) for all e ∈ E (being ê the function constantly equal
to e) is well defined and continuous when, as usual, L(E,F ) is endowed with
the strong operator topology. Furthermore, ‖Jy‖ ≤ ‖T‖ for all y ∈ Y .

On the other hand, we can define three subsets of Y as follows:

Y3 := {y ∈ Y : (Tf)(y) = 0 ∀f ∈ C(X,E)};
Y1 := {y ∈ Y \ Y3 : ∃xy ∈ X such that (Tf)(y) = 0 if f(xy) = 0, f ∈ C(X,E)};
Y2 := Y \ (Y1 ∪ Y3).

It is easy to see that the point xy ∈ X corresponding to each y ∈ Y1 is
uniquely determined, so if we define h : Y1 −→ X by h(y) := xy, then

(Tf)(y) = Jy
(
f
(
h (y)

))
for every f ∈ C(X,E) and y ∈ Y1. Summing up, Y1 coincides with the subset
of Y where T can be written as a (nontrivial) weighted composition map.
This implies that, given any y0 ∈ Y1 and a neighborhood U of h(y0) in X,
there exists f ∈ C(X,E) such that f ≡ 0 outside U and (Tf)(y0) 6= 0, so
the set V of all y ∈ Y1 with (Tf)(y) 6= 0 is an open neighborhood of y0 in
Y1. Now it is clear that h(V1) ⊂ U , and the fact that h is continuous follows
easily.

Recall that a Banach space E is said to be strictly convex if every element
of its unit sphere is an extreme point of the closed unit ball of E. It is well-
known that if E is strictly convex and e1, e2 ∈ E \ {0}, then ‖e1 + e2‖ =
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‖e1‖+ ‖e2‖ implies e1 = re2 for some positive real r (see [19, pp. 332–336]).
From this, it is straightforward to see that

‖e1‖ , ‖e2‖ < max {‖e1 + e2‖ , ‖e1 − e2‖}

whenever e1, e2 ∈ E \ {0}.

From now on, E and F will be strictly convex normed spaces (see Remark
2.1 below). Also, T will be a linear isometry of C(X,E) into C(Y, F ) whose
range has finite codimension n0 ≥ 1.

For a function f ∈ C(X,E), we will write c(f) to denote the cozero set
of f , that is, c(f) := {x ∈ X : f(x) 6= 0}. If V is a subset of X, we will write
clV to denote its closure in X.

We rephrase the formulation of Holsztyński’s theorem for spaces of con-
tinuous vector-valued functions obtained by M. Cambern in [8].

Theorem 2.1 (Cambern) The restriction of h to Y0 := {y ∈ Y1 : ‖Jy‖ = 1}
is a continuous function onto X. Also, if E is finite-dimensional, then Y0 is
a closed subset of Y .

We denote by h the restriction of h to Y0. We then have that h : Y0 −→ X
is continuous and surjective, and that for y ∈ Y1\Y0, the mapping Jy : E −→
F defined by

Jy(e) := (T ê) (y)

is linear and continuous and its norm is less than 1.
Points in Y1 can be classified into two disjoint categories:

Y10 := {y ∈ Y1 : Jy is an isometry};
Y11 := {y ∈ Y1 : Jy is not an isometry}.

We shall see that Y11 ∪ Y2 ∪ Y3 consists of finitely many isolated points of
Y . Indeed, if F is assumed to be infinite-dimensional, then it will be proved
that Y11 ∪ Y2 ∪ Y3 is empty, that is, Y = Y0 = Y10.

Related to the subsets Y0 and Y1 and the corresponding maps h and h,
we consider, for each x ∈ X, the sets

Fx := {y ∈ Y0 : h(y) = x}
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and
Gx := {y ∈ Y1 : h(y) = x}.

It will turn out that Gx (and consequently Fx) is finite for every x ∈ X.
Prior to providing the description of T , we still need to classify the points

of X into three not necessarily disjoint classes that will be widely used in the
paper:

A0 := {x ∈ X : ∃y ∈ Fx with Jy not a surjective isometry};
A1 := {x ∈ X : x /∈ A0, cardGx = 1};
A2 := {x ∈ X : cardGx ≥ 2}.

We shall prove that A0 and A2 are finite.
Summarizing, there exists J : Y −→ L(E,F ) continuous with respect to

the strong operator topology and h : Y1 −→ X continuous and surjective
such that (Tf)(y) = Jy

(
f
(
h (y)

))
for all f ∈ C(X,E) and y ∈ Y1. We next

state (in full) the main results, where we keep the notation above.

Theorem 2.2 Let X, Y be compact Hausdorff spaces, E, F be strictly con-
vex Banach spaces, and T : C(X,E) −→ C(Y, F ) be a linear isometry.
Suppose that the range of T has finite codimension n0 ≥ 1.

If F is infinite-dimensional, then there exist a finite subset YN of Y and
a surjective homeomorphism h : Y −→ X such that

(Tf)(y) = Jy(f(h(y))),

for all f ∈ C(X,E) and all y ∈ Y . Here, Jy : E −→ F is an isometry for
all y ∈ Y , and it is surjective whenever y /∈ YN .

Moreover, ∑
y∈YN

codim (ran Jy) = n0.

The finite-dimensional case turns out to be more intricate. First it is
apparent that, since h is surjective, if Y is finite, then X is also finite. Con-
sequently, it is clear that n0 = (dimF )(cardY )− (dimE)(cardX). Next we
study the case when Y is infinite.

Theorem 2.3 Let X, Y be compact Hausdorff spaces, E, F be strictly con-
vex Banach spaces, and T : C(X,E) −→ C(Y, F ) be a linear isometry.
Suppose that the range of T has finite codimension n0 ≥ 1.
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If F is finite-dimensional and Y is infinite, then there exists a cofinite
subset Y1 of Y and a continuous surjection h : Y1 −→ X such that

(Tf)(y) = Jy
(
f
(
h (y)

))
for all f ∈ C(X,E) and y ∈ Y1.

Furthermore, the set of all y ∈ Y for which Jy : E −→ F is a surjective
isometry is clopen, its complement is finite and

n0 = (dimF )
(

card(Y \ Y1) + cardh
−1

(A2)− cardA2

)
,

where A2 = {x ∈ X : cardh
−1

(x) ≥ 2}.

