
Coupled-oscillator system with two stable phase-shift 
intervals  

Franco Ramírez, Almudena Suárez, Sergio Sancho 
University of Cantabria, Santander, Spain 

 

 
Abstract—In this work, a coupled-oscillator system with 

coupling networks containing discrete transmissions lines, made 
up of inductors and varactors, is presented. Under weak coupling 
conditions, it is possible to obtain two stable phase-shift intervals, 
-90º to 90º and 90º to 270º, by using two different values of the 
varactor bias voltage. For each of these two bias voltages, the 
inter-stage phase shift is varied with the tuning voltage of the 
outermost oscillators, so the use of the discrete lines provides a 
simple mechanism to increase the phase-shifting capabilities. The 
two bias voltages of the line varactor diodes are selected so as to 
obtain optimum operation conditions in each phase interval, with 
minimum frequency deviation, maximum and unambiguous 
tuning parameter excursion and a flat phase-noise response 
versus the imposed phase shift. The impact of the novel type of 
coupling network on the stability properties is investigated with 
an explicit semi-analytical formulation. Agreement has been 
obtained with measured results.  

Keywords—Coupled oscillators; stability; phase noise; discrete 
transmission lines 

I.  INTRODUCTION  

Coupled oscillator systems can be applied for spatial 
power combination and beam steering of phased-array 
antennas [1-3]. As demonstrated in [1], the phase shift  
between the oscillator elements can be varied by detuning the 
outermost oscillators only, which, in comparison with 
traditional methodologies, avoids the need for phase shifters. 
The circuit-level analysis of the whole system is 
computationally expensive and fails to converge in some cases 
[4]. To cope with this problem, a reduced-order semi-
analytical formulation has been proposed in [5-6]. This relies 
on the use of a numerical admittance-type model for the 
oscillator elements, extracted from a harmonic balance (HB) 
simulation of the individual oscillator, in free-running regime. 
The effect of the nearest-neighbor coupling is analyzed 
considering these models and the admittance matrix [Yc] that 
describes the coupling networks, usually made up of 
transmission lines bounded by resistors. Under weak coupling 
operation, the explicit formulation in [6] has enabled the 
derivation of mathematical conditions for an optimum system 
design. These conditions ensure a minimum oscillation 
frequency deviation () and a flat phase noise response 
when changing the tuning voltages (1, 2) of the 
outermost oscillators across the stable phase shift interval, 
which can be either (-90º, 90º) or (90º, 270º) [6-7]. Under 
these optimum operation conditions, maximum and 
unambiguous excursions of (1, 2) are also obtained, such 
that a same tuning value cannot give rise to more than one 

inter-stage phase shift. For a given free-running oscillator 
design, the stable phase shift interval and optimum-operation 
conditions mainly depend on the length of the transmission 
line in the coupling networks. Taking this dependence into 
account, the possibility to use a discrete transmission line 
composed of inductors and varactors is investigated here. The 
aim is to obtain two different values of the line varactor bias 
voltage (Vbias), each enabling an optimum design at one of the 
two possible stable phase-shift intervals: (-90º, 90º) and 
(90º, 270º). The coupled-oscillator system will be analyzed 
with an explicit semi-analytical formulation, depending on 
Vbias, which will be validated through comparison with costly 
HB simulations. The possible impact of the new type of 
coupling network on the size of the stable intervals will be 
investigated with an extended stability formulation. The new 
method has been applied to a coupled oscillator system at 3.9 
GHz with good experimental results. 

 
Fig. 1 Coupled-oscillator system with coupling networks based on inductor-
varactor transmission lines. (a) Coupled system. (b) Oscillator design. 

