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Abstract  —  Parametric hysteresis in power amplifiers is 

investigated, studying the causes of this phenomenon and 
providing an efficient methodology for its prediction and 
elimination. As will be demonstrated, in MESFET and HEMT 
devices it is caused by a nonlinear resonance of the device input 
capacitance under near optimum input matching conditions. 
Bifurcation loci are used to evaluate the impact of the 
phenomenon under variation of critical design parameters. All 
the tests have been carried out in a Class-E GaN PA with 
measured 86.8% PAE and 12.4 W output power at 0.9 GHz. 

Index Terms — Bifurcation, class-E, GaN, harmonic balance 
(HB), hysteresis, PAE, power amplifier, stability. 

I.  INTRODUCTION 

Hysteresis or jumps in the power transfer curve of power 
amplifiers (PA) are an undesired phenomenon that has been 
reported in [1], where a detailed analysis of a Class-E PA was 
presented. From a geometrical viewpoint, the hysteresis is due 
to the presence of turning points or infinite slope points in the 
solution curves, which could be detected in [1-2] by means of 
an auxiliary generator (AG) introduced into the commercial 
harmonic balance (HB) software. In [2] hysteresis could be 
related to the gate current from impact ionization coupling 
with the bias resistor. However, when the hysteresis is 
observed only in a large-signal regime, a different mechanism 
should be involved, which has not been investigated in any 
previous work to our knowledge. Here, the hysteresis will be 
related to the nonlinear resonance of one of the device 
capacitance(s) under near optimum matching conditions. As 
will be shown, the subnetwork containing the nonlinear 
capacitance can be approximately described with the Mathieu 
equation [3-4], having two major resonances: one at the 
subharmonic frequency and one at the input frequency, the 
latter being responsible for the infinite slope points. After this 
investigation, an efficient simulation method will be 
presented. In [1] parameter switching and optimization had to 
be applied to obtain the multivalued solution curves. The 
turning point loci were calculated through detection of the 
singular points of the Jacobian matrix of the AG admittance 
function. This required an involved estimation of the 
determinant threshold to ensure sufficient analysis accuracy. 
The new method is developed from the recently published 
procedure [5] for studying injection-locked oscillators. It 
avoids all of these requirements and is based on the 
calculation of an outer-tier admittance function in commercial 
HB. The investigation of the hysteresis phenomena and the 
methodologies for its analysis and suppression will be 

illustrated through application to a Class-E GaN PA at 
0.9 GHz with a measured close to the state-of-the-art power-
added efficiency of 86.8% and 12.4 W of output power. 

 

Fig. 1. The demonstrator is a highly efficient Class-E power 
amplifier at 0.9 GHz. (a) Photograph. (b) Schematic (values in the 
table are for Coilcraft Air Core inductors and ATC 100B capacitors). 

-10 -5 0 5 10 15 20 250

20

40

60

80

100

Input power (dBm)

Po
w

er
-a

dd
ed

 e
ffi

ci
en

cy
 (%

)

-4 V

-3.7 V

-3.5 V-3.3 V
-3 V

VGS = -2.8 V

T

-2.8 V
-3 V
-3.3 V
-3.5 V
-3.7 V
-4 V

 

Fig. 2. PAE versus Pav for different VGS values. The turning point 
locus T has been included (dashed line). Solid lines are simulated 
results and symbols are measurements. 

II. PARAMETRIC HYSTERESIS 

The Class-E PA in Fig. 1, based on Cree's GaN HEMT 
CGH35030F, takes advantage of Lout parasitics to force high 
reactance terminations at the harmonics [6], while the 
optimum drain impedance at the fundamental is adjusted 
through Cout, following the solution proposed in [7]. The 
typical single low-pass section used to match the input 
improves the PA gain in such a way that the power-added 
efficiency (PAE) gets very close to the drain efficiency value. 
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Fig. 3. A simple network is considered to match the input of the 
power amplifier, resulting in an R-L-diode circuit. 