Remark 2.1 Theorem 2.3 does not hold in general if E (or F ) is not strictly
convex. For instance, suppose that, for F = K and E = K2 endowed with the
sup norm, and Y being the topological sum of two copies X×{1}, X×{2} of
X and n0 isolated points pi. It is easy to see that the map T : C(X,E) −→
C(Y, F ) defined, for each f ∈ C(X,E), by (Tf)(x, i) := 〈f(x), ei〉 (where
{e1, e2} is the canonical basis in K2), and (Tf)(pj) := 0 for all j, is a linear
isometry with codimension n0. As in [17], it can be checked that T is not a
weighted composition map.

3 Some technical lemmas.

Lemma 3.1 The set A0 is finite.

Proof. Suppose, contrary to what we claim, that A0 is infinite. Then we
can find pairwise distinct x1, x2, . . . , xn0+1 ∈ A0. For i = 1, 2, . . . , n0 + 1, we
choose yi ∈ Fxi with Jyi not a surjective isometry. Next we divide the set
{1, 2, . . . , n0 + 1} into three mutually disjoint subsets. Namely,

I1 := {i ∈ {1, 2, . . . , n0 + 1} : Jyi isometry} ;

I2 := {i ∈ {1, 2, . . . , n0 + 1} : Jyi not injective};
I3 := {i ∈ {1, 2, . . . , n0 + 1} : Jyi injective but not isometry}.

Let i ∈ I2. Then there is ei ∈ E with ‖ei‖ = 1 and Jyi(ei) = 0. Take
fi ∈ C(X) such that 0 ≤ fi ≤ 1, fi(xi) = 1, and fi(xj) = 0 for j 6= i. It is

6



clear that, if we put ki := fiei ∈ C(X,E), then ‖ki‖∞ = 1 and (Tki)(yi) = 0.
Furthermore, for j 6= i, 1 ≤ j ≤ n0 + 1, we have that

ki(xj) = ki(h(yj)) = 0.

Hence, (Tki)(yj) = 0.
Consequently, for each i ∈ I2, the set

Vi :=

{
y ∈ Y : ‖(Tki)(y)‖ < 1

2

}
is open in Y and contains yj for all j. For the same reason, if we define
V := Y if I2 = ∅ and

V :=
⋂
i∈I2

Vi

otherwise, then V is an open neighborhood of yj for all j ∈ {1, 2, . . . , n0 +1}.
Next we consider pairwise disjoint open neighborhoods V ′i of yi in Y for

all i ∈ {1, 2, . . . , n0 + 1}, and define

Wi := V ′i ∩ V.

It is clear that Wi ∩Wj = ∅ if i 6= j and that yi ∈ Wi for all i.
Next we consider, for each i ∈ {1, 2, . . . , n0 + 1}, a function gi ∈ C(Y )

such that 0 ≤ gi ≤ 1, c(gi) ⊂ Wi and gi(yi) = 1, and a vector fi ∈ F given as
follows:

1. If i ∈ I1, then we choose fi /∈ ran Jyi with ‖fi‖ = 1.

2. If i ∈ I2 ∪ I3, then we take a norm-one e′i ∈ E with 0 < ‖Jyi(e′i)‖ < 1,
and define fi := Jyi(e

′
i).

As the codimension of the range of T is n0, there exist a1, . . . , an0+1 ∈ K
such that g :=

∑n0+1
i=1 aigifi 6= 0 belongs to the range of T . Let us choose i0

such that ‖g‖∞ = |ai0| ‖fi0‖. We claim that i0 ∈ I2 (so I2 6= ∅).
Let f ∈ C(X,E) with Tf = g. If we fix i ∈ I1, then

aifi = (Tf)(yi) = Jyi(f(h(yi)).

This is to say that aifi belongs to the range of Jyi and, since i ∈ I1, we get
ai = 0. Hence i0 /∈ I1. Next, if i ∈ I3, then g(yi) = Jyi(f(xi)), and also
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g(yi) = aifi = aiJyi(e
′
i), implying that |ai| = |ai| ‖e′i‖ = ‖f(xi)‖ ≤ ‖g‖∞.

Hence |ai| ‖fi‖ < ‖g‖∞ and i0 /∈ I3, as we wanted to prove.
Since ‖g‖∞ = |ai0| ‖fi0‖ =

∥∥Jyi0 (f(xi0))
∥∥, we deduce that f(xi0) 6= 0 and,

since E is strictly convex, it is now clear that either

‖ki0(xi0) + f(xi0)‖ > 1

or
‖ki0(xi0)− f(xi0)‖ > 1,

that is, either ‖ki0 + f‖∞ > 1 or ‖ki0 − f‖∞ > 1.
With no loss of generality, we shall assume that ‖g‖∞ = 1

2
.

We claim that ‖Tki ± g‖∞ ≤ 1 for all i. To this end, fix y ∈ Y and assume
first that y ∈ c(g), so y ∈ V . Hence ‖(Tki)(y)‖ < 1/2 and, consequently,
‖(Tki ± g)(y)‖ < 1. Assume next that y /∈ c(g), which is to say that g(y) = 0.
Then, since ‖ki‖∞ = 1, ‖(Tki ± g)(y)‖ ≤ 1. Hence

‖Tki ± g‖∞ ≤ 1.

This contradicts the isometric property of T , and we are done. �

The proof of the following lemma is immediate.

Lemma 3.2 Let x ∈ X and let y1, y2 ∈ Gx with Jy1 injective. If g ∈ C(Y, F )
satisfies g(y1) = 0 and g(y2) 6= 0, then g /∈ ranT .

Lemma 3.3 The set A2 is finite.

Proof. Suppose, contrary to what we claim, that A2 is infinite. Then,
since A0 is finite by Lemma 3.1, we can find pairwise distinct x1, x2, . . . , xn0+1

in A2 \ A0. For each i = 1, 2, . . . , n0 + 1, we choose two distinct elements
y1i , y

2
i in Gxi . Since h is onto, we can assume that y1i ∈ Fxi for all i.

Also for each i, we can choose a function gi ∈ C(Y, F ) such that

• gi(y2i ) 6= 0 and gi(y
2
j )) = 0 for j 6= i.

• gi(y1j ) = 0 for all j = 1, 2, . . . , n0 + 1.

By Lemma 3.2, no nonzero linear combination of the gi belongs to ranT ,
which is impossible. �

Lemma 3.4 For each x ∈ X, the set Gx is finite.
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Proof. Suppose, contrary to what we claim, that there is x0 ∈ X such
that Gx0 is infinite.

