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Introduction 

Instability problems often faced by designers of nonlinear microwave circuits are the cause of 

significant qualitative discrepancies between simulations and measurements, even when using 

powerful simulation tools, based on harmonic-balance analysis and numerical optimization 

algorithms. Critical anomalies resulting from these instability phenomena most often invalidate 

the prototype and demand intense investigation and resolution efforts, which may substantially 

increase the production cycles and final cost. Understanding instability requires awareness of 

the two facts: two or more steady-state solutions can coexist for the same values of the circuit 

elements and stable solutions must be able to recover against the small perturbations that are 

always present in real life. To realize the complexity of the problem, one must take into account 

that circuits containing nonlinear components, such as transistors and diodes, are governed by a 

set of nonlinear differential algebraic equations [1-4]. Time differentiation comes from the 

existence of reactive elements, involving this operation in their constitutive relationships, and 

nonlinearity comes from the presence of semiconductor devices, containing nonlinear functions 

in their intrinsic models. Nonlinear differential equation systems admit four main types of 

steady-state solutions: dc, periodic, quasi-periodic (having two or more fundamental frequencies 

with non-rational relationships) or chaotic (non-periodic) [1,5-7]. Unexpected solutions are 

often observed in nonlinear circuits, since, in addition to the frequencies delivered by the input 

sources, there may be frequency components coming from the circuit self-oscillation. For 

instance, under a periodic excitation at in, the solution measured may not be periodic at in. 

Instead, it may be quasiperiodic at in and an oscillation frequency o, it may exhibit a 

subharmonic oscillation at in/2 or exhibit a continuous spectrum (chaos) [7-8].  
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Frequency-domain analysis methods, such as scattering parameters or harmonic 

balance, are applied under the constraint of a particular waveform. For instance, in the S 

parameter analysis of an amplifier, the small-signal solution is assumed to be sinusoidal at the 

frequency of the input source [9], and in the harmonic balance analysis of a power amplifier, the 

solution is assumed to be periodic at the frequency of the driving source, with a certain 

harmonic content [4,10-11]. This particularization prevents obtaining other possible and more 

complex circuit solutions. One essential fact is that two or more steady-state solutions (of the 

same or different type) may coexist for the same values of the circuit elements and parameters. 

All the coexisting solutions will be mathematically valid. However, only stable solutions can be 

physically observed, since only stable solutions are robust against the small perturbations that 

are always present in real life, coming from noise and perturbations. When a stable solution 

undergoes a small instantaneous perturbation, the transient response is such that the system 

returns to this solution exponentially in time. In contrast, the small perturbation of an unstable 

solution makes the system evolve to a qualitatively different (and stable) steady-state solution. 

Therefore, if the solution simulated is unstable, it will not be observed experimentally.  

When particularizing the analysis to a given type of waveform, as done with scattering 

parameters or with harmonic balance, the solution obtained will be mathematically valid, but it 

might not be stable (or physical) [7-8]. The only way to verify the physical existence of a given 

steady state solution is to perform a stability analysis [12-13]. The problem generally relies on 

the existence of a self-oscillation, which is not detected by the simulation method. As an 

example, Fig. 1(a) and Fig. 1(b) compare the solution simulated with harmonic balance and the 

solution measured for the same values of the circuit elements and parameters. The solution 

simulated is periodic, whereas the solution measured corresponds to a quasi-periodic regime 

with two fundamental frequencies: the input frequency in and a self-generated oscillation. The 

periodic solution is unstable and this is why it cannot be measured. In contrast, the coexisting 

quasi-periodic solution is stable and this is why it is obtained experimentally. 
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Fig. 1 Coexistence of steady-state solutions. (a) Solution simulated with harmonic balance. It is 

mathematically valid but unstable (unphysical). (b) Measured solution for the same values of the circuit 

elements and parameters. It is stable or robust.   

 

The instability mechanism leading to an ordinary oscillation can be understood as the 

effect a closed loop composed of a gain stage and positive feedback [12], such that the gain 

exceeds the feedback loss at a particular frequency. Alternatively, it can be understood as due to 

an excess of negative resistance at a resonant frequency [14]. Indeed, current passing through a 

negative resistance delivers energy to the circuit, unlike the case of a positive resistance, which 

implies energy consumption. The energy excess at a resonant frequency leads to the growth of a 

transient oscillation at the resonance frequency. The active elements are nonlinear and from 

certain amplitude, negative resistance