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Abstract

We consider the problem of computing satisfactory pairs of solu-
tions of the differential equation for Legendre functions of non-negative
integer order µ and degree − 1

2
+ iτ , where τ is a non-negative real pa-

rameter. Solutions of this equation are the conical functions Pµ

−

1

2
+iτ

(x)

and Qµ

−

1

2
+iτ

(x), x > −1. An algorithm for computing a numerically

satisfactory pair of solutions is already available when −1 < x < 1
(see [6], [5]). In this paper, we present a stable computational scheme
for a real valued numerically satisfactory companion of the function

Pµ

−

1

2
+iτ

(x) for x > 1, the function ℜ
{
e−iπµQµ

−

1

2
+iτ

(x)
}
. The pro-

posed algorithm allows the computation of the function on a large pa-
rameter domain without requiring the use of extended precision arith-
metic.

∗Former address: Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098
XG Amsterdam, The Netherlands
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1 Introduction

Conical or Mehler functions appear in a large number of applications in ap-
plied physics, particle physics (related to the amplitude for Yukawa potential
scattering) or cosmology, among others. These functions also appear when
solving the Laplace’s problem in spherical coordinates for two intersecting
cones [9].

The conical functions are solutions of the second order differential equa-
tion

(1− x2)
d2w

dx2
− 2x

dw

dx
−
(
τ2 +

1

4
+

µ2

1− x2

)
w = 0. (1.1)

In applications, one encounters values of the conical functions where the
order µ is integer positive (or zero), so we will consider µ = m ∈ Z

+.

2 Numerically satisfactory pairs of solutions

In the interval −1 < x < 1, a numerically satisfactory pair of solutions (real
valued) of the equation (1.1) is P−µ

−
1

2
+iτ

(x) and P−µ

−
1

2
+iτ

(−x), µ ∈ ℜ, τ ∈ ℜ+

[3]. The Wronskian for this pair of solutions is:

W

{
P−µ

−
1

2
+iτ

(x) ,P−µ

−
1

2
+iτ

(−x)
}

=
2

∣∣∣Γ
(
µ+ 1

2
+ iτ

)∣∣∣
2
(1− x2)

. (2.1)

When µ = m ∈ Z, it should be noted that the functions Pm
−

1

2
+iτ

(x) and

P−m
−

1

2
+iτ

(x) are related through a simple relation:

Pm
−

1

2
+iτ

(x) = cosh(πτ)

∣∣∣Γ(m+ 1
2
+ iτ)

∣∣∣
2

π
P−m
−

1

2
+iτ

(x). (2.2)

The definition of the function Pm
−

1

2
+iτ

(x) in terms of the Gauss hypergeo-

metric function 2F1 is given in Eq. (3.3). In [6] and [5] we have described an
algorithm for computing the conical functions Pm

−
1

2
+iτ

(x) for x > −1; there-

fore the problem of computing a numerically satisfactory pair of solutions
of the differential equation for conical functions in the interval −1 < x < 1
can be considered as already solved. The algorithm is based on the use of

2



Figure 1: Numerically satisfactory pair of solutions of (1.1) for x > 1. The
functions P10

−
1

2
+i5

(x) and Q̃10
−

1

2
+i5

(x) are plotted as an example.
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−1/2+i5

(x)
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−1/2+i5
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~

different methods of computation, depending on the range of the param-
eters: quadrature methods, recurrence relations and uniform asymptotic
expansions in terms of elementary functions or in terms of modified Bessel
function Kia(x) and its derivative K ′

ia(x).
When x > 1, a real-valued satisfactory pair of solutions is Pm

−
1

2
+iτ

(x) and

Q̃m
−

1

2
+iτ

(x) ≡ ℜ
{
e−iπmQm

−
1

2
+iτ

(x)
}

(the function Qm
−

1

2
+iτ

(x) is complex-

valued). The solution Q̃m
−

1

2
+iτ

(x) was introduced in [2]. As an example,

Fig. 1 shows the graphs of P10
−

1

2
+i5

(x) and Q̃10
−

1

2
+i5

(x).

As in the previous case, an algorithm for computing the function Pm
−

1

2
+iτ

(x)

for x > 1 is already given in [6] and [5]. However, no computational schemes
can be found in the literature for computing the numerically satisfactory
companion solution of Pm

−
1

2
+iτ

(x), the function Q̃m
−

1

2
+iτ

(x). Our purpose is

to give an algorithm for computing this function.