First, if there exists y0 ∈ Gx0 such that Jy0 is injective, then we take
y1, y2, . . . , yn0+1 ∈ Gx0 pairwise distinct and different from y0. For each
i ∈ {1, 2, , . . . , n0 + 1} we choose a function gi ∈ C(Y, F ) such that gi(yi) 6= 0
and gi(yj) = 0 = gi(y0) for j 6= i. Using Lemma 3.2, no nontrivial linear
combination of the gi belongs to ranT . We conclude that, for all y ∈ Gx0 ,
Jy is not injective.

We shall prove that this is also impossible. To this end, let us first see
that

Gx0 ∩ cl
(
h−1 (X \ A0)

)
= ∅.

If y ∈ Gx0 , then there exists ey ∈ E, ‖ey‖ = 1, such that Jy(ey) = 0. On
the other hand, given y′ ∈ h−1(X \A0), Jy′ is an isometry and, consequently,
‖Jy′(ey)‖ = 1. In other words, we have that (T êy) (y) = 0 and, for all
y′ ∈ h−1(X \ A0), ‖(T êy)(y

′)‖ = 1. This yields y /∈ cl (h−1 (X \ A0)).
Since we are assuming that Gx0 is infinite, we can now consider two

subsets of Gx0 ,
{
y11, . . . , y

1
n0+1

}
and

{
y21, . . . , y

2
n0+1

}
, consisting of 2n0 + 2

pairwise distinct elements.
Let us also consider, for each i ∈ {1, 2, . . . , n0 +1} and each j ∈ {1, 2}, an

open neighborhood U j
i of yji such that U j

i ∩h−1(X \A0) = ∅. Clearly, we can
assume that these 2n0 + 2 sets are pairwise disjoint, and then take functions
gji ∈ C(Y, F ) such that c(gji ) ⊂ U j

i and
∥∥gji (yji )∥∥ = 1 =

∥∥gji∥∥∞ for all i, j.

Then we have two nonzero functions g1 :=
∑n0+1

i=1 αig
1
i and g2 :=

∑n0+1
i=1 βig

2
i

in the range of T , that is, Tf1 = g1 and Tf2 = g2 for some f1, f2 ∈ C(X,E).
Assume, without loss of generality, that ‖g1‖∞ = ‖g2‖∞ = 1.

Since gi ≡ 0 on h−1(X \ A0) (i = 1, 2), we infer that fi ≡ 0 on X \ A0.
However, if fi(x0) = 0, then gi(y) = 0 for all y ∈ Gx0 . Consequently,
fi(x0) 6= 0 for i = 1, 2. As A0 is finite and x0 ∈ A0, we deduce that {x0} is
an open set. Then we can write the functions fi as

fi = fiχ{x0} + fiχA0\{x0}.

As fiχA0\{x0}(x0) = 0, then (TfiχA0\{x0})(y) = 0 for all y ∈ Gx0 , so (Tfiχ{x0})(y) =
(Tfi)(y) for all y ∈ Gx0 .

Hence, since each ‖Tfi(y)‖ = ‖gi(y)‖ attains its maximum in Gx0 ,∥∥Tfiχ{x0}∥∥∞ ≥ ‖Tfi‖∞ = 1,
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implying that
∥∥Tfiχ{x0}∥∥∞ = 1. This yields ‖fi(x0)‖ = 1, i = 1, 2. As a

consequence, either ‖f1(x0) + f2(x0)‖ > 1 or ‖f1(x0)− f2(x0)‖ > 1, which
implies that either

‖Tf1 + Tf2‖∞ > 1

or
‖Tf1 − Tf2‖∞ > 1.

These inequalities contradict the fact that

‖g1 ± g2‖∞ = max (‖g1‖∞ , ‖g2‖∞) = 1.

�

Lemma 3.5 The set Y3 is finite.

Proof. Suppose that there exist n0 + 1 distinct points y1, . . . , yn0+1 in Y3.
Let us choose n0 + 1 functions g1, . . . , gn0+1 in C(Y, F ) such that gi(yj) = 0
if i 6= j and gi(yi) 6= 0 for i ∈ {1, . . . , n0 + 1}. It is apparent that no nonzero
linear combination of {g1, . . . , gn0+1} belongs to the range of T , which is
impossible. �

Lemma 3.6 The set Y2 is finite and each point of Y2 is isolated in Y .

Proof. We first check that Y2 ∩ clY1 = ∅. Obviously, Y2 ∩ Y1 = ∅.
First, by Lemmas 3.1, 3.3 and 3.4, h

−1
(A0 ∪ A2) is finite. Since X =

A0 ∪ A2 ∪ A1, in order to prove that Y2 ∩ clY1 = ∅, it suffices to check that

Y2 ∩ cl(h
−1

(A1)) = ∅,

which, by the definition of A1, is the same as proving Y2 ∩ cl(h−1(A1)) = ∅.
Let y0 ∈ cl(h−1(A1)) and consider, for f ∈ C(X,E) and ε > 0, the set

K(f, ε) := {x ∈ X : |‖f(x)‖ − ‖(Tf)(y0)‖| ≤ ε}.

Each of these is a closed subset of X, which is also nonempty as a consequence
of the fact that, for each y ∈ h−1(A1), ‖f(h(y))‖ = ‖(Tf)(y)‖. We are
going to check that the family of all these sets satisfies the finite intersection
property. Indeed, we shall prove that if f1, . . . , fn ∈ C(X,E) and ε1, . . . , εn >
0, then

n⋂
i=1

K(fi, εi) 6= ∅.
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The set

U :=
n⋂
i=1

{y ∈ Y : ‖(Tfi)(y)− (Tfi)(y0)‖ < εi}

is an open neighborhood of y0 and, by assumption, there exists y1 ∈ h−1(A1)∩
U . Then

|‖(Tfi)(y1)‖ − ‖(Tfi)(y0)‖| < εi

for i = 1, 2, . . . , n. On the other hand, for each i, (Tfi)(y1) = Jy1(fi(h(y1)))
and, as Jy1 is a surjective isometry, we have that ‖(Tfi)(y1)‖ = ‖fi(h(y1))‖.
Consequently,

|‖fi(h(y1))‖ − ‖(Tfi)(y0)‖| < εi,

which implies that, as was to be proved,

h(y1) ∈
n⋂
i=1

K(fi, εi).

Hence, since X is compact, there exists

x0 ∈
⋂
ε>0

f∈C(X,E)

K(f, ε).

