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Abstract In this paper we thoroughly analyze two alterna-

tives to replicate the bursty behavior that characterizes real

indoor wireless channels within Network Simulation plat-

forms. First, we study the performance of an improved Hid-

den Markov Process (HMP) model, based on a time-wise

configuration so as to decouple its operation from any par-

ticular traffic pattern. We compare it with the behavior of

the Bursty Error Model Based on an Auto-Regressive filter

(BEAR), a previous proposal of ours that emulates the re-

ceived Signal to Noise Ratio (SNR) by means of an auto-

regressive filter that captures the "memory" assessed in real

measurements. The study is based on an extensive simula-

tion campaign carried out over the ns-3 platform, and it

also looks at the computational complexity of the two ap-

proaches (trade-off between accuracy and required simula-

tion time).

Keywords Simulation · Wireless Channel Models · Hidden

Markov Processes · Bursty behavior · ns-3

1 Introduction

Wireless technologies are constantly evolving and have be-

come an essential part of everyday life. In particular, the

birth and rise of the IEEE 802.11-compliant technologies

has led to a remarkable increase of the popularity of wireless

local area networks. As a consequence, the research com-

munity needs to address the multiple challenges posed by
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this particular type of networks. Although the empirical ex-

perimentation using off-the-shelf technologies seems to be

the natural way to analyze the performance of such tech-

nologies, it also has clear limitations (for instance scalability

and repetitiveness). These drawbacks, amongst others, bring

about the need of simulation methodologies.

On the other hand, one of the strongest arguments against

simulation techniques advocates the low accuracy of the most

widespread propagation models, whose operation is usually

“simplified”. Although there exist advanced (and complex)

approaches that could provide a higher level of accuracy

(for instance ray modelling or electromagnetic theory), they

require a rather long simulation time. This prevents their

use within network simulation platforms, which are focused

on the upper layer protocols, algorithms and mechanisms.

Hence, the main reason behind the abstraction of the physi-

cal layer complexity in a network simulator is to ensure the

scalability of the scenarios that are prone to be deployed,

in which the number of elements might considerably grow.

Hence, it is deemed necessary providing physical-level mech-

anisms able to reflect a behavior close to the one exhibited

by real channels, in a reasonable amount of time, showing a

good trade-off between accuracy and simulation complexity.

Although we can find IEEE 802.11 networks almost ev-

erywhere (even in open areas), indoor environments appear

as the the most sensible scenario for this type of technolo-

gies. In this sense, many works have assessed the perfor-

mance over this type of environments, being one of the most

remarkable findings the hostility of the wireless channel, due

to the presence of walls, furniture, people moving, etc. Sev-

eral of these studies highlight that there is a clear memory

effect within these particular scenarios, since consecutive

frame error events are not independent, and tend to happen

in bursts.

Besides, the ever-increasing computing capacity of de-

vices has led to the development of advanced techniques to
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replicate the behavior of real networks. As a consequence,

novel and more powerful simulators, like ns-3 [1], the nat-

ural successor to the popular ns-2, have become available.

However, the mainstream propagation models are still far

from being realistic, keeping the same drawbacks than its

predecessors.

In this work we aim at mimicking the behavior of a

real indoor channel, which was thoroughly studied by means

of an empirical campaign. The results obtained from this

analysis will be used to tune the performance of two novel

wireless channel models, whose operation is rather different;

whilst the former one relies on a Hidden Markov Process

(HMP), the second one, the Bursty Error model based on

an Auto-Regressive filter (BEAR) model, employs an Auto-

Regressive (AR) filter to estimate the received signal strength

and to reflect the memory effect observed over real chan-

nels. Both models are able to replicate the bursty behavior

exhibited over real indoor scenarios. We also compare them

with one of the legacy ns-3 simulator alternatives that, al-

though providing accurate error rate and throughput average

values, is not able to replicate the memory effect that was

assessed over a real scenario. We also evaluate the impact of

these models over the TCP performance, provided that it is

severely jeopardized when it is used over wireless channels.

Last, we also compare the computational complexity of the

three approaches since, as mentioned earlier, there must be a

trade-off between accuracy and complexity, especially when

the number of wireless links is large.

The remainder of this paper has been structured as fol-

lows: Sections 2 and 3 describe the two models that mimic

the bursty behavior exhibited by real indoor wireless chan-

nels (HMP and BEAR, respectively). Section 4 introduces an

alternative that is originally provided by the ns-3 simula-

tor. Section 5 outlines the simulation campaign carried out

to compare the performance of the three different solutions,

whose main findings are also discussed. Afterwards, Sec-

tion 6 positions this work with other contributions that have

tackled the modeling of indoor wireless channels. Finally,

Section 7 concludes the paper, advocating some issues to be

addressed in our future work.

2 Channel model based on a Hidden Markov Process

The use of HMP techniques to mimic real processes has

gained popularity since their spring in the 60’s decade. Count-

less research lines have loomed since then: we can find HMPs

within speech recognition applications, to predict the loca-

tion of people based on their habits or even to be used for

novel bio-informatics studies, such as the analysis of bio-

segments (for example gene prediction or protein folding).

We can define a HMP as a discrete system with N inde-

pendent states (Si, where i is the index of each of the states).

The transitions between them follow a set of stochastic prob-

abilities, which are referred to as transition probabilities, and

are represented as ai,j , probability of moving from i (current

state) to j. Another set of probabilities is used to character-

ize the decisions within the states, mapping them with the

possible output values of the system (observables); they are

defined as bi(k), where i refers to the particular state, and

k establishes the corresponding output symbol. It is worth

mentioning that in HMP, unlike legacy Markov models, the

states are “hidden”, since each of them does not yield only

one single output value, but there are various possibilities

(each of them with a probability given by bi(k)). Last, we

also need to establish the initial state of the system; for that

purpose, the vector Π = {πi} defines the probability of be-

ing at the ith state when the system gets started.

Taking into account how the model is implemented, we

are able to define a complete HMP channel by means of the

following elements.

1. Number of states in the model, N .

2. Number of possible output values,M ; in this work, there

will be only two: correct o erroneous frame.

3. Transition matrix (A), with dimension N ×N , contain-

ing all the state change probabilities, ai,j .

4. Emission matrix (B), with dimension N ×M . Each el-

ement represents the probability of having output k at

state i, bi(k).

5. The initial probability distribution of being at each state,

Π = {πi}. For the sake of simplicity, we will assume

that πi =
1
N

, and therefore the initial state will be ran-

domly selected.