3 Recurrence relations

Three-term recurrence relations

yn+1 + bnyn + anyn−1 = 0, (3.1)

3



are useful methods of computation when two starting values are available
for starting the recursive process. Usually, the direction of application of
the recursion can not be chosen arbitrarily, and the conditioning of the
computation of a given solution fixes the direction.

The conical function Pm
−1/2+iτ (x) satisfies a three-term recurrence rela-

tion,

Pm+1
−

1

2
+iτ

(x)−
2mx

√
x2 − 1

Pm
−

1

2
+iτ

(x) +
(
(m− 1

2
)2 + τ2

)
Pm−1
−

1

2
+iτ

(x) = 0, (3.2)

for x > 1, where we have adopted the following definition of the function
Pm
−

1

2
+iτ

(x) in terms of the Gauss hypergeometric function 2F1:

Pm
−

1

2
+iτ

(x) = cosh(πτ)
|Γ(m+ 1/2 + iτ)|2

πΓ(1 +m)

∣∣∣∣
1− x

1 + x

∣∣∣∣
m/2

×

2F1

(
1
2 − iτ, 1

2 + iτ

1 +m
; 1
2 − 1

2x

)
.

(3.3)

This is the definition used in [5] for x > −1. Note the difference of the
sign in the second term of the recurrence relation (3.2) in comparison with
Eq. 14.10.6 in [3], which reflects the fact that the definition of our function
Pm
−

1

2
+iτ

(x) and the function Pm
−1/2+ıτ (x) ([2], [3]) differ by a factor (−1)m:

Pm
−1/2+ıτ (x) = (−1)m Pm

−1/2+ıτ (x) (x > 1). (3.4)

The conical functions Pm
−

1

2
+iτ

(x) are monotonic in the interval (1, xc)

and oscillating in (xc,+∞), where xc =
√

1 + β2/β and β = τ/m. As an
example, for the parameters of the functions plotted in Fig. 1, the transition
point is found at xc ≈ 2.24. The stability analysis based on Perron’s theo-
rem discussed in [6], revealed that the function Pm

−
1

2
+iτ

(x) was the minimal

solution of the recurrence relation (3.2). Hence, for this function backward
recursion will be generally stable for x > 1. However, and similar for other
special functions, recurrence relations in the oscillatory regime of the con-
ical functions (x > xc > 1) are not ill conditioned in either backward and
forward directions; thus, both recursions are possible.

It is very simple to show that the function Q̃m
−

1

2
+iτ

(x) also satisfies the

three-term recurrence relation given in (3.2), and this function is a dominant
solution of (3.2) (the minimal solution, if it exists, is unique). In this case,
the stable direction of application of the recurrence relation is with increasing

4



m, although the same comment as for the function Pm
−

1

2
+iτ

(x) applies for

Q̃m
−

1

2
+iτ

(x) in the oscillatory regime (x > xc > 1).

We next consider the problem of computing two starting values (Q̃0
−

1

2
+iτ

(x)

and Q̃1
−

1

2
+iτ

(x)) of the recurrence relation (3.2) for the function Q̃m
−

1

2
+iτ

(x).

4 Power series expansions by using the hypergeo-

metric functions

From the many representations of the conical functions in terms of the Gauss
hypergeometric functions we choose one representation that can be used for
small values of x− 1 and one for large values of x (and that one can also be
used for large values of τ).

4.1 Expansions valid near the point x = 1 and moderate τ

We use the representation (see [1, Eqn. (32), page 131])

e−πiµQµν (x) = A3 2F1

(
−ν, 1 + ν
1 + µ

; z

)
+A4 2F1

(
−ν, 1 + ν
1− µ

; z

)
, (4.1)

where

A3 =
1
2
Γ(−µ)wµΓ(1 + ν + µ)

Γ(1 + ν − µ)
, A4 =

1
2
Γ(µ)w−µ,

z = 1
2(1− x), w =

√
x− 1

x+ 1
.

(4.2)

We use power series in z, and because we want these expansion for µ = 0
and µ = 1, we need to find the limit for the representation in (4.1).

First we write

2Γ(1 + ν − µ)e−πiµQµν (x) =
πµ

sin(πµ)

∞∑

k=0

(−ν)k(1 + ν)k
k!

zkBk(µ), (4.3)

where

Bk(µ) =
1

µ

(
w−µΓ(1 + ν − µ)

Γ(1− µ+ k)
− wµ

Γ(1 + ν + µ)

Γ(1 + µ+ k)

)
. (4.4)

The limit for µ→ 0 gives

Bk(0) =
2Γ(ν + 1)

k!