II. COUPLED-OSCILLATOR SYSTEM WITH DISCRETE 

TRANSMISSION LINES  

Let a discrete transmission line composed of n sections of 
inductance L and varactor diodes C(v) be considered. In the 
limit of a nearly continuous line, the delay per section can be 

approached ( ) ( )v LC v   [8], and, in small-signal 
conditions, this delay should decrease with the reverse bias 
voltage Vbias. The coupling network considered here is 
composed by a short discrete transmission line, bounded by 
high value resistors R, which should ensure a weak-coupling 
operation of the oscillator system [Fig. 1(a)]. The coupled-
system analysis relies on the application of Kirchoff’s laws to 
the nodes at which the N oscillators, described with 
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admittance-type models, are coupled to the system. For this 
analysis, the coupling networks (including the L-varactor 
stages and bounding resistors) will be realistically described 
with their admittance matrix, depending on Vbias. For a 
configuration of the type shown in Fig. 1(a), the bias-
dependent admittance matrix will have the form: 

  ( ) ( )
( )

( ) ( )
e bias nb bias

c bias
nb bias e bias

Y V Y V
Y V

Y V Y V

 
  
 

   (1) 

The above matrix can be easily calculated through an 
independent simulation of the coupling network. Next the 
coupled-oscillator system will be formulated. As derived in 
[6,9], with a system of only N = 3 oscillator elements it is 
possible to predict the steady-state behavior of a system with 
an arbitrary number N, in terms of frequency and amplitude 
deviations and parameter-values (1, 2) required for each 
phase shift . Assuming a constant inter-stage phase shift , 
and taking into account the coupling matrix in (1), the 
3-element system is described as: 

 
1 1 0 0 0

2 0 0 0 0

3 2 0 0 0

 ( ) ( )

2 ( ) ( )

 ( ) ( )

j
V e bias nb bias

j j
V nb e bias nb bias

j
V nb bias e bias

Y V Y Y V Y V V Y V V e

Y V Y V Y V e Y V V Y V V e

Y V Y Y V Y V V e Y V V


 

 



 

 



 





         

      

         

  (2) 

where V0 is the free-running voltage, iV , with i = 1, 2, 3, are 

the amplitude deviations and , ,VY Y Y   are the derivatives of 

the oscillator admittance function [6] with respect to the 
fundamental-frequency voltage amplitude, frequency and 
oscillator tuning voltage. Second order terms: 

2 ,  ,  i i iV V V       have been neglected in (2), which is 
enabled by the weak-coupling operation. With the L-varactor 
coupling networks, a stable phase shift interval (-90º, 90º) with 
optimum behavior (as defined in the introduction) will be 
obtained when the two following conditions [6] are fulfilled at 
a particular bias voltage Vbias1: 

 
 

1 , 1

1 , 1

sin ( ) ( ) sin ( ) 0

cos ( ) ( ) cos ( ) 1

nb bias V v nb bias

nb bias V v nb bias

ang Y V ang Y V

ang Y V ang Y V





       
        

 (3) 

In turn, a stable phase shift interval (90º, 270º) with 
optimum behavior [6] will be obtained for: 

  
, 2

, 2

sin ( ) 0

cos ( ) 1

v nb bias

v nb bias

V

V





   
   

  (4) 

For a given oscillator design, with a particular angle of the 
amplitude derivative YV, the phase values required are 

( ) (2 1) ( )nb Vang Y k ang Y   , where k is an integer, for the 

stable interval (-90º, 90º), and ( ) 2 ( )nb Vang Y k ang Y  , for 
the stable interval (90º, 270º).  

Here a coupled system of three oscillator elements (N = 3) 
has been designed, with the elementary oscillator being based 
on the transistor NE3210S01 [Fig. 1(b)]. The oscillator 
admittance model is extracted from a HB simulation of this 
oscillator [6,9], isolated from the system, and considering 7 

harmonic terms. For this particular free-running oscillator 
design, the amplitude derivative of the admittance function has 
the angle ( ) 3ºVang Y  . The discrete transmission line has 
been implemented with the varactor diode SMV1232. Fig. 2 
shows the variation of ( )nbang Y  with Vbias for different L 
values. The inductor L = 1 nH has been chosen. The operation 
points fulfilling (3) and (4) are Vbias1 = 0.77 V, for the stable 
interval (-90º,90º), and Vbias2 = 7.31 V, for the stable interval 
(90º,270º). These points, are indicated in the figure.  