The PAE curves are represented in Fig. 2 for various gate 
bias voltages (VGS). The two turning points in each curve give 
rise to hysteresis when increasing and decreasing the input 
power (Pav). The phenomenon still occurs when short-
circuiting the drain and source terminals, so it can only be due 
to the nonlinear gate-to-source capacitance. Indeed, the input 
impedance of MESFET and HEMT devices has usually a 
small real part and a negative reactance dominated by the 
gate-to-source capacitance [8]. Therefore, the simplest 
matching network is a resistance and an inductance connected 
in series, which gives rise to the R-L-diode circuit in Fig. 3. 
Clearly, the actual input matching network will be different, 
but some important conclusions can be derived from this 
simple circuit. In terms of the diode charge q, the circuit is 
ruled by the following nonlinear differential equation: 

 ( ) ( ) ( ) ( )inv t Lq t Rq t v q= + +  . (1) 

Considering for simplicity a first-order Taylor expansion of 
c(v) and sinusoidal voltage at the input frequency ωin: 

 0( ) cos( )inc t C C tω= −∆ , (2) 

where ∆C/C0 << 1 is assumed. To focus the analysis on the 
resonator, the input source will be eliminated (vin = 0) as well 
as the damping term resulting from the resistance R, which 
leads to the undamped linear Mathieu equation [4]: 
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where ι(t) is the loop current, ω0
2 = 1/(LC0), β = ΔC/C0 and the 

approximation 1/(1 − ε) ≈ 1 + ε when ε << 0 has been used. 
The general solution of (3) can be expressed as a combination 
of two linearly independent solutions: 
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If the pair of independent solutions are chosen such that 
X(0) = I, the eigenvalues of X(T), where T is the period of the 
steady state solution, are the characteristic Floquet multipliers 
[3-4], which determine the stability of the periodic solution. It 
is easily seen that the time derivative of the determinant 
W(t) = det[X(t)] is zero and thus W is time invariant. At t = 0, 
one has W(0) = 1, since X(0) = I. Therefore, the two 
multipliers fulfill det[X(T)] = m1m2 = 1. For stability, all the 
multipliers must have magnitude smaller than one. Thus, 
instability would be obtained for two different and real 
multipliers of the same sign. For two multipliers equal to +1 a 
singularity in the solution curve, associated with a turning 
point, would be obtained. The case m1,2 = −1 (frequency 
division by 2) is well known [3-4,8-9]. However, the case 
m1,2 = +1 seems to be overlooked, although it is the cause of 
the hysteresis. To see this one must take into account the 
relationship between multipliers and poles (p), which has the 

form m = exp(pT). Therefore, a multiplier m = 1 implies a pole 
p at zero, leading to a singularity in the solution curve. 
Equation (3) is unrealistic since the damping term γ has been 
neglected. In the presence of γ, instability is only possible with 
a nonlinear capacitance. For this nonlinear analysis q(v) will 
be replaced with its describing function, assuming an input 
voltage waveform vin(t) = Vin cos(ωint + ϕ), which leads to the 
following steady-state equation in the frequency domain: 

 2( ) ( ) 0j
in in inV V e j RQ V LQ Vφ ω ω− + − = . (5) 

The Jacobian matrix of the complex equation (5) is calculated 
with respect to V and φ. The singularity condition is: 
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where Q' is the derivative of Q(V). Condition (6) can only be 
fulfilled for a nonlinear characteristic Q(V), since a linear 
capacitance leads to V = 0. The singularity is more likely to 
occur under good input matching conditions, since, as derived 
from (6), it requires the nonlinear resonance of the device 
capacitance with the inductor. The large-signal reflection 
coefficient is obtained from a generalization of the small-
signal S11 definition: Γ = (Vin − Z0

*Iin)/(Vin + Z0Iin). The 
magnitude of Γ has been calculated with (5) considering 
VGS = −4.6 V. In Fig. 4 it has been represented versus Pav in 
dashdot line where it can be compared with results obtained 
with the simulation method of Section III and with 
measurements of the PA in Fig. 1 when short-circuiting the 
drain and source terminals. 
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Fig. 4. Magnitude of Γ versus Pav for different VGS values. The 
dashdot curve is calculated with (5). The turning point locus T has 
been included (dashed line). Solid lines are simulated results and 
symbols are measurements. 