By definition, we deduce that, for every f ∈ C(X,E), ‖f(x0)‖ = ‖(Tf)(y0)‖.
In particular, if f(x0) = 0, then (Tf)(y0) = 0, and consequently y0 /∈ Y2.
This contradiction yields

Y2 ∩ clY1 = ∅.

Now, as Y2 = Y \ (Y3 ∪ clY1) and Y3 is a finite set, we infer that Y2 is open.
Next, suppose that Y2 contains infinitely many elements. Then there

exist n0 + 1 pairwise disjoint open subsets V1, . . . , Vn0+1 contained in Y2.
For each i ∈ {1, 2, . . . , n0 + 1}, we can take gi ∈ C(Y, F ), gi 6= 0, with
c(gi) ⊂ Vi. From the finite codimensionality of the range of T , we infer that
there exists a nonzero linear combination g :=

∑n0+1
i=1 αigi in the range of T ,

that is, there exists f ∈ C(X,E) such that Tf = g. Then, it is apparent
that g(h−1(X)) ≡ 0 and, in order to get a contradiction, it suffices to check
that f(X) ≡ 0. To this end, note that, by definition, if x /∈ A0, then,
given y ∈ Fx, Jy is an isometry. Hence, 0 = (Tf)(y) = Jy(f(x)) yields
f(x) = 0, which is to say that f ≡ 0 on X except perhaps on a finite set
{x1, . . . , xn} ⊂ A0. Then we can write f = fχ{x1} + . . . + fχ{xn}. Also
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for each y ∈ Y1, there exists at most one i such that
(
Tfχ{xi}

)
(y) 6= 0

because in that case, necessarily, h(y) = xi. We then infer that Tfχ{xi} ≡ 0
on Y1 for all i. Hence there exists y1 ∈ Y2 such that

∥∥(Tfχ{xi}) (y1)
∥∥ =∥∥Tfχ{xi}∥∥∞ 6= 0 for some i ∈ {1, . . . , n}. Since y1 ∈ Y2, we can find k ∈

C(X,E) such that k(xi) = 0 and (Tk)(y1) 6= 0. If we suppose, with no loss
of generality, that ‖k‖∞ =

∥∥fχ{xi}∥∥∞ = 1, then
∥∥k ± fχ{xi}∥∥∞ = 1, but

either
∥∥(Tfχ{xi})(y1) + (Tk)(y1)

∥∥ > 1 or
∥∥(Tfχ{xi})(y1)− (Tk)(y1)

∥∥ > 1,
which is impossible. �

Lemma 3.7 The set Y11 ∪ Y2 ∪ Y3 is finite, and all of its points are isolated
in Y .

Proof. We already know, by Lemma 3.6, that the result is true for Y2.
On the other hand, it is apparent that

Y11 ⊂
⋃

x∈X\A0

(Gx \ Fx) ∪
⋃
x∈A0

Gx.

Since A0, A2 and Gx are finite sets (see Lemmas 3.1, 3.3 and 3.4), then
we deduce that Y11 is finite. Also, for any e ∈ E, ‖e‖ = 1, the open set
Ce := {y ∈ Y : ‖(T ê)(y)‖ < 1} is contained in the finite set Y11 ∪ Y2 ∪ Y3,
which implies that Ce consists of isolated points. If y0 ∈ Y11, then there
exists e ∈ E such that ‖e‖ = 1 and ‖(T ê)(y0)‖ = ‖Jy0(e)‖ < 1, which is to
say that y0 ∈ Ce, that is, it is isolated.

A similar reasoning shows that every element of Y3 is isolated in Y . �

Corollary 3.1 Y1 is a clopen subset of Y .

4 The infinite-dimensional case

In this section we shall assume that F is infinite-dimensional. Our first result
shows that Jy is an isometry for all y ∈ Y .

Lemma 4.1 Y11 ∪ Y2 ∪ Y3 = ∅.

Proof. Suppose that y0 ∈ Y11∪Y2∪Y3 and consider n0+1 linearly indepen-
dent vectors g1, . . . ,gn0+1 ∈ F . Since {y0} is a clopen subset (Lemma 3.7),
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then χ{y0}g1, . . . , χ{y0}gn0+1 belong to C(Y, F ) and are linearly independent.
Then, there exists a nonzero linear combination

g :=

n0+1∑
i=1

αiχ{y0}gi

in the range of T .
It is apparent that g(h−1(X \ A0)) ≡ 0. Hence, f := T−1g satisfies

f(X \ A0) ≡ 0 and, if we write A0 = {x1, . . . , xk} (see Lemma 3.1), then
f = fχ{x1} + . . . + fχ{xk}. As g(y0) 6= 0, we infer that y0 /∈ Y3. Hence we
only have two possible cases:

1. y0 ∈ Y2

2. y0 ∈ Y11
Before studying these cases, we need some preparation. With no loss of
generality, we can assume that ‖g‖∞ = ‖f‖∞ = 1. Hence, there exists
j ∈ {1, . . . , k}, say j = 1, such that ‖f(x1)‖ = 1. Let us now check that
f(x2) = · · · = f(xk) = 0. To this end, we define

f1 := fχ{x1}

f2 := fχ{x2,...,xk}

Claim 4.1 Tf1 = g.

As ‖f(x1)‖ = 1, there is y1 ∈ Y with ‖(Tf1)(y1)‖ = 1. Besides, as f1 ≡ 0
on X \ {x1}, y1 /∈ Gx for any x 6= x1, which is to say that y1 ∈ Gx1 ∪ Y2.
Therefore, if y1 6= y0, then we have

‖T (f1 − f2)(y1)‖ = ‖(Tf1)(y1)− (Tf)(y1) + (Tf1)(y1)‖ =

= ‖2(Tf1)(y1)− g(y1)‖ = ‖2(Tf1)(y1)‖ = 2

but
‖f1 − f2‖∞ = ‖f1(x1)‖ = 1.

This contradiction yields y1 = y0 and, consequently, ‖(Tf1)(y0)‖ = 1.
On the other hand, let us check that (Tf2)(y0) = 0. If this is not the

case, then ‖f1 + f2‖∞ = 1 = ‖f1 − f2‖∞, but as F is strictly convex, then
either

‖(Tf1)(y0) + (Tf2)(y0)‖ > 1

13



or
‖(Tf1)(y0)− (Tf2)(y0)‖ > 1,

which is impossible since T is an isometry.
Consequently, for y2 ∈ Y \{y0} with ‖(Tf2)(y2)‖ = ‖Tf2‖∞ ≤ 1, we have

(Tf1)(y2) = −(Tf2)(y2). Also, if Tf2 6= 0, then either∥∥∥∥(Tf1)(y2) +
(Tf2)(y2)

‖Tf2‖∞

∥∥∥∥ > 1

or ∥∥∥∥(Tf1)(y2)−
(Tf2)(y2)

‖Tf2‖∞

∥∥∥∥ > 1,

contrary to the fact that ∥∥∥∥f1 ± f2
‖Tf2‖∞

∥∥∥∥
∞

= 1.