 

Fig. 2 Inductor-varactor transmission line. Variation of ( )nbang Y  versus the 

reverse bias voltage Vbias, for different values of the inductance L. 
 

For an exhaustive analysis of the system, the matrix [Yc] in 
(1), describing the coupling network has been calculated for a 
whole interval of Vbias, going from 0 to 10 V. Note that this 
analysis versus Vbias is only for exploration purposes, since 
only the two optimum bias voltages Vbias1 and Vbias2 are 
necessary. Considering the dependence [Yc(Vbias)], there will 
be an extra analysis parameter (Vbias), in addition to the tuning 
voltages of the two outermost oscillators 1 and 2. Fig. 
3(a) presents the variation of the oscillation frequency versus 
the imposed constant phase shift  for different values of Vbias, 
comprising the theoretically optimum design value for the 
stable phase shift interval (-90º, 90º). The stable behavior in 
this interval will be demonstrated in the next section.  
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Fig. 3 Frequency deviation versus the constant inter-stage phase shift for Vbias 
values about Vbias1. (a) Calculation through (2). (b) Calculation with HB. 
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Fig. 3(b) presents a validation with a costly circuit-level 
simulation of the whole system, using HB with 7 harmonic 
components. The minimum oscillation frequency deviation is 
obtained for Vbias1 = 0.77 V with the semi-analytical 
formulation and Vbias1 = 0.84 V with HB. The slight 
disagreement is attributed to convergence difficulties in the 
HB circuit level analysis, reflected by the irregular curves, and 
the fact that the reduced-order model only takes into account 
coupling effects at the fundamental frequency. Fig. 4(a) and 
Fig. 4(b) present an analogous study for a Vbias range 
comprising the theoretically optimum design value for the 
stable phase shift interval (90º, 270º). The stable behavior in 
this interval will be demonstrated in the next section. The 
minimum oscillation frequency deviation is obtained for Vbias2 

= 7.3 V with the semi-analytical formulation and Vbias2 = 7.4 V 
with HB. Fig. 5(a) and Fig. 5(b) present the variations of the 
tuning voltages obtained with the semi-analytical formulation 
and HB for Vbias1 and Vbias2, respectively. Conditions (3) and 
(4) give rise to tuning parameter maxima at ±90º, obtained for 
Vbias1 and Vbias2, as expected in an optimum design [6]. 
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Fig. 4 Frequency deviation versus the imposed constant inter-stage phase shift 
for Vbias values about Vbias2. (a) Calculation through (2). (b) Calculation with 
HB. 
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Fig. 5 Required values of the oscillator tuning voltage for each constant inter-
stage phase shift, obtained with the formulation in (2) and with HB, with 7 
harmonic terms. (a) For Vbias1. (b) For Vbias2. 

III. STABILITY ANALYSIS 

Validation of our initial stability assumptions is essential 
since coupling networks with a topology different from the 
standard one might alter the expected stability properties. The 
stability analysis predicts the response of system (2) to small 
perturbations. For this analysis, small increments are 
considered in the amplitude, frequency and phase values, 
taking into account that the product by the frequency 
increment acts like a time-domain differentiator. Unlike the 
analyses in previous works, the frequency derivatives of the 
coupling matrix parameters, eY   and nbY  , are taken into 
account in the formulation, which leads to the linear time 

invariant system 1( )  ( ) ( ),XX
X t M M X t  
  where the 

vector ( )X t  is defined as t t = (  )X V     and the 
matrixes are given by: 

0 0

0 0

0 0 0

0 0 0

0 0

0 0

0 0

2
2

2
2

0 0

0

i i i
r r re nb

e nb

r r r
i i ie nb

e nb

i i i i
r r r rnb e nb

nb e nb

X r r r r
i i i inb e nb

nb e nb

i i i
r r rnb e

nb e

r
nb

Y Y Y
Y Y Y

V V

Y Y Y
Y Y Y

V V

Y Y Y Y
Y Y Y Y

V V V
M

Y Y Y Y
Y Y Y Y

V V V

Y Y Y
Y Y Y

V V

Y

  
  