(
ψ(k + 1)− ψ(1 + ν)− lnw

)
, (4.5)

5



where ψ(α) = Γ′(α)/Γ(α). We obtain the expansion

Q 0
ν (x) =

∞∑

k=0

(−ν)k(1 + ν)k
k! k!

zk
(
ψ(k + 1)− ψ(1 + ν)− lnw

)
, (4.6)

where w and z are given in (4.2).
Observe that for ν = −1

2 + iτ we have

(−ν)k(1 + ν)k =
(
1
2
− iτ

)

k

(
1
2
+ iτ

)

k
, (4.7)

which is real when τ is real, and the computation easily follows from recur-
sion. The quantity ψ(ν + 1) is the only complex term to consider in more
detail. For ψ(k + 1) we can use the recursion ψ(k + 1) = ψ(k) + 1/k, with
ψ(1) = −γ (γ is Euler’s constant).

For the computation of ψ(α) (with α complex) we use the asymptotic
expansion

ψ(α) ∼ lnα− 1

2α
−

∞∑

n=1

B2n

2nα2n

= lnα− 1

2α
− 1

12α2
+

1

120α4
− 1

252α6
+ ...,

(4.8)

valid for α → ∞ in |phα| < π. We use this expansion if |α| ≥ 12 with 8
terms of the series (or less), and we use the backward recurrence relation
ψ(α) = ψ(α+1)− 1/α for smaller values of |α|. We only need an algorithm
for ℜα ≥ 1

2 .
For Q 1

ν (x) we can also use a limiting procedure, but it is more convenient
to use the derivative of Q 0

ν (x), because

Q 1
ν (x) =

√
x2 − 1

d

dx
Q 0
ν (x). (4.9)

Expansions for integer values of µ are also given in [1, Eqn. (32), page 131]).

4.2 Expansions for moderate or large values of x and τ

For moderate or large values of x and τ we use the representation (see [1,
§3.6.1, page 149])

e−πiµQµ
−

1

2
+iτ

(x) = A 2F1

(
1
2 + µ, 12 − µ

1 + iτ
; −z

)
, (4.10)

6



where

A =
√
π/2

(
x2 − 1

)
−

1

4

(
x+

√
x2 − 1

)
−iτ Γ

(
µ+ iτ + 1

2

)

Γ (1 + iτ)
,

z =
1

2
√
x2 − 1

(
x+

√
x2 − 1

) .
(4.11)

This gives the expansion

e−πiµQµ
−

1

2
+iτ

(x) =
√
π/2

(
x2 − 1

)
−

1

4

(
x+

√
x2 − 1

)
−iτ

×

Γ
(
1
2 + µ+ iτ

)

Γ (1 + iτ)

∞∑

k=0

(
1
2
+ µ

)

k

(
1
2
− µ

)

k

(1 + iτ)k

(−z)k

k!
.

(4.12)

When computing the expansion for τ large, it is convenient to use the
following asymptotic expansion for the ratio of two gamma functions [8]:

Γ(z + a)

Γ(z + b)
∼ za−b

∞∑

n=0

cn
Γ(b− a+ n)

Γ(b− a)

1

zn
, as z → ∞, (4.13)

in the sector | arg z| < π, with a and b fixed.
The coefficients cn appearing in (4.13) are given in terms of generalized

Bernoulli polynomials by

cn = (−1)n
B(a−b+1)
n (a)

n!
. (4.14)

In the present case, we have

Γ(1
2
+ µ+ iτ)

Γ(1 + iτ)
∼ τµ−

1

2 e
1

2

(

µ−1
2

)

πi
∞∑

n=0

(−i)n
(
1
2
− µ

)

n

cn
τn
, (4.15)

and the first coefficients are

c0 = 1, c1 = −1
4
(2µ + 1), c2 =

1
96
(2µ + 1)(6µ + 1). (4.16)

The representation in (4.12) becomes

e−πiµQµ
−

1

2
+iτ

(x) =
√
π/2 τµ−

1

2

(
x2 − 1

)
−

1

4 G(µ, τ) e−iφ ×
∞∑

k=0

(
1
2
+ µ

)

k

(
1
2
− µ

)

k

uk(τ) + ivk(τ)

wk(τ)

(−z)k

k!
,

(4.17)
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where φ = τ log
(
x+

√
x2 − 1

)
− 1

2

(
µ− 1

2

)
π,

G(µ, τ) =

∞∑

n=0

(−i)n
(
1
2
− µ

)

n

cn
τn
, (4.18)

and
uk(τ) + ivk(τ)

wk(τ)
=

1

(1 + iτ)k
, k = 0, 1, 2, . . . . (4.19)

We can obtain these quantities from the recurrence relations

uk+1(τ) = (k + 1)uk(τ) + τvk(τ),

vk+1(τ) = (k + 1)vk(τ)− τuk(τ),

wk+1(τ) =
(
(k + 1)2 + τ2

)
wk(τ),

(4.20)

with u0(τ) = 1, v0(τ) = 0, w0(τ) = 1.
We can write (4.12) with a single complex representation, by writing

G(µ, τ) = H(µ, τ)eiρ(µ,τ), uk(τ) + ivk(τ) = rk(τ)e
iσk(τ), (4.21)

which gives

e−πiµQµ
−

1

2
+iτ

(x) =
√
π/2H(µ, τ) τµ−

1

2

(
x2 − 1

)
−

1

4 ×
∞∑

k=0

(
1
2
+ µ

)

k

(
1
2
− µ

)

k

rk(τ)

wk(τ)

(−z)k

k!
e−iψk ,

(4.22)

where

ψk = τ log
(
x+

√
x2 − 1

)
− 1

2

(
µ− 1

2

)
π − ρ(µ, τ)− σk(τ). (4.23)

5 Expansions in terms of the Kummer U−functions

First we explain how the method works for the Gauss hypergeometric func-
tion. We take the integral representation

2F1

(
a, b
c

; z

)
=

Γ(c)

Γ(b) Γ(c− b)

∫ 1

0
ub−1(1− u)c−b−1(1− zu)−a du, (5.1)

and using the transformation u = 1− e−t, we write it in the form

(1 + z)a
Γ(c+ ω − b)

Γ(c+ ω)
2F1

(
a, b
c+ ω

; −z
)

= Fa,b(α, ω), (5.2)

8



where

Fa,b(α, ω) =
1

Γ(b)

∫
∞

0
tb−1f(t)e−ωt

dt

(t+ α)a
, (5.3)

with

f(t) =

(
et − 1

t

)b−1

e(1+a−c)t
(
et − e−α

t+ α

)
−a

, α = ln
z + 1

z
. (5.4)

We assume that ω is large and that z may be large as well. In that case

α will be small. The easiest approach is to expand f(t) =

∞∑

n=0

fnt
n, which

gives

Fa,b(α, ω) ∼
∞∑

n=0

fnΦn, (5.5)

where

Φn =
1

Γ(b)

∫
∞

0
tn+b−1(t+ α)−ae−ωt dt. (5.6)

The functions Φn can be expressed in terms of the confluent hypergeo-
metric function U(a, c, z). We have

Φn = (b)nα
n+b−aU(n+ b, n+ b+ 1− a, αω)

= (b)nω
a−n−bU(a, a+ 1− n− b, αω).

(5.7)

The functions Φn can be obtained by using recurrence relations for the
U−function1, or from integrating by parts in (5.6). We have

ωΦn+1 = (n+ b− a− αω)Φn + α(b+ n− 1)Φn−1. (5.8)

For numerical aspects of such recursions, we refer to [7] and [4, §4.5.1].
The expansion in (5.5) has an asymptotic character for large values of

ω, uniformly with respect to α. The second line of (5.7) gives the integral
representation

Φn =
(b)n

ωn+b−aΓ(a)

∫
∞

0
ta−1(1 + t)−n−be−αωt dt. (5.9)

which shows that
Φn = O

(
ω−n−b+a

)
, ω → ∞, (5.10)

uniformly with respect to α ≥ 0, when n is such that convergence at infinity
of the integral is guaranteed if α = 0, that is, if n > ℜ(a− b).

1http://dlmf.nist.gov/13.3.E14
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5.1 Expansion of Qµ

−

1

2
+iτ

(x) for large τ

For the representation of the conical Q−function in (4.10) we have a = 1
2+µ,

b = 1
2 − µ, c = 1, ω = iτ . This gives

e−πiµQµ
−

1

2
+iτ

(x) =
√
π/2αµ+

1

2

(
x2 − 1

)
−

1

4 ×
1

Γ
(
1
2 − µ

)
∫

∞

0
t−µ−

1

2 (t+ α)−µ−
1

2 e−ωtf(t) dt,
(5.11)

where α = ln z+1
z , z is defined in (4.11), and

f(t) =

((
1− e−t

t

)(
et − e−α

t+ α

)(
α

1− e−α

))
−µ− 1

2

. (5.12)

By expanding f(t) =

∞∑

k=0

fkt
k (observe that f(0) = 1) we obtain

e−πiµQµ
−

1

2
+iτ

(x) ∼
√
π/2αµ+

1

2

(
x2 − 1

)
−

1

4 ×
(
x+

√
x2 − 1

)
−iτ

∞∑

n=0

fkΦk,
(5.13)

where

Φk =
(
1
2
− µ

)

k
ω2µ−kU

(
1
2
+ µ, 1 + 2µ− k, αω

)
, ω = iτ. (5.14)

The first fk coefficients2 are given by

f0 = 1,

f1 =
b

2d
(2dz + d− 2z) ,

f2 =
b

24d2
(
12z2 + 12bz2 + d2 − 12d2z − 12d2z2 − 24bdz2

+12bd2z + 12bd2z2 + 3bd2 − 12bdz
)
,

(5.15)

where b = −µ− 1
2 and d = zα.

2More coefficients can be obtained by using the Maple script available at
http://personales.unican.es/gila/fkcoeff.txt
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The Φk can be written in terms of the Hankel functions. The first one is

Φ0 = −1
2
i
√
π(τ/α)µe

1

2
iατH(2)

µ

(
1
2
ατ
)
. (5.16)

For Φ1 we have

Φ1 = − d

dω
Φ0 =

1
2

√
π(τ/α)µe

1

2
iατ ×

((
µ/τ + 1

2 iα
)
H

(2)
µ

(
1
2ατ

)
+ 1

2αH
(2)
µ

′
(
1
2ατ

))

= 1
4
α
√
π(τ/α)µe

1

2
iατ
(
iH(2)

µ

(
1
2
ατ
)
+H

(2)
µ−1

(
1
2
ατ
))

.

(5.17)

The representation in terms of of the Hankel functions is convenient, because
it is easy to separate real and imaginary parts by using

H(2)
µ (z) = Jµ(z) − iYµ(z). (5.18)

6 Numerical tests of the expansions

In order to test the range of validity of the expansions, we have first com-
pared the results with the real part of the value obtained in the computation
of Q0

−
1

2
+iτ

(x) using the command LegendreQ in Maple with 50 digits.

Fig. 2 shows, as a function of x and for three different values of τ , the
accuracy obtained in the computation of Q̃0

−
1

2
+iτ

(x) using the power series

expansion given in (4.6). We have used the expansion with 0 ≤ k ≤ 8. As
can be seen, the expansion provides full accuracy for values of x very close
to 1 but the accuracy worsens as τ increases. As an example, the number
of terms of the expansion has to be increased to more than 100 in order to
obtain an accuracy better 10−14 when computing Q̃0

−
1

2
+i200

(1.05). The same

test has been performed using the power series of (4.12) for the computation
of Q̃0

−
1

2
+iτ

(x). The results are shown in Fig. 3. In this case, as expected

the expansion behaves better as τ increases but the accuracy worsen as x
approaches to 1.

A test for the expansion in terms of the Kummer U -function3 is shown in
Fig. 4: the relative errors obtained in the computation of Q̃0

−
1

2
+iτ

(x) using

the expansion (5.13) with 0 ≤ k ≤ 8 in the computation are plotted. The
functions Φk in (5.13) are computed by using the recurrence relation (5.8)

3AMaple implementation is available at http://personales.unican.es/gila/QKummer.txt
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Figure 2: Relative errors in the computation of Q̃0
−

1

2
+iτ

(x) obtained by

comparing the real part of (4.6) with 0 ≤ k ≤ 8 against Maple. The results
obtained for τ = 0.1, 5, 20 are shown.
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Figure 3: Relative errors in the computation of Q̃0
−

1

2
+iτ

(x) obtained by

comparing the real part of (4.12) with 0 ≤ k ≤ 8 against Maple. The results
obtained for τ = 0.1, 5, 20 are shown.
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Figure 4: Relative errors in the computation of Q̃0
−

1

2
+iτ

(x) obtained by

comparing the real part of (5.13) with n = 8 against Maple. The results
obtained for x = 1.1, 100 are shown.
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with starting values those given in (5.16) and (5.17). As can be seen, the
expansion provides an accuracy better than 10−8 (single precision) even for
values of the parameter τ lower than 5. Two values of the argument x are
chosen (x = 1.1, 100) in order to illustrate the validity of the expansion for
large and small (larger than 1) values of x.

A test independent of the Maple procedure LegendreQ has also been
considered. It consists in testing that the values computed using the ex-
pansion are consistent with the three-term recurrence relation (3.2) for
Q̃m

−
1

2
+iτ

(x). We first compute Q̃0
−

1

2
+iτ

(x), Q̃1
−

1

2
+iτ

(x) and Q̃2
−

1

2
+iτ

(x) us-

ing the expansion and check (3.2) written in the form

(
2mx/

√
x2 − 1

)
Q̃m

−
1

2
+iτ

(x)−
(
(m− 1

2
)2 + τ2

)
Q̃m−1

−
1

2
+iτ

(x)

Q̃m+1
−

1

2
+iτ

(x)
= 1. (6.1)

The deviations from 1 of the left-hand side of (6.1) for m = 1 are shown
in Fig. 5. The results are consistent with those obtained when testing the
computed value of Q̃0

−
1

2
+iτ

(x).

Another test involving the application of the three-term recurrence re-
lation can be seen in Fig. 6. In this figure we show as a function of m, the
relative error obtained in the computation of Q̃m

−
1

2
+iτ

(x) by applying the
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Figure 5: Test of the recurrence relation given in (6.1) for m = 1 and
x = 1.1, 100 using the asymptotic expansion (5.13) with n = 8.
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recurrence relation starting from Q̃0
−

1

2
+iτ

(x) and Q̃1
−

1

2
+iτ

(x). The value of τ

has been fixed to 50 and four different values of x (x = 1.00001, 10, 100, 500)
have been considered in the computations. As can be seen, the error is quite
uniform even when very large values of m are considered. This illustrates
the numerical stability of the forward application of the recursion for the
Q̃m

−
1

2
+iτ

(x), as expected from the stability analysis of Sect. 3. Other (large)

values of the parameter τ have been also tested, providing similar results.

7 Computational scheme

From the results obtained in the previous section, a stable computational

scheme for evaluating the function Q̃m
−

1

2
+iτ

(x) ≡ ℜ
{
e−iπmQm

−
1

2
+iτ

(x)
}
, a

numerically satisfactory companion of the function Pm
−

1

2
+iτ

(x) when x > 1,
emerges:

When m = 0, 1:

1. For x close to 1 and small/moderate values of τ , compute Q̃m
−

1

2
+iτ

(x)

using the power series for the hypergeometric representation given
in Sect. 4.1.

2. For x close to 1 and moderate/large values of τ , compute Q̃m
−

1

2
+iτ

(x)

using the expansion for large τ given in Sect. 5.1.
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Figure 6: Test of the recurrence relation given in (6.1) for τ fixed (τ = 50)
and x = 1.00001, 10, 100, 500 using the asymptotic expansion (5.13) with
n = 8.
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3. For other values of x, compute Q̃m
−

1

2
+iτ

(x) using the power series

for the hypergeometric representation given in Sect. 4.2.

When m ≥ 2:
compute Q̃0

−
1

2
+iτ

(x) and Q̃1
−

1

2
+iτ

(x) using the previous scheme and

then use the recursion

Q̃m+1
−

1

2
+iτ

(x)−
2mx

√
x2 − 1

Q̃m
−

1

2
+iτ

(x) +
(
(m− 1

2
)2 + τ2

)
Q̃m−1

−
1

2
+iτ

(x) = 0

(7.1)
in the direction of increasing m.

Numerical tests implemented in Maple show that an accuracy better
than 10−14 can be obtained for computing the initial values of the recurrence
relation when

a. the hypergeometric representation of Sect. 4.1 is used when x < 1.1 and
τ < 10;

b. the expansion for large τ of Sect. 5.1 is used when x < 1.1 and τ ≥ 10;

c. the hypergeometric representation of Sect. 4.2 is used in other cases.
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For higher accuracies, the regions of application of the methods may
need some adjustments.
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