This contradiction yields f2 ≡ 0, which is to say that Tf1 = g. The proof
of the claim is done.

Case 1 If we suppose that y0 ∈ Y2, then there exists f3 ∈ C(X,E) such
that ‖f3‖∞ = 1, f3(x1) = 0 and (Tf3)(y0) 6= 0. It is clear that ‖f3 + f1‖∞ =
1 = ‖f3 − f1‖∞ but either

‖(Tf3 + Tf1)(y0)‖ > 1

or
‖(Tf3 − Tf1)(y0)‖ > 1.

This contradiction shows that y0 /∈ Y2.

Case 2 Assume finally that y0 ∈ Y11, that is, Jy0 is not an isometry.
Hence we know that there exists e ∈ E, ‖e‖ = 1, such that ‖Jy0(e)‖ < 1.
Let us define

α = 1− ‖Jy0(e)‖
and

f3 := χ{x1}e.

It is clear that ‖f3‖∞ = 1 and ‖(Tf3)(y0)‖ = ‖Jy0(e)‖ < 1. On the other
hand

‖(T (αf1 ± f3))(y0)‖ ≤ α‖(Tf1)(y0)‖+ ‖(Tf3)(y0)‖ = 1.
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Also if y 6= y0, (Tf1)(y) = 0 and ‖(Tf3)(y)‖ ≤ ‖Tf3‖∞ = 1. Conse-
quently

‖(T (αf1 ± f3))‖∞ ≤ 1.

However, either
‖αf1(x1) + f3(x1)‖ > 1

or
‖αf1(x1)− f3(x1)‖ > 1

which contradicts the isometric condition of T . The lemma is proved. �

Lemma 4.2 Y = Y0 and h : Y −→ X is a surjective homeomorphism.
Moreover Jy is an isometry for every y ∈ Y . Furthermore, the set YN ⊂ Y
of all y such that Jy is not surjective is finite.

Proof. By Lemma 4.1, Y = Y10, so every Jy is an isometry and Y = Y0.
Suppose next that there exists x0 ∈ X with cardGx0 ≥ 2, and take

y1, y2 ∈ Gx0 , y1 6= y2. Pick g = Tf ∈ C(Y, F ) with g(y1) = 0. By Lemma 3.2,
g(y2) = 0, which is impossible because codim (ranT ) is finite. We deduce
that, for all x ∈ X, cardGx = 1, and consequently Fx = Gx. We infer that
h is injective and, since it is a continuous surjection and Y is compact, then
h is a surjective homeomorphism.

Finally, let us note that, if h(y) /∈ A0, then Jy is a surjective isometry.
Consequently, as A0 is finite, so is YN . �

Proposition 4.1 Let g ∈ C(Y, F ) be such that g(y) ∈ ran Jy for all y ∈ Y .
Then g ∈ ranT .

Proof. By Lemma 4.2, given x ∈ X,

Jh−1(x) : E −→ F

is a linear isometry which is also surjective except for finitely many x ∈ h(YN),
being YN := {y1, . . . , yk}.

Fix any x0 ∈ X and take an open neighborhood V of h−1(x0) such that
V ∩ YN ⊂ {h−1(x0)}. Hence, for all y ∈ V \ {h−1(x0)}, we have that Jy is a
surjective isometry.

Claim 4.2 Let f ∈ ran Jh−1(x0) and let ε > 0. There exists an open neigh-
borhood Uε of x0 such that, if x ∈ Uε, then f ∈ ran Jh−1(x) and

‖(Jh−1(x0))
−1(f)− (Jh−1(x))

−1(f)‖ < ε.
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As f ∈ ran Jh−1(x0), there exists e ∈ E with Jh−1(x0)(e) = f . Hence
(T ê)(h−1(x0)) = Jh−1(x0)(e) = f and there exists an open neighborhood Vε of
h−1(x0) such that Vε ⊂ V and

‖(T ê)(y)− (T ê)(h−1(x0))‖ < ε

for all y ∈ Vε, that is,
‖Jy(e)− f‖ < ε.

On the other hand, as f ∈ ran Jy for all y ∈ Vε, there exists e′y ∈ E such
that f = Jy(e

′
y). Hence, if y ∈ Vε, then ‖Jy(e)− Jy(e′y)‖ < ε, that is,

‖Jy(e− e′y)‖ < ε,

and, since Jy is an isometry, ‖e− e′y‖ < ε. Summarizing, if x ∈ Uε := h(Vε),
then

‖(Jh−1(x0))
−1(f)− (Jh−1(x))

−1(f)‖ < ε

and the proof of the claim is done.

Next, define the function f : X −→ E by

f(x) := (Jh−1(x))
−1(g(h−1(x)))

for all x ∈ X. Hence, if we prove that f is continuous, then for y = h−1(x),
we have

(Tf)(y) = Jy(f(h(y)) = Jy((Jy)
−1(g(y))) = g(y).

Thus, it only remains to check the continuity of f at x0. To this end, fix
any ε > 0. Since g is continuous, there exists an open neighborhood W of
h−1(x0) in Y such that, if y ∈ W , then

‖g(y)− g(h−1(x0))‖ <
ε

2
.

Let us define U := h(W ) ∩ Uε/2, where Uε/2 is given by the claim above for
f := g(h−1(x0)). Then, by definition, if x ∈ U ,

‖f(x0)− f(x)‖ =
∥∥(Jh−1(x0))

−1(g(h−1(x0)))− (Jh−1(x))
−1(g(h−1(x)))

∥∥
≤

∥∥(Jh−1(x0))
−1(f)− (Jh−1(x))

−1(f)
∥∥

+
∥∥(Jh−1(x))

−1(f)− (Jh−1(x))
−1(g(h−1(x)))

∥∥
<

ε

2
+
∥∥(Jh−1(x))

−1 (f − g(h−1(x))
)∥∥

=
ε

2
+
∥∥f − g(h−1(x))

∥∥
<

ε

2
+
ε

2
= ε,
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and the continuity of f is proved. �

We can now prove the main result in this section.