  
  

   
   

   
   

  
  







  







   








0 0

0

0 0 0

0 0 0

0 0

0 0

0 0 0

0 0 0

r r
i i ie

nb e

r
v

i
v

r
v

X i
v

r
v

i
v

Y Y
Y Y Y

V V

Y a a

Y b b

Y c d a
M

Y e f b

Y c c

Y e e

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
  
 
 

 
 

     
 
 
  

(5) 

In the above matrixes, the subindex indicates the variable with 
respect to which the derivative is calculated, the superindex 
indicates real and imaginary part, and:  

cos( ) sin( ) ;   cos( ) sin( )

cos( ) sin( ) ;   cos( ) sin( )

2 cos( ) ;  2 cos( )

i r r i
nb nb nb nb

i r r i
nb nb nb nb

i r
nb nb

a Y Y b Y Y

c Y Y e Y Y

d Y f Y

   

   

 

    

    

  

  (6) 

The stability is determined by the 6 eigenvalues of the time 
constant matrix 1 ( )XX

M M 
 . The whole coupled-oscillator 

system behaves in a free-running regime, so one of the matrix 
eigenvalues must be 1 = 0. For stable behavior, the other 5 
eigenvalues must have negative real part. In Fig. 6(a) the real 
part of the dominant poles has been traced versus the imposed 
constant inter-stage phase shift  for Vbias1, providing an 
optimum design in the phase shift interval (-90º, 90º), and 
Vbias2, enabling an optimum behavior in the phase shift interval 
(90º, 270º). As can be seen, the discrete implementation of the 
transmission line in the coupling networks does not alter the 
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size of the stable intervals in any of the two cases, which is 
due to the low value of the frequency derivatives of the 
coupling-network parameters Ynb and Ye, in comparison with 
Y. The transition from the stable interval (-90º, 90º) to the 
stable interval (90º, 270º) is due to the change in the angle of 
Ynb, as shown in (3) and (4). The stability inversion occurs 
continuously but very quickly versus the parameter Vbias. To 
illustrate this, a stability analysis has been carried out versus 
Vbias, while keeping the oscillator tuning voltages (1, 2) at 
those originally required for  = 180º. In Fig. 6(b), the 
variation of the dominant real pole has been traced versus this 
parameter. The real pole is on the right-hand side of the 
complex plane for Vbias<Vbias0, where Vbias0 = 2.275 V, so the 
solution is stable for Vbias>Vbias0.  
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Fig. 6 Stability analysis with (5). (a) Variation of the real part of the poles 
versus the imposed constant inter-stage phase shift for Vbias1 and Vbias2. (b) 
Variation of the dominant real pole of the solution with  = 180º versus Vbias. 
The solution is unstable for Vbias<Vbias0, where Vbias0 = 2.275 V.  

 

The coupled system has been manufactured and 
characterized experimentally. Fig. 7(a) presents measured 
waveforms with  = 7º, obtained with Vbias1. Fig. 7(b) and 
Fig.7(c) present measured waveforms with  = 150º and 
 = 175º, obtained with Vbias2. In each case, different pairs of 
tuning voltages of the outermost oscillators have been used, 
according to Fig. 5. In the experiment, the solution, originally 
providing 180º phase shift, is unstable below Vbias0 = 4 V. The 
spectrum obtained in the unstable region is shown in Fig. 8. 

This work has been supported by the Spanish Government 
under contract TEC2014-60283-C3-1-R and the Parliament of 
Cantabria (12.JP02.64069). 
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Fig. 7 Experimental waveforms for Vbias1 in (a), and Vbias2, in (b) and (c). In 
each case, the waveforms are obtained for different pairs of tuning voltages of 
the outermost oscillators, according to Fig. 5. 

 
Fig. 8 Experimental spectrum obtained with oscillator tuning voltages 
corresponding to the solution with  = 180º and Vbias below 4 V. 
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