III. OUTER-TIER METHOD 

The nonlinear simulation method is based on the admittance 
description of the PA at the gate terminal, as depicted in 
Fig. 5(a). The Norton equivalent of the input network 
[Fig. 5(b)] is calculated from its scattering parameters, 
together with the admittance function Ygs seen from the gate 
terminal. This last function is obtained from a two-tier HB 
resolution of the circuit obtained by suppressing the input 



current source and connecting an AG between the gate and 
source terminals: 

 , 1 /gs AG AGY I V= , (7) 

where IAG, 1 is the first harmonic of the AG current and VAG is 
the AG voltage. Equation (7) is solved with the pure HB 
system, and with as many harmonic components as necessary, 
as an inner tier. The high-pass filter included in Fig. 5(c) 
allows for proper termination of higher harmonics. 
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Fig. 5. (a) Schematic of a power amplifier at the gate terminal. 
The impedance Z0 of the Norton representation of the input generator 
is included inside the input network. (b) Norton equivalent at the gate 
terminal. (c) Circuit for obtaining the gate admittance function Ygs. 

Applying Kirchhoff's current law to the circuit in Fig. 5(b) 
and substituting with the expressions of the Norton equivalent 
current IN and admittance YN, one obtains the equation: 

 gsj
s eq gsI e Y Vφ = , (8) 

where the equivalent admittance is 

 0 11 22 11 22

21
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2
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Y S S Y S S
Y

S
− + ∆ − + − − ∆ −

= , (9) 

∆ = S11S22 − S12S21, Y0 = 1/Z0 is the characteristic admittance, 
Vgs is the gate voltage amplitude and ϕgs is the phase shift 
between IN and the gate voltage. The input current Is is finally 
obtained from the real and imaginary parts of (8): 

 s eq gsI Y V= . (10) 

The available input power is Pav = Z0Is
2/8. The input voltage 

is calculated from the Norton equivalent: 
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The current provided by the input generator is Iin = Is− Vin/Z0. 
To trace the solution curves versus a parameter μ different 

from Pav one must combine the results of two independent 
simulations: S-parameters of the input network and an HB 
double sweep in μ and VAG of the circuit in Fig. 5(c). The 
above method has been applied to obtain the multivalued 
curves of Figs. 2, 4, with NH = 15 harmonic terms. 

Measurements are superimposed matching the simulated 
results. Discrepancies come from modeling inaccuracies. 

The scalar current equation (10) describes a surface on the 
plane μ, Vgs. Let the function 

 ( , )gs eq gsV Y VµΣ =  (12) 

be considered. The turning point locus is the set of points of 
the solution curves satisfying infinite slope and are given by: 

 { }2( , ) : ( , ) / 0gs gs gsT V V Vµ µ= ∈ ∂Σ ∂ = , (13) 

where the derivative ∂Σ/∂Vgs is calculated numerically from 
(12). The locus (13) is computed attaching Pav as independent 
variable of ∂Σ/∂Vgs and calculating the zero-level contour. 
This method has been applied to obtain the loci superimposed 
in dashed line in Figs. 2, 4, which pass through all the turning 
points of the solution curves. It has also been used to evaluate 
the effect of the input capacitor Cin on the hysteresis 
phenomenon, as shown in Fig. 6, where the loci are obtained 
in the plane VGS, Vgs. Using (13) multiple loci are obtained in a 
straightforward manner in Fig. 6. With Cin = 11 pF the curves 
do not exhibit hysteresis, as shown in Fig. 7 where 
measurements are also superimposed. 
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Fig. 6. Turning point loci in the plane VGS, Vgs for different Cin 
values. For Cin = 11 pF no locus is obtained. 
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Fig. 7. PAE versus Pav for different VGS values. The hysteresis has 
been eliminated by lowering Cin. Solid lines are simulated results and 
symbols are measurements. 

IV. CONCLUSION 

An in-depth investigation of hysteresis in power amplifiers 
has been presented, demonstrating that the input network 
dynamics can be approximately modeled with the Mathieu 



equation. A novel method to obtain the multivalued solution 
curves and turning point loci has also been shown. The 
analysis has been applied to a Class-E GaN PA at 0.9 GHz 
with a measured close to the state-of-the-art power-added 
efficiency of 86.8% and 12.4 W of output power. 
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