Proof of Theorem 2.2. Taking into account the previous lemmas, it only
remains to check that

∑k
i=1 codim (ran Jyi) = n0, where YN = {y1, . . . , yk} is

the subset introduced in Lemma 4.2.
Notice first that, due to the representation of T ,

codim (ran Jyi) ≤ codim(ranT )

for each i. Then there exist k sets formed by linearly independent vectors

F1 := {f(1, 1), . . . , f(1, n1)},
F2 := {f(2, 1), . . . , f(2, n2)},

...

Fk := {f(k, 1), . . . , f(k, nk)}

such that
ran Jyi + span Fi = F

and
ran Jyi ∩ span Fi = {0} (1)

for each i ∈ {1, 2, . . . , k}.
Contrary to what we claim, suppose first that

k∑
i=1

ni =
k∑
i=1

codim (ran Jyi) > n0.

Let us consider, for each i ∈ {1, 2, . . . , k}, an open neighborhood Vi of yi
such that Vi ∩ Vj = ∅ if i 6= j. Let gi ∈ C(Y ) be such that c(gi) ⊂ Vi and
gi(yi) = 1. Define also, for each i ∈ {1, 2, . . . , k} and each j ∈ {1, 2, . . . , ni},
a function g(i, j) := gif(i, j). Hence we have

∑k
i=1 ni linearly independent

functions in C(Y, F ), so there exists a linear combination

g0 :=
∑
i,j

α(i, j)g(i, j)
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in the range of T , with some α(i0, j0) 6= 0. Let f ∈ C(X,E) satisfy Tf = g0.
Then

0 6=
ni0∑
j=1

α(i0, j)f(i0, j) = g0(yi0) = (Tf)(yi0) = Jyi0 (f(h(yi0))).

We deduce that ran Jyi0∩span Fi0 6= {0}, which contradicts (1) above. Hence∑k
n=1 codim (ran Jyn) ≤ n0.

Suppose now that
∑k

n=1 codim (ran Jyn) < n0. We shall check that,
given n0 linearly independent functions g1, . . . , gn0 in C(Y, F ), there exists
a nonzero linear combination in the range of T . This fact implies that the
codimension of the range of T is strictly less than n0, which is impossible.

Let us define the linear mappings

λ : Kn0 −→ span {g1, . . . , gn0}

by λ(γ1, . . . , γn0) :=
∑n0

j=1 γjgj for all (γ1, . . . , γn0) ∈ Kn0 . Next, for i ∈
{1, 2, . . . , k}, consider

µi : C(Y, F ) −→ F/ ran Jyi

where µi(g) := g(yi) + ran Jyi for all g ∈ C(Y, F ), and finally let

µ : C(Y, F ) −→ (F/ ran Jy1)× · · · × (F/ ran Jyk) ,

where µ(g) := (µ1(g), . . . , µk(g)) for all g. As a consequence, µ◦λ turns out to
be a linear mapping from a n0-dimensional space to a space whose dimension
is
∑k

i=1 ni < n0. It is apparent that µ ◦ λ is not injective. Thus there exists
(γ1, . . . , γn0) ∈ Kn0 \ {(0, . . . , 0)} such that (µ ◦ λ)(γ1, . . . , γn0) = 0. This
means that (µi ◦λ)(γ1, . . . , γn0) = 0+ran Jyi for each i ∈ {1, . . . , k}, which is
to say that

∑n0

j=1 γjgj(yi) ∈ ran Jyi for all i ∈ {1, . . . , k}. Taking into account
the definition of YN , we see by Proposition 4.1 that

∑n0

j=1 γjgj ∈ ranT , as
was to be proved. �

Contrary to what could be expected in principle, the points of YN need
not be isolated, as the following example shows.

Example 4.1 Let X = Y := {1/n : n ∈ N} ∪ {0} and let h : Y −→ X be
the identity map. Given f ∈ C(X, `2), we define

(Tf)

(
1

n

)
:= (λnn, λ

n
1 , λ

n
2 , . . . , λ

n
n−1, λ

n
n+1, . . .),
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where f(1/n) := (λn1 , λ
n
2 , . . . , λ

n
n−1, λ

n
n, λ

n
n+1, . . .). Also, if

f(0) = (λ01, λ
0
2, . . . , λ

0
n−1, λ

0
n, λ

0
n+1, . . .),

then define
(Tf)(0) := (0, λ01, λ

0
2, . . . , λ

0
n−1, λ

0
n, λ

0
n+1, . . .),

so that Tf belongs to C(Y, `2).
It is clear that T is a linear isometry where J 1

n
: `2 −→ `2 turns out

to be J 1
n
(λ1, λ2, . . . , λn−1, λn, λn+1, . . .) = (λn, λ1, λ2, . . . , λn−1, λn+1, . . .). On

the other hand J0(en) = en+1 for all n ∈ N, and J0 is a codimension 1 linear
isometry on `2. Consequently T is a codimension 1 linear isometry, where
the constant function ê1 does not belong to the range of T . In this case,
YN = {0} ∈ Y , which is not isolated.

5 The finite-dimensional case.

From now on, we shall assume that m := dimF <∞.

Lemma 5.1 Suppose that x ∈ X and Gx = {y1, . . . , ynx}. Then the mapping
Qx : E −→ F nx, defined by

Qx(e) := ((Te)(y1), . . . , (Te)(ynx))

for all e ∈ E, is a linear isometry if F nx is endowed with the sup norm
‖(f1, . . . , fnx))‖∞ = max1≤i≤nx ‖fi‖.

Proof. Fix e ∈ E with ‖e‖ = 1. Since T is an isometry, ‖Qx(e)‖ ≤ 1, so
we must see that there exists i ∈ {1, . . . , nx} with ‖Jyi(e)‖ = 1. Obviously,
if some yi belongs to Y10, then Jyi is an isometry and we are done.