In order to configure this model, we used some real traces,

obtained over a real indoor channel. The corresponding ex-

perimental setup used WaveLAN 11 Mbps Lucent/Orinoco

PCMCIA cards, configured in a proprietary Ad Hoc (pseudo-

IBSS) mode which did not use management frames; we fixed

the maximum data rate of 11 Mbps during all the experi-

ments. The corresponding wireless card driver was modi-

fied so as to be able to track whether each incoming frame

was corrupted (CRC failed) as well as the received SNR.

The maximum number of transmissions for an IEEE 802.11

frame was fixed to 4 and the RTS/CTS mechanism was dis-

abled during the experiments. The transmitter and the re-

ceiver were separated by ≈ 15 meters, without line of sight,

and with both metallic obstacles and people moving within

the scenario (typical office environment). Last, but not least,

we ensured that the presence of IEEE 802.11 traffic from

other networks was negligible during the whole campaign.

In the UDP case, we sent 10000 UDP/IP unicast datagrams,

with 1472 bytes of payload, saturating the wireless link;

to generate TCP traffic we used FTP to transfer a file of

10 MBytes. TCP Reno was used, with the Selective Ac-

knowledgment and Timestamp options enabled; the Maxi-
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Fig. 1: Graphical interpretation of an HMP (birth-and-death process)

mum Segment Size was 1448 bytes, to maintain the same

frame length that was used in the UDP case. The reader

might refer to [2] for a more thorough description of the

overall process.

For each of the 15 experiments (whose complete statis-

tics are gathered in Table 1 in [2]), we generated a trace file,

having, for every received frame, a 0 value if it was cor-

rupted or an 1 if it was correctly received. Afterwards, with

the resulting binary vector, as Figure 1a shows, the corre-

sponding Markov chain is “trained” using the hmmtrain

Matlab’s function1, establishing (as an additional constraint)

that the resulting chain shall be a birth-and-death process.

As can be seen, the chain itself is “hidden”, whilst the “dis-

crete observations” (reception events) are the main input ar-

guments. This function returns both the transition and the

decision matrices, which will be afterwards used by the ns-3

environment.

On the other hand, the simulator-driven operation, de-

picted in Figure 1b, shows a different operation. In this case,

the “visible” part of the process is the Markov chain itself,

and its transition probabilities define the behavior of the model.

Furthermore, the “hidden part” of the process corresponds

to the frame reception decisions: error (0) or success (1). In

1 This function uses the Baum-Welch algorithm [3] to estimate the

chain parameters (transition and emission matrices, as well as the ini-

tial probabilities).

other words, during the execution flow, the channel will be

changing its current state, according to the subjacent transi-

tion probabilities (ai,j) and, when a node receives a frame,

the corresponding decision probability will establish whether

the frame was correct or not, by comparing a random value

with the corresponding bi(0) coefficient.

Cardoso et al. [4] also used a set of real traces to config-

ure the different parameters of the HMP. However, there is a

rather relevant difference between their approach and ours:

in our case the measurements were done by saturating the

wireless channel, ensuring that there were always frames to

be sent at the transmitter, while that the authors of [4] fixed

an interval of 10 ms between consecutive frames. With the

corresponding traces, the model presented in this paper was

configured by changing the duration of bursts from frames

to time. In this sense, we are not bound to use any partic-

ular time between consecutive transmissions at the source

node, and the behavior of the channel model is orthogonal

to the traffic characteristics; this would bring about the pos-

sibility of using it with different types of applications (in-

cluding TCP-based ones, in which the time between con-

secutive segments heavily depends on the dynamics of the

corresponding congestion algorithms).

In order to complete this time-based model configura-

tion, we need to estimate the probability density function

(pdf) of the time spent at a particular state i, which follows
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Table 1: UDP performance over a real indoor wireless chan-

nel. This set of results represents an illustrative sample of

the 15 measurements that can be found in [2], whose trace

files are used to “train” the HMP that defines the channel

model’s behavior

# Thput FER PER EFB

[Mbps] Avg. Max.

Bad 2.33 0.517 0.179 6.21 821
Avg. 3.80 0.298 0.127 4.83 219
Good 4.79 0.163 0.025 2.63 144

a negative exponential distribution2, fTi
(ti) = λi · e

−λi·ti ,

with Ti = 1
λi

, being the average time spent at state i. Ti
can be calculated using the average number of consecutive

frames at each of the states, Fi, which can be derived using

Eq. (1) where pi(j) is the probability of having j consecu-

tive frames at state i.

Average consecutive frames at state i = Fi =

=
∞
∑

j=0

j · pi(j) =
∞
∑

j=0

j · aj−1
i,i · (1 − ai,i) =

1

1− ai,i
(1)

Eq. (2) can be used to determine the value of Ti, the

average sojourn time at state i, where ψ denotes the average

inter-frame duration, if it is assumed to be constant.

Ti = ψ ·Ni =
ψ

1− ai,i
(2)

From all the results obtained over the real-scenario

testbed [2], we have trained the corresponding HMP con-

figurations with three illustrative behaviors (selected from

the 15 measurements), ranging from a Bad channel, char-

acterized by rather negative transmission conditions, to a

Good channel, whose operation gets closer to that which we

could expect over an error-free link; an Average channel,

representing an average behavior of the channel, was also

selected. Table 1 summarizes the main performance values

for each of these measurements.

2.1 Dynamic time-basis analysis

As mentioned earlier, the authors of [4] used a frame-based

HMP able to mimic the behavior of a wireless channel for

a very particular traffic pattern. In this sense, if the data rate

generated by the source node was different, the behavior

of the channel model would not be appropriate. The cor-

responding chain would not accurately mimic the real per-

formance, since there is a tight relationship between such

behavior and the configuration of the subjacent model.

2 The legacy frame-based operation uses a geometric distribution,

discrete “version” of the exponential random variable.

Since we aim at a more generic solution, we modeled

the average transmission time per frame. In a first approach,

we simply assumed that the time between two consecutive

frames was constant for all states, ψ in Eq. (2), no matter

the channel quality or the erroneous frame bursts. In order

to have a more accurate solution, we modeled the average

time between two consecutive frames depending on the cur-

rent state and the corresponding number of retransmissions.

For that purpose, we need to calculate how long it takes (in

average) for a frame to be delivered to a receiver node, ∆k;

considering k retransmissions attempts, as shown in Eq. (3):

∆k = (k + 1) · δc +







16 ·

k
∑

j=0

2j



−
k + 1

2



 · σ (3)

where the first term corresponds to the deterministic contri-

bution of the IEEE 802.11 DCF scheme, while the second

term models the average value of the random time caused

by the CSMA/CA procedure, which doubles the contention

window for every retransmission (binary exponential back-

off procedure). In particular, the following parameters are

used:

– k. This value indicates the number of retransmissions

that were sent for a particular datagram. A value of k =

0 indicates that a frame was correctly received at the first

transmission. Since the maximum number of retransmis-

sions was 3, k ≤ 3. Besides,∆3 does not necessarily im-

ply that the frame was correctly received after the third

retransmission, although the overall time (for the four

attempts) would be alike.

– δc. It is defined as the fixed time per frame, which ac-

counts for the deterministic contributions (Distributed

Inter Frame Space - DIFS, transmission time of the data

frame, together with the physical header and preamble,

Short Inter Frame Space - SIFS and transmission time

of the IEEE 802.11 ACK, including the physical header

and preamble). For the particular configuration that was

used during the measurement campaign, the value of δc
is ≈ 1.7 ms.

– σ. This parameter reflects the slot time of the contention

window used by the IEEE 802.11 DCF mechanism.

Each of the states is characterized by the probability for

a frame to be correct (1 − pi) or erroneous (pi), being i

the current state at the Markov chain and pi = bi(0). From

these two values we could easily derive the probability that

frame requires k retransmissions3. Hence, the average time

per frame that shall be used to translate the state duration to

time units can be derived as shown in Eq. (4), where R is

3 For example, the probability that a frame requires two retransmis-

sions at state i can be calculated as p2i · (1 − pi), i.e. there are two

consecutive erroneous transmissions and then a correct one.
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Table 2: Statistics without saturating the link (Bad channel)

Channel FER
EFB

Avg Var Max

Real (synthetic) 0.5191 3.76 22.18 19
Frame-based 0.4876 5.375 237.97 166
Time-based 0.5398 3.774 16.045 28

the maximum number of retransmission attempts per frame,

which was set to 3 in our case.

E [∆k|Si] = ψi =

R
∑

k=0

(1 − pi) · p
k
i ·∆k + pR+1

i ·∆R (4)

Finally, and considering that the traces that were used

to train the subjacent chains were obtained under saturation

conditions, we can model the average sojourn time per state

Ti as shown in Eq. (5).

Ti =
ψi

1− ai,i
(5)

2.2 Time-based Vs. frame-based modeling

One of the most relevant aspects of the configuration pro-

posed herewith lies on the fact that it has been done by

means of a time-based characterization. As was said before,

most of the existing works use the traditional frame-based

approach, which is sensible only when the simulation con-

ditions are exactly the same as the ones that characterized

the real traces used to train the HMP model (i.e. the 10 ms

between consecutive transmissions in [4]); otherwise, the

model would not be valid. On the other hand, if the con-

figuration followed a time-based operation, the dependency

on the traffic pattern would not longer be a problem.

In order to assert that a frame-based operation is not able

to correctly capture a change of the traffic pattern, we carried

out a complementary analysis. With the Bad channel trace,

we configured the HMP using with both the frame-based and

the time-based configurations. Then, we reduced the appli-

cation data rate (in the simulator) to 600 Kbps, i.e. without

saturating the channel. The average delay between two con-

secutive receptions would correspond to ≈ 20 ms, opposed

to ≈ 2 ms that characterizes saturated IEEE 802.11b trans-

mission. In order to assess the goodness of the results, we

synthetically created a trace, by decimating the one corre-

sponding to the Bad channel instance; in this sense we ex-

tracted one every 10 frames, roughly corresponding to an

interval of 20 ms between consecutive frames. Furthermore,

as this synthetic trace (only one every ten frames) does not

include any 802.11 retransmissions, we disabled the cor-

responding scheme in the simulator, so as to enable a fair

comparison. Table 2 shows the behavior exhibited by the

. This value indicates the number of retransmissions

indicates that a frame was correctly received at the first

transmission. Since the maximum allowed number of re-

. Besides,

does not necessarily imply that the frame was cor-

rectly received after the third retransmission, although

the overall time (for the four attempts) would be alike.
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the corresponding chain would not reflect the actual channel

Since we aim at a more generic solution, we modeled

the average transmission time per frame. In a first approach,

we simply assumed that the time between two consecutive

in Eq. (2), no matter

the channel quality or the erroneous frame bursts. In or-

der to have a more accurate solution, we modeled the av-

erage time between two consecutive frames depending on

t0 t0+1 t0+2 t0+3 t0+4 t0+5
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(b) Time-based mode

Fig. 2: Accuracy loss of the frame-based mode upon non-

trained traffic conditions

two possible configurations and the statistics of the synthetic

trace. As can be seen, the frame-based approach resembles

the FER quite well, but keeps the memory behavior of the

trace it was originally trained with, and therefore the bursts

are much longer. On the other hand, the time-based model

also mimics quite appropriately the EFB statistics, showing

the greater flexibility of this approach.

As an illustrative example, we represent in Figure 2 the

temporal evolution of the HMP state transitions, as well as

the frame reception events (plotted as arrows). We can ob-

serve that the time-based mode (Figure 2b) keeps the state

change rate along the time, independently of the traffic pat-

tern; transition events are decoupled from the reception of

frames and there are cases in which the channel visits and

leaves a state within the interval between two consecutive re-

ceptions. Hence, the memory effect that was seen over a sat-

urated channel is reduced (as was observed in Table 2), since

the reception event of an arbitrary frame might be indepen-

dent of the previous ones (the “bursty effect” disappears).

On the other hand, the frame-based operation is tightly cou-

pled on these physical receptions; Figure 2a shows that, even

if the average time between transmissions was modified, the

average time per state would be scaled likewise, since transi-

tions are triggered by reception events and the “mean num-

ber of frame receptions the channel will remain at the ith

state” can be expressed as shown in Eq. (1), independent

of the time. In other words, a frame-based HMP channel

model would be tightly linked to the particular conditions

that were used to train the model and to obtain the transition

and emission matrices, so this approach will always yield a
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similar output as the one corresponding to the trace file used

to “train” it.

3 Channel model based on an auto-regressive filter

Another approach to replicate the behavior of indoor wire-

less channels is to estimate the signal power at the receiver

node. The BEAR model, originally proposed by Agüero et

al. [2] follows this concept. In this work, in order to compare

its performance with the one shown by the HMP models dis-

cussed in the previous version, we have ported its implemen-

tation to the ns-3 network simulator. Figure 3 depicts the

BEAR operation, from the physical transmission of a packet

to the point at which the receiver entity decides whether that

particular frame is correct or not.

The cornerstone of BEAR consists in estimating the re-

ceived link quality by considering three different contribu-

tions. We abridge below their main features:

– The first one depends on the distance between the trans-

mitter and the receiver nodes; it is normally character-

ized by a factor d−ν , where d represents the separation

between the two nodes and ν is tuned according to the

propagation loss model (we could refer to this param-

eter as “pathloss exponent”). Within this work we use

a simple log distance propagation loss model, which is

originally provided by the simulator.

– The second component reflects the slow variations on

the received signal (Slow Variation - SV) which could

be ascribed to the presence of physical obstacles within

the path. In order to mimic such effect, BEAR uses an

auto-regressive filter as shown in (6). The corresponding

coefficients, a[i] were tuned from the results obtained

during the empirical campaign, using the Yule-Walker

algorithm. As can be seen, the next value of the SV con-

tribution, SV [i], is “predicted” from the previous stored

samples, SV [i−j], limited by the AR filter order,T ; a[j]

correspond to the filter coefficients. It is worth highlight-

ing that each of the samples reflects a received frame (the

time step would be ≈ 2 ms in the particular configura-

tion we used); in order to decouple the channel model

from the traffic pattern (i.e. without saturation condi-

tions), we included a timer, whose expiration would delete

the previously stored samples, so that they not longer im-

pact the SNR of new frames. Finally, ǫ is a white noise

contribution with average power Pǫ. The reader might

refer to [2] for a more thorough discussion of the opera-

tion of this model.

SV [i] =

T
∑

j=0

a[j] · SV [i− j] + ε[i] (6)

– The latter contribution reflects the multi-path wireless

channel nature, leading to fast signal variations. The lit-

erature refers to this phenomena as Fast Variation (FV)

or shadowing effect. In this work, it will be modeled as

a random (i.e. Gaussian) variable with a mean zero and

a variance of σ2 dB2.

The sum of all these contributions, which are as well

combined with an equivalent noise power to calculate the

Signal to Noise Ratio (SNR), is depicted in Figure 4: first, the

deterministic propagation loss model returns the Received

Signal Strength (RSS) as a function of the distance; besides,

we can get the noise floor level from a legacy interference

model, which is out of the scope of this work (Figure 4a).

The second contribution is the result of the AR filter, yielding

a signal with slow variations along the time (Figure 4b). The

last component reflects a typical shadowing effect, show-

ing a completely random nature (Figure 4c). As can be seen

in Figure 5, which shows the pdf of the received SNR, the

BEAR clearly shows that a different behavior is reflected for

correct and erroneous frames. The average SNR for the er-

roneous frames is around 3/4 dB lower than for the correct

ones; this reflects what was observed over real channels [2].

Afterwards, the overall SNR (Figure 4d) will be the in-

put of a decision entity, responsible of establishing whether

the received frame is correct or not. Its operation is detailed

below.
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– If the RSS is higher than the energy reception threshold,

the frame delivery to the upper layers relies on the op-

eration of the new error model, silently passing through

the original physical reception.

– Instead of using the Bit Error Rate (BER) curves sup-

ported by the simulator, we have incorporated a logis-

tic function, Eq. (7), which determines the Frame Error

Rate (FER) as a function of the SNR; this relationship,

as well as all its parameters (a, b, c and the two thresh-

olds: LT and HT ) was obtained using a curve fitting
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0.15

0.2
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p
d
f

Total Correct Error

Fig. 5: BEAR’s SNR pdf

tool with the relationship that was empirically observed

over the real channel.

FER =















1, SNR < LT
a

1 + eb·(SNR−c)
, SNR ǫ [LT,HT ]

0, SNR > HT

(7)

– The previous expression is only valid for 1500 Byte frames

(worst case), and different relationships should be found

for different lengths. For instance, the model considers

that all IEEE 802.11 ACKs are always correct, since the

probability of losing them is much lower than the one

seen for data frames.

For a more thorough description of how the real traces

are used to identify the AR filter coefficients and the logistic

function parameters the reader can refer to [2].

4 Legacy model supported by the simulator

The last channel analyzed in this work corresponds to one of

the mainstream IEEE 802.11 models originally supported by

the ns-3 simulator. In this particular case, as shown in Fig-

ure 6, we have configured the lower layer as follows: on the
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Fig. 7: Default model SNR pdf of an arbitrary transmission

first hand, we have two propagation elements: the former is

based on a log distance propagation loss model, and returns

a deterministic value as a function of the distance between

the nodes. The attenuation factor L is obtained as shown in

Eq.(8), being L0 the path loss reference (in dB), ν the path

loss distance exponent, d the distance between the source

and sink nodes and d0 the reference distance (in meters).

Besides, the second contribution mimics a shadowing - FV -

effect, which is modeled with a normal random process N

(0, σ2).

L = L0 + 10 · ν · log10

(

d

d0

)

(8)

As was done with BEAR, we derive the SNR of the re-

ceived frame by adding the two aforementioned contribu-

tions, and the equivalent noise power (provided by an inter-

ference model). This value will be used to find the corre-

sponding FER, using BER curves that are chosen according

to the binary rate and the modulation. Once the FER is ob-

tained, it is compared with a random value to decide whether

a frame is correct or not.

It is worth mentioning that the operation of this so-called

Default model has some similarities with BEAR; the main

difference between them is the use of the AR filter in the lat-

ter one to emulate the slow variation of the channel. The

overall behavior, in terms of the SNR, of the Default ap-

proach can be seen therefore as the sum of the determin-

istic propagation contribution (Figure 4a) and the shadow-

ing component (Figure 4c). In addition, Figure 7 shows that,

unlike the BEAR case, there is not a relevant correlation be-

tween the SNR and the presence of errors within the frame.

5 Simulation setup and results

After describing the different approaches that we have used

to mimic the behavior of indoor wireless channels, we de-

scribe the setup of the simulation procedure we carried out

to study the performance of the three alternatives. A source

node sends 10000 data packets with an MTU of 1500 bytes,

to a receiver entity. We also assume that there is always traf-

fic to be sent at the transmitter, thus saturating the wireless

channel. Besides, the transmission power (txPowerDbm) was

tweaked to reduce the corresponding coverage, using a value

of 0 dBm.

Below we depict the configuration for each of the differ-

ent channel models.

– BEAR uses an order three auto-regressive filter (T = 3)

with a white noise power Pǫ = 5 · 10−3W/Hz; besides,

the FV contribution will be modeled by means of a nor-

mal random variable N(0, 2.8 dB2).

– Regarding the HMP model, a 4-state hidden Markov chain

will be used4, which was trained with the three traces

corresponding to the measurements depicted in Table 1.

– Finally, the so-called Default model uses the same shad-

owing contribution as BEAR: N(0, 2.8 dB2). Further-

more, in order to compare its results to the ones observed

with the HMP model, we have mimicked the same chan-

nel conditions (i.e. Good, Average and Bad), by chang-

ing the distance between the nodes so as to get a similar

output in terms of the average FER.

We have carried out four phases: first, we characterize

the behavior of the three different solutions using UDP traf-

fic so as to reduce as much as possible the interplay of differ-

ent upper layer mechanisms; the second one focuses on the

addition of a distance-dependent functionality to the HMP

model, tuned from the output obtained by BEAR in [5]; the

third stage studies the impact of these channels over the

TCP performance, assessing its sensitivity to indoor wire-

less environments. Finally, we compare the three models in

terms of their computational cost, studying the correspond-

ing computational time-accuracy tradeoff.

5.1 Raw channel characterization

We use UDP, because it is is the most appropriate trans-

port protocol to evaluate the “raw” behavior of the lower

layers, since it does not use any technique that might alter

their intrinsic mechanisms, ensuring that the wireless chan-

nel stands as the actual system bottleneck.

Figure 8 shows the most relevant statistics to understand

the performance of the various models, namely FER, Packet

4 We also studied configurations with higher number of states (i.e. 8

and 16) and the resulting performance was alike.
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Error Rate (PER) and throughput. We represent the cumula-

tive distribution functions (cdfs) of the aforementioned pa-

rameters, after carrying out 500 independent experiments

per configuration. First, the limited variability exhibited by

the Default model can be easily seen (Figures 8a, 8d and 8g),

with an almost deterministic behavior. On the other hand,

all the HMP configurations show a similar performance (see

Figures 8b, 8e and 8h), although the PER for the Bad con-

figuration shows a higher variance, due to the impact of the

error bursts, as will be discussed below. The third model,

BEAR (Figures 8c, 8f and 8i), covers, with just a single con-

figuration, almost the whole range seen over the real testbed.

The modification of BEAR’s configuration parameters (Pǫ

for the SV and N
(

0, σ2
)

for the FV contribution) could

yield an even higher variability.

Figure 9 shows the relationship between the FER and the

PER for each of the channel models, to illustrate their mem-

ory factor. Each figure includes, in addition to the simulation-

based results, the values observed over the real wireless chan-

nel [2], as well as a curve that represents the behavior of a

memoryless channel. In this sense, there was no memory

(the random process associated to a frame reception is inde-

pendent from the previous ones), we could say that PER =

FERR+1, since a packet will get lost after the consecutive

reception ofR+1 erroneous frames, beingR the total num-

ber of retransmission attempts set by the IEEE 802.11 entity

(3 in this work). In general, we can state that the PER could

be calculated from the FER using Eq. 9, where γ gives an

idea of the channel’s memory impact (the lower γ, the higher

the memory).

PER = FERγ (9)

Figure 9 yields the predictability exhibited by the De-

fault model. As can be seen, all simulations lie within the

memoryless behavior, γ ≈ 4. On the other hand, BEAR

shows a higher variability, spanning (for a single configu-

ration) the whole set of values that were observed during

the real measurement campaign. However, there are some

particular measurements that are not properly replicated by

BEAR, since its γ parameter is slightly higher that the one

of the real channel. Finally, the HMP offers, considering its

three configurations altogether, a reliable modeling of the

memory assessed over a real scenario, although the variabil-

ity is (for each of them) much lower than BEAR’s. It can be

also seen that the value of γ is, for all the HMP configura-

tions, lower than the one seen for the BEAR channel.

As was discussed before, the behavior of the different

models in terms of FER and PER has a direct relationship

with the “bursty” response of the channel. Figure 10 shows

the EFB’s pdf and complementary cumulative distribution

function (ccdf) for the three models. It is worth highlight-

ing that a burst longer than 4 frames would lead to a packet

loss. We can again observe the poor bursty behavior offered

by the Default model (Figures 10a and 10d), where the vast

majority of EFBs are shorter than ten frames; in fact, only

the Bad configuration was able to replicate the appearance

of bursts longer than 5 frames. As for the HMP model, its

pdf (Figure 10a) shows that bursts are much higher, having

a non-negligible probability for EFBs > 10 frames, even

for the Good configuration. On the other hand, BEAR (Fig-

ures 10c and 10f) is able to cover (even though for a sin-

gle configuration) a broader range of behaviors, from short

EFBs (≈ 85% are shorter than four frames) to long ones

(≈ 5% are longer than 10 frames).

On the other hand, it has been shown [2] that the prob-

ability of having an EFB of 100 or more frames over the

real channel is actually lower than 0.7%, and therefore we

can conclude that both HMP and BEAR reflect this behav-

ior with a reasonable level of accuracy. Although they yield

bursts longer than 100 corrupted frames, their probability is

very low: Pr {EFB > 100} ≤ 10−3, for both models.

5.2 HMP distance-aware operation

Unlike the legacy wireless channel simulation models, one

important shortcoming of the HMP model basic configu-

ration is that it cannot provide any dependency to the re-

ceived signal strength5 by itself. We have to choose a du-

ple of transmission-emission matrices (A and B) during the

scenario setup, keeping those settings throughout the simu-

lation. However, we can improve the operation of this model

by exploiting the results achieved by BEAR in [5], which

will be used to tune the performance as a function of the

distance between nodes. We first “discretize” the response

along the distance at a finite number of points. By using

a distance-based study of the BEAR model, and the corre-

sponding real behavior, we have chosen up to seven dif-

ferent measurements from Table 1 in [2] to configure the

various HMP instances. Figure 11 shows the performance,

in terms of FER, PER and throughput while we vary the

distance between transmitter and receiver. Provided that the

distance thresholds were configured according to the FER,

we can observe in Figure 11a that all these values are re-

liably mimicked, as well as the resulting throughput (Fig-

ure 11c), which covers all the range showcased by BEAR.

On the other hand, despite the PER shows an appropriate

behavior, as shown in Figure 11b, there are two small “mis-

alignments”: first, since HMP’s memory factor γ is greater

than BEAR’s, the PER is slightly higher, especially for low

FER values; on the other hand, the current implementation

is not able to cover PER values higher than 0.4.

5 There is no relationship between the distance between nodes and

the erroneous performance of the transmission.
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Fig. 8: Performance indicators of the different channel models
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5.3 Impact of a packet erasure channel over TCP

Although the results obtained with UDP traffic are appropri-

ate to reflect the “raw” behavior of indoor channels, it is also

interesting to assess the impact of these environments over

rather different transport protocols, like TCP. As mentioned

before, it is not able to determine the cause of a segment

loss, either brought about by the congestion of intermediate

routers’ buffers or as a consequence of the hostile condi-

tions of the wireless channel. The default TCP interpreta-

tion is always the same: when a segment gets lost, the TCP

entity associates this event to a congestion situation, hence

the congestion control mechanisms will act accordingly, by

reducing its sending congestion window. Furthermore, this

loss of information might lead to the reception of an out-

of-order segment, event that triggers a Dup ACK backwards
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Fig. 11: HMP behavior as a function of the distance

delivery. After the consecutive reception of three of them

(Triple Duplicate ACK), the Fast Retransmit algorithm will

immediately trigger the retransmission of the corresponding

segment. In few words, the presence of long error bursts (as

observed over the real channel) during a TCP transmission

has a huge impact over the system performance. For these

reasons, it is essential to provide channel models that accu-

rately capture this behavior, in order to evaluate the perfor-

mance of such type of protocols over wireless networks.

Figure 12 shows the relationship between the FER and

the throughput for the three studied models, as well as the

values observed during the empirical campaign and an up-

per bound, which is established by means of a memory-

less channel. First of all, we can observe the poor perfor-

mance exhibited by the Default model (Figure 12a), with a

clear memoryless behavior. On the other hand, the differ-

ent HMP configurations present an acceptable level of vari-

ability (Figure 12b). Finally, BEAR offers again the broadest

range of possible outputs, mimicking quite well the memory

effect shown by the real measurements.

As said before, TCP uses two retransmission triggers:

the first one, the so-called Fast Retransmit algorithm, es-

tablishes that a segment must be immediately retransmitted

after the reception of a triple duplicate ACK; on the other

hand, if, after sending a segment, the transmitter does not

receive an acknowledgement within a time interval (the Re-

transmission TimeOut, RTO), it would be retransmitted. The

latter one causes a stronger impact over the TCP perfor-

mance, since it might lead to long inactivity periods (during

which the channel is not used). Provided that the RTO grad-

ually increases (following a binary exponential backoff al-

gorithm) after any timer-triggered retransmission, these idle

times might reach rather long values. Hence, they could severely

jeopardize the overall TCP performance. Figure 13 shows
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the maximum idle time cdf for the different channel mod-

els. As can be seen, the Default approach shows a complete

lack of bursty behavior, and the idle times always stay be-

low 2 seconds (even for the Bad configuration); on the other

hand, HMP yields a rather predictable behavior for the Good

and Average configurations (with values much lower than

the ones observed over the real channel), and only the Bad

instance leads to idle times greater than 5 seconds, but at the

expense of causing inactivity periods greater than 60 sec-

onds in around 4 % of the cases, which do not accurately

reflect the real channel behavior. Besides, BEAR appropri-

ately mimics the variability assessed during the characteri-

zation carried out over the real channel.

Finally, it is interesting to analyze the temporary evolu-

tion of some illustrative individual measurements. For that

we will represent the “Time-TCP Sequence Number” graph

of some particular experiments. Figure 14 shows (per chan-

nel model) one good and bad example. At first sight we can

conclude that the Default model does not provide any vari-

ability at all (as was also discussed earlier), since the be-

havior remains almost alike for the 500 independent simula-

tions. On the other hand, we can see that the other two mod-

els are actually able to lead to TCP connections with a rather

opposite behavior, as was the case for the real channel.

5.4 Computational cost assessment

In this last phase we aim to characterize the computational

cost (in terms of simulation time) for each of the wireless

channel models studied in this work. For this purpose, we

need to make various changes on the scenario, as described

below.

1. The parameter that is modified for this particular analy-

sis is the number of nodes deployed along a line topol-

ogy. The first node is the source and the last one takes

the receiver role. We increase the number of nodes from

2 to 32.

2. All the configurations present a common aspect: besides

the particular operation of the proposed models, we have
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Fig. 14: Time - Sequence Number for arbitrary measurements of the three channel models

added another propagation loss entity, a range distance

propagation loss model. It defines two different thresh-

olds: the first one limits the radius within which every

frame will be successfully received (when PRX

> RXthreshold); on the other hand, a second one will

be used to establish the distance that limits the Carrier

Sense (CS) threshold, zone in which the node will sense

that another transmissions is happening and will there-

fore deter its own transmission until it is finished

(RXthreshold > PRX > CSthreshold). Out of these

zones, frames will always be corrupted

(PRX < CSthreshold), to ensure that a packet needs

N −1 hops to reach the destination and at the same time

to avoid the “hidden-terminal” effect, since the ith node

will be able to overhear the transmissions carried out by

up to its two-hop neighbors.

3. During the simulations, 5000 UDP datagrams are sent

between the source and sink nodes, using a Constant Bit

Rate (CBR) application that delivers packets at a rate of

100 Kbps (non-saturating conditions).

4. The remaining configuration parameters keep the values

chosen in the previous simulation campaigns.

5. Finally, we carried out a total of 25 independent runs for

each of the scenarios.

Figure 15 represents the normalized simulation time of

each of the runs (using the lowest value as the reference: two

nodes, Default channel), as well as the 95% confidence in-

tervals (as can be seen, the variability of the results is almost

negligible), as a function of the number of nodes deployed
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Fig. 15: Computational cost comparison between the studied

channel models as a function of the number of nodes over a

line topology

along the line topology. According to the obtained results, it

is easily inferred that the Default model requires less time

to decide whether a received frame is correct or not, since

its complexity is rather low: after calculating the received

signal power and the SNR from the propagation and inter-

ference models, respectively, the error model maps the SNR

into a FER value, based on the BER curve associated to the

appropriate modulation scheme (11 Mbps - Complementary

Code Keying (CCK) in our work) [6,7]. The HMP model

has a slightly higher cost although the simulation time keeps

an acceptable growth rate with the number of nodes. The

complexity of this model lies on the matrices (transition and

emission) that define the behavior of the wireless channel.
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Upon the reception of a frame by a node, the first step con-

sists in looking up the current state of the Markov chain at

the receiver node; after that, the error model takes the emis-

sion error value bi(0) belonging to such state and decides

whether the frame is correct or not. It is worth mention-

ing that the change-of-state process is completely orthog-

onal to the reception of frames, since a transition will be

triggered by a negative exponential random variable, whose

mean value is obtained as shown in Eq. (5). Finally, BEAR is

the model that shows the longest simulation time, being pe-

nalized as the number of nodes gets higher. In a nutshell, be-

sides the operation carried out by the Default model, BEAR

needs another signal contribution (i.e. the SV one), obtained

by means of the AR filter, which stores the last T samples

of the SNR values and operates with them following Eq.(6).

Upon the calculation of the overall SNR value, a logistic

function is used to decide whether the received frame is cor-

rect or not.

5.5 Discussion

At this point, we can abridge the main conclusions extracted

throughout this simulation campaign: on the first hand, we

have checked that, albeit the Default model captures quite

appropriately the behavior of a wireless channel in terms

of average FER and throughput, it is not able to reflect the

memory factor observed over real scenarios, leading to an

almost deterministic output, far from being realistic. Although

its computational complexity is very low, its use is not rec-

ommended, because it does not provide the minimum level

of accuracy. On the other hand, the BEAR model leverages a

remarkable varying performance, covering the whole range

of results observed over the real channel with a single setup

(i.e. the AR filter noise inputPǫ and the variance of the shad-

owing model); however, this model is complex, and its simu-

lation time is long, especially when the number of nodes gets

higher. The HMP model provides an interesting trade-off,

since it offers a certainly good degree of variability, showing

an appropriate memory behavior, while keeping a reason-

able computational growth rate (as a function of the number

of nodes deployed over the scenario). That, together with the

feature proposed in this work that provides the model with

distance-dependent behavior makes the HMP model a very

appealing alternative.

Another aspect that should be looked at, especially con-

sidering the empirical nature of both models, is how repro-

ducible they are and how they can be configured for differ-

ent conditions (other IEEE 802.11 variants, different frame

sizes, etc). BEAR has two main parts: the modeling of the

SNR and the dependency between this and the probability

for a frame to be erroneous; it can be said that the SNR is in-

dependent from the frame size and the type of IEEE 802.11

modulation scheme, as it is estimated during the PLCP [8];

hence, in order to include these into the model we should just

find an appropriate match between the SNR and the FER

(this could be done, for instance, by means of lookup ta-

bles). In this sense, Lertpratchya et al. have recently used the

BEAR model to study the bursty behavior of wireless chan-

nels [9]. On the other hand, the HMP could be more complex

to be updated so as to consider different frame lengths and

would probably require additional measurement campaigns;

the training of the subjacent markov chains is rather sys-

tematic, though, and therefore the same methodology could

be used to consider different frame lengths or modulation

schemes. Nonetheless, the time-based configuration would

still be of outer relevance so as to decouple its operation

from the particularities of the traffic patterns.

6 Related work

The first works within this research line focused on the em-

pirical characterization of IP protocols performance over

Wireless Local Area Network (WLAN), using the AT&T’s

WaveLAN wireless network adapters, which appeared even

before the approval of IEEE 802.11 standard, in 1997. Within

this group we can find the one carried by by Eckhart et

al. [10], where, from a set of packet traces captured at a

receiver entity, including information of both the signal and

noise levels, as well as the presence of errors, they assessed

the influence of different interference and attenuation sources

in terms of both packet and bit error rates. At the same time,

Nguyen et al. [11], following a similar methodology, aimed

at finding a realistic model to emulate the behavior of a wire-

less channel. Starting from both the error rates and the burst

lengths, they proposed an enhanced 2-state Markov model,

in which they substituted the traditional geometrical distri-

butions used to model the time spent at each state with other

approaches, which mimicked more accurately the empiri-

cally observed ones.

Other works focused on the characterization of an 11

Mbps IEEE 802.11b channel; it is worth highlighting the re-

search done by Ikkurthy and Labrador [12], in which they

studied the effect of errors over a coded video (using the

widespread MPEG-4 video compressor) transmission. They

carried out an experimental campaign in which they modi-

fied the packet size, and analyzed the erroneous and correct

packet bursts, and their probability distributions, for a sce-

nario where both nodes were separated a distance of approx-

imately 22 meters. Comparing these results with the ones

gathered by Nguyen et al. [11] at 2 Mbps, they came to the

same conclusion: a simple geometric model does not pre-

cisely reflect the real behavior. They also concluded that for

1500 bytes packets, 90% of the error bursts are shorter than 4

packets. Nonetheless, the authors did not specify the number

of MAC retransmissions which were used during their mea-
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surements. In fact, they coined the term error bursts, whilst

a more precise expression would have been packet losses.

Furthermore, there are a number of works which state

that traditional channel models based on Markov chains

(Gilbert-Elliot) are not able to reliably reflect the behavior

observed over real indoor wireless environments. In [13] the

authors show that this model is not able to reflect time peri-

ods with a high frame loss rate, which might have a strong

effect over video transmission, in terms of the quality per-

ceived by the end user as well as to streamline the design

of appropriate error control procedures. In [14] the Gilbert-

Elliot model was used to establish the most adequate param-

eters to reflect the perceived quality of a voice transmission

using an adaptive Frame Error Correction (FEC) scheme,

setting out the need of a research effort to come with more

realistic channel models.

More recently, the authors in [15] rely on the results

gathered from an experimental campaign carried out over

an outdoor rural environment, in order to propose a model

able to mimic the observed frame error rate; they also iden-

tified the need of conducting a similar analysis over indoor

scenarios. Finally, Cardoso et al. [4] question the appropri-

ateness of a 2-state Markov chain to reflect frame loss pro-

cesses which are seen over real indoor IEEE 802.11 chan-

nels. They propose and evaluate a novel model based on an

HMP. Although the use of HMP to model wireless chan-

nels was already discussed by Turin and van Nobelen [16]

and Zhu and Garcia-Frias [17], to our best knowledge, one

of the first works proposing their use within Network Sim-

ulation platforms was that of Cardoso et al. Their results

are compared with a batch of traces obtained from a set of

experiments carried out at a constant bit rate, and without

considering the IEEE 802.11 retransmission scheme. In ad-

dition, they established the traffic pattern at the source node,

having a fixed interval (at the application layer) of 10 ms be-

tween consecutive packets, which is rather high if compared

with the average IEEE 802.11 time gap between two consec-

utive transmissions (i.e. ≈ 2 ms for an IEEE 802.11b satu-

rated channel at 11 Mbps). Besides, they did not include any

reference to the scenario topology (i.e. distance between the

two nodes) nor to the received SNR. On the other hand, both

the frame error rate and the burst lengths they obtained are

considerably lower than those we aim at modeling herewith.

They conclude that an 11-state HMP-based model, with a

birth-death structure was able to reflect (quite accurately)

the first and second statistics of the packet losses measured

over a real testbed. However, as already discussed in Sec-

tion 2, this model is not able to reflect a realistic behavior

under different traffic conditions than those that were used

to configure the HMP.

Besides, with the main goal of overcoming some of the

main wireless modeling drawbacks, we proposed a new chan-

nel model: BEAR [2]. As was already mentioned throughout

this document, it is based on the modeling of the SNR, re-

sembling a set of traces obtained during an extensive mea-

surement campaign carried out over a real indoor scenario.

Its most distinguishing feature is that it aims to reflect the

memory effect shown over a real channel, using an auto-

regressive filter. We compared its performance with other al-

ternatives, widely used in the literature (all of them showing

a memoryless behavior) as well as the traditional Gilbert-

Elliot model. BEAR outperformed the rest of the channels

studied by the authors, but none of them was characterized

by offering a memory behavior.

In what respects to ns-3 [1], the simulator framework

that is likely to be prominent in the near/mid term, the main-

stream available models for wireless channels [6,7] are based

on the usage of BER curves, as a function of the RSS. Al-

though they perform quite well in terms of FER and through-

put, they are not able to appropriately reflect the bursty na-

ture of real indoor wireless channels. There have been a

number of proposals to overcome the limitations of these

legacy wireless channel models. Papanastasiou et al. [18]

challenge the suitability of this particular simulator and other

alternatives (i.e. QualNet), advocating that, despite the upper

layers are accurately implemented, little attention has been

usually paid to the physical behavior, taking many abstrac-

tions and simplifications. Hence, they propose a clean-slate

alternative to the legacy models supported by ns-3. The au-

thors present a fully-fledged bit-level physical layer emula-

tor tuned for the Orthogonal Frequency Division Multiplex

(OFDM) based IEEE 802.11 transmissions. Although this

approach could get closer to the real behavior of wireless

channels, its intrinsic complexity penalizes the time required

to perform the simulations, which might be prohibitive over

scenarios with a large number of deployed nodes and traffic

flows.

Last, but not least, Al-Bado et al. [19] used an exten-

sive empirical campaign over a real indoor scenario to pro-

pose a new ns-3 wireless channel model, tailored from the

Frame Detection Rate (FDR), as well as the capture and in-

terference patterns observed over the real measurements, for

different physical rates (i.e. IEEE 801.11g at 6, 24 and 54

Mbps). Although they share the same empirical approach

that we exploited to configure the two channel models, they

focus on other aspects, rather than the channel bursty behav-

ior. In particular they pay attention to both the interference

and the capture effects and their model is tightly related to

their testbed. It should not be to complicated including those

effects (especially the interference) within BEAR and this

might be an interesting point to tackle in our future research.

7 Conclusions

In this work we presented two different wireless channel

models, tailored from the results obtained over a real in-
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door testbed, following two complementary approaches: the

first one (BEAR) estimates the RSS by means of an auto-

regressive filter, whilst the second one (HMP) “discretizes”

the error response of the wireless channel in a finite number

of states, building a hidden Markov chain. The cornerstone

of both models is that they aim at reflecting the bursty na-

ture that characterizes real indoor wireless channels, whose

memory behavior is usually disregarded by the vast majority

of simulators, usually providing a rather predictable behav-

ior.

We have carried out an extensive simulation workout

to characterize the behavior of these models using a naive

transport-layer protocol, UDP, to study the raw performance

leveraged by the lower layers. Under these assumptions, we

have observed that, although the Default model provides ac-

ceptable results in terms of the average FER and throughput,

it exhibits an almost deterministic behavior. This demon-

strates that this sort of models fail to capture the memory

effect, and thus every frame reception can be considered as

an independent event. On the other hand, HMP and BEAR,

besides being able to mimic the average performance (FER

and throughput), they yield a much broader range of outputs.

Regarding their bursty behavior, we have seen that both of

them adequately reflect the results observed during the real

measurements, capturing as well the expected behavior in

terms of EFBs.

One of the most obvious limitations of the legacy HMP

models is their lack of dependency to the received signal

quality, since the corresponding matrices (A andB) are cho-

sen offline (before simulation starts). To overcome this lim-

itation, we have added the possibility to dynamically change

the HMP coefficients according to the distance between source

and destination. We have taken the BEAR performance to

tailor the thresholds between which the distance/HMP coef-

ficients bindings are done. Regarding the obtained results we

can assert that, although we are limited to a low finite num-

ber of configurations, the broad range of behaviors brings

about the possibility of providing a dynamic-range model.

After the analysis of the lower layers (and the channel

itself) raw performance, we have assessed the impact that

these bursty channel models have over connection-oriented

protocols, in particular TCP. Its performance is severely dam-

aged, since its intrinsic congestion control mechanisms are

extremely sensitive to consecutive segment losses, thus jeop-

ardizing the overall throughput. In this study, we have as-

serted the almost null variability and bursty effect provided

by the Default model, making it completely unsuitable to

study the performance of TCP-based applications over in-

door wireless channels. On the contrary, with both BEAR

and HMP, the simulation results showed a broad range of

outputs, as well as an appropriate memory behavior. Be-

sides, these models are also able to reflect the harmful ef-

fect brought about by long EFBs, leading to remarkable idle

times at the transmitter.

Finally, we have also analyzed the computational com-

plexity of the three different channels. The Default model

shows the lowest simulation time, but this does not com-

pensate its lack of accuracy. On the other hand, we found

out that BEAR requires the longest time, standing the HMP

model as an intermediate solution which, together with its

rather realistic performance, shows a reasonable complex-

ity, making it attractive on scenarios with a large number of

nodes.

Regarding the future work, the most straightforward as-

pect to be mentioned is the fact that the analyzed channel

models can be exploited to evaluate various techniques, al-

gorithms and protocols, including cross-layer techniques. In

particular, we plan to use them so as to study the perfor-

mance of Network Coding techniques, focusing on the im-

pact of errors bursts over the performance gain that those

techniques might bring about. Furthermore, there are still a

number of open issues that could be tackled in the future in

order to enhance and extend the functionalities of the pro-

posed channel models, as described below.

– First we would like to adapt our models to more recent

IEEE 802.11 physical specifications (i.e. g/n/ac). In or-

der to be able to appropriately tune their different config-

uration parameters, such as HMP’s matrices and BEAR’s

AR filter coefficients and logistic functions, we first need

to carry out a measurement campaign over a real indoor

scenario for each of the IEEE 802.11 recommendations

to be mimicked.

– Another interesting aspect would be to evaluate the per-

formance of these models over different conditions, such

as number of nodes or traffic patterns.

– It is worth highlighting that our models disregard the in-

terference contribution produced by contention (and col-

lisions) with other IEEE 802.11 stations, coexisting 2.4

GHz radio technologies over the coverage area, etc. Ac-

tually, they rely on the legacy interference model helpers

provided by the simulator, whose operation is currently

under development in [20]. The interaction between these

physical-level solutions shall be addressed in order to

create a holistic solution in the future.

Last, but not least, all the information regarding the two

proposed models (both HMP and BEAR) have been made

available to the scientific community [21]. We strongly en-

courage the interested readers to download the code, assess

the suitability of the models, and use them for their own re-

search, as this would help us to improve them by means of

an active feedback.
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