Consequently, we suppose that Gx∩Y10 = ∅. This implies that x /∈ h(Y10)
and, since Y10 is compact, x is isolated inX. Hence the characteristic function
f := χ{x}e is continuous. As f ≡ 0 on X \ {x}, it is clear that Tf ≡ 0 on

h
−1

(X) \ h−1(x), which is to say that there must exist y ∈ Gx ∪ Y2 such
that ‖(Tf)(y)‖ = ‖Tf‖∞ = 1. If we suppose that y ∈ Y2, then there
exists f ′ ∈ C(X,E) with f ′(x) = 0 and (Tf ′)(y) 6= 0. Without loss of
generality, we shall assume that ‖f ′‖∞ = 1. Hence ‖f + f ′‖∞ = 1 = ‖f −
f ′‖∞. However, as F is strictly convex, we have ‖(Tf)(y) + (Tf ′)(y)‖ > 1
or ‖(Tf)(y)− (Tf ′)(y)‖ > 1, which contradicts the isometric property of T .
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As a consequence, Tf attains its maximum in Gx, which is to say that there
exists i ∈ {1, . . . , nx} with ‖Jyi(e)‖ = ‖(Tf)(yi)‖ = 1, as we wanted to see.

�

Next we deduce the relationship between the sets A0 and A2 introduced
in Section 2.

Corollary 5.1 A0 is contained in A2.

Proof. Let x0 ∈ A0 and y0 ∈ Fx0 with Jy0 not a surjective isometry, which,
in this finite-dimensional case, means that it is not an isometry. If x0 /∈ A2,
then Gx0 = Fx0 = {y0}, and Lemma 5.1 easily leads to a contradiction. �

Proposition 5.1 Let Y be infinite. Suppose that g ∈ C(Y, F ) satisfies

g(h
−1

(A2)) ≡ 0. Then there exists a unique f ∈ C(X,E) such that Tf ≡ g
on Y1.

Proof. Define the function f ∈ C(X,E) as follows:

• f(x) := 0 for x ∈ A2.

• f(x) := (J
h
−1

(x)
)−1(g(h

−1
(x))) if x /∈ A2.

We first check that f is well-defined outside A2, that is, J
h
−1

(x)
is a sur-

jective isometry. Let x /∈ A2. Then h
−1

(x) = h−1(x) because Gx = Fx. Also,
by Corollary 5.1, x /∈ A0, so Jh−1(x) : E −→ F is a surjective isometry.

Next we study the continuity of f . Let x0 ∈ X \ A2 and ε > 0. We
consider an open neighborhood V1 of h−1(x0) in Y such that, for all y ∈ V1,

‖g(y)− g(h−1(x0))‖ <
ε

2
.

With no loss of generality, we can assume that V1 ⊂ Y10 because h−1(x0) ∈
Y10\h

−1
(A2) and this set is open being Y10 clopen by Lemma 3.7. Also, since

h
−1

(A2) is finite, V1 can be taken such that cl(V1) ∩ h
−1

(A2) = ∅.
We can rewrite the above inequality as

‖Jy(f(h(y)))− Jh−1(x0)(f(x0))‖ <
ε

2

20



for all y ∈ V1.
On the other hand, since Y10 ⊂ Y0 is clopen and J : Y0 −→ L(E,F ) is

continuous with respect to the strong operator topology, we can take an open
neighborhood V2 of h−1(x0) with V2 ⊂ Y10 such that

‖Jy(f(x0))− Jh−1(x0)(f(x0))‖ <
ε

2

for all y ∈ V2. We thus deduce that if y ∈ V1 ∩ V2, then

‖Jy(f(h(y)))− Jy(f(x0))‖ < ε

that is,
‖Jy[f(h(y))− f(x0)]‖ < ε.

But as y ∈ Y10, Jy is an isometry, and consequently,

‖f(h(y))− f(x0)‖ < ε (2)

for all y ∈ V1∩V2. Hence, in order to obtain the continuity of f at x0 ∈ X\A2,
it suffices to notice that sets of the form h(V1 ∩ V2) are open neighborhoods
of x0.

Let us now study the continuity of f on A2. To this end, fix x0 ∈ A2.
Since A2 is a finite set, there exists an open neighborhood U of x0 such that
U ∩ A2 = {x0}.

Suppose that f is not continuous at x0. Then there exist ε > 0 and a net
(xα) in U which converges to x0 such that ‖f (xα)‖ ≥ ε for all α. Since each

element of the net xα belongs to X\A2, we infer that h
−1

(xα) is a singleton in

Y10. Furthermore, as Y10 is compact, there exists a subnet h
−1

(xβ) convergent
to a certain y0 ∈ Y10. Since h is continuous, we deduce that (xβ) converges to

h(y0) and, as a consequence, that h(y0) = x0. This fact yields y0 ∈ h
−1

(A2).
By hypothesis, g(y0) = 0. However, each J

h
−1

(xβ)
is an isometry and, by the

definition of f ,

g(h
−1

(xβ)) = J
h
−1

(xβ)
(f(xβ)).

Hence ‖g(h
−1

(xβ))‖ ≥ ε for all β. This implies that g is not continuous at
y0, a contradiction, which completes the proof of the continuity of f . The
rest of the proof is apparent. �
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Proof of Theorem 2.3. Put A2 = {x1, x2, . . . , xk} and, for each xi ∈ A2

(see Lemmas 3.3 and 3.4), let

Gxi = {y(xi, 1), . . . , y(xi, ni)}.

By Corollary 3.1, for each i ∈ {1, 2, . . . , k} and each j ∈ {1, 2, . . . , ni} we can
consider an open neighborhood U(i, j) of y(xi, j) such that U(i, j) ⊂ Y1 and
U(i, j)∩U(i′, j′) = ∅ if (i, j) 6= (i′, j′). For each pair (i, j) we choose a function
g(i,j) ∈ C(Y ) such that g(i,j)(y(xi, j)) = 1 = ‖g(i,j)‖∞ and c(g(i,j)) ⊂ U(i, j).

Note that, since Y is infinite, the set Y10 \ h
−1

(A0) is nonempty, which
easily leads to dimE = dimF . Now, by Lemma 5.1, each mapping Qxi :
E −→ F ni is an isometry, so m := dimF = dimQxi(E). Hence we can find
m(ni − 1) linearly independent vectors in F ni of the form

=(i, l) := (f(i, l, 1), f(i, l, 2), . . . , f(i, l, ni))

for l = 1, . . . ,m(ni − 1) such that

F ni = ranQxi

⊕
span{=(i, 1), . . . ,=(i,m(ni − 1))}. (3)

Next we define, for each i ∈ {1, 2, . . . , k}, m(ni − 1) functions in C(Y, F )
related to =(i, j) and g(i,j) of the form

ℵ[i,l] :=

ni∑
j=1

g(i,j)f(i, l, j)

for l = 1, . . . ,m(ni − 1).
Note that, for i ∈ {1, 2, . . . , k} and each l ∈ {1, 2, . . . ,m(ni−1)}, we have

ℵ[i,l](Y2 ∪ Y3) ≡ 0, and if i′ 6= i, i′ ∈ {1, 2, . . . , k}, then ℵ[i,l](Gxi′
) ≡ 0, and,

for j ∈ {1, 2, . . . , ni},
ℵ[i,l](y(xi, j)) = f(i, l, j). (4)

Now assume that Y2 := {z1, . . . , zt} and Y3 := {w1, . . . , ws} (see Lemmas
3.5, 3.6 and 3.7). For every i ∈ {1, 2, . . . , t} and every l ∈ {1, 2, . . . ,m} we
can consider Ξ[i,l] := χ{zi}bl ∈ C(Y, F ) where B := {b1,b2, . . . ,bm} is a
basis of F . In like manner, we can define, for every i ∈ {1, 2, . . . , s} and
every l ∈ {1, 2, . . . ,m}, Υ[i,l] := χ{wi}bl ∈ C(Y, F ).

We now claim that the functions we have just introduced are linearly
independent. To this end, suppose that∑

i,l

α(i, l)ℵ[i,l] +
∑
i,l

β(i, l)Ξ[i,l] +
∑
i,l

γ(i, l)Υ[i,l] ≡ 0 ∈ C(Y, F ).
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If we evaluate this sum at the point zi ∈ Y2, then we get

m∑
l=1

β(i, l)bl = 0 ∈ F.

As {b1, . . . ,bm} is a basis of F , we infer that each β(i, l) = 0. Similarly, by
evaluating the above sum at each point of Y3, we conclude that γ(i, l) = 0
for each i ∈ {1, 2, . . . , s} and l ∈ {1, 2, . . . ,m}.

On Gxi the above sum turns out to be

m(ni−1)∑
l=1

α(i, l)ℵ[i,l] ≡ 0 ∈ C(Y, F ).

Taking into account equality (4), this means that for each y(xi, j), 1 ≤ j ≤ ni,

m(ni−1)∑
l=1

α(i, l)f(i, l, j) ≡ 0, (5)

so
∑m(ni−1)

l=1 α(i, l)=(i, l) = 0 ∈ F ni . As a consequence, all the α(i, l) are zero
because all vectors =(i, l) are linearly independent.

Claim 5.1 The function

g :=
∑
i,l

α(i, l)ℵ[i,l] +
∑
i,l

β(i, l)Ξ[i,l] +
∑
i,l

γ(i, l)Υ[i,l]

does not belong to the range of T , except when g ≡ 0.

Suppose that there exists f ∈ C(X,E) with Tf = g. This yields, by the
definition of Y3, that each γ(i, l) is zero. We shall check that all α(i, l) are
zero. Fix i ∈ {1, . . . , k}. Given j ∈ {1, 2, . . . , ni}, we have

g(y(xi, j)) = Jy(xi,j)(f(xi)).

On the other hand, by equality (4),

g(y(xi, j)) =

m(ni−1)∑
l=1

α(i, l)ℵ[i,l](y(xi, j))

=

m(ni−1)∑
l=1

α(i, l)f(i, l, j) ∈ F,
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which implies that

Qxi(f(xi)) =

m(ni−1)∑
l=1

α(i, l)=(i, l) ∈ F ni .

Since
ranQxi ∩ span{=(i, 1), . . . ,=(i,m(ni − 1))} = {0},

we have Qxi(f(xi)) = 0 ∈ F ni , and consequently α(i, l) is zero for all l.
Summarizing, g ≡ 0 on Y1, implying that g ≡ 0 on Y2. This completes the
proof of the claim.

Gathering the information obtained so far, we deduce that the vectors

ℵ[i,l] + ranT,Ξ[i,l] + ranT,Υ[i,l] + ranT,

are linearly independent in the space C(Y, F )/ ranT . In order to finish
the proof, it suffices to check that, given g ∈ C(Y, F ), there exist scalars
α(i, j), β(i, j), γ(i, j) such that

g −
∑
i,l

α(i, l)ℵ[i,l] +
∑
i,l

β(i, l)Ξ[i,l] +
∑
i,l

γ(i, l)Υ[i,l]

belongs to the range of T .
For each i ∈ {1, 2, . . . , k} we consider the vector

Ni := (g(y(xi, 1)), g(y(xi, 2)), . . . , g(y(xi, ni))) ∈ F ni .

Then, by equality (3), there exist ei ∈ E and constants α(i, 1), . . . , α(i,m(ni−
1)) such that

Ni = Qxi(ei) +

m(ni−1)∑
l=1

α(i, l)=(i, l).

Hence, if we fix j ∈ {1, 2, . . . , ni}, then, by equality (4),

g(y(xi, j)) = (Tei)(y(xi, j)) +

m(ni−1)∑
l=1

α(i.l)f(i, l, j)

= (Tfi)(y(xi, j)) +

m(ni−1)∑
l=1

α(i, l)ℵ[i,l](y(xi, j)) ∈ F,
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where fi ∈ C(X,E) with fi(xi) = ei and fi(xi′) = 0 for i 6= i′. If we do so
for each i ∈ {1, 2, . . . , k} and each j ∈ {1, 2, . . . , ni}, we obtain k functions
fi ∈ C(X,E) such that, for i0 ∈ {1, 2, . . . , k} and j0 ∈ {1, 2, . . . , ni0},

g(y(xi0 , j0)) =
k∑
i=1

(Tfi)(y(xi0 , j0)) +
∑
i,l

α(i, l)ℵ[i,l](y(xi0 , j0)).

Therefore, the function

g0 := g −
k∑
i=1

Tfi −
∑
i,l

α(i, l)ℵ[i,l]

vanishes on each y(xi, j), which is to say, on h
−1

(A2). By Proposition 5.1,
there exists f0 ∈ C(X,E) such that Tf0 ≡ g0 on Y1. Hence there exist certain
constants β(i, l) and γ(i, l) such that

g0 − Tf0 −
∑
i,l

β(i, l)Ξ[i,l] −
∑
i,l

γ(i, l)Υ[i,l] ≡ 0

on Y2 ∪ Y3 and, consequently, on Y . That is,

g −
k∑
i=1

Tfi − Tf0 −
∑
i,l

α(i, l)ℵ[i,l] −
∑
i,l

β(i, l)Ξ[i,l] −
∑
i,l

γ(i, l)Υ[i,l] ≡ 0

on Y . We now easily complete the proof of the theorem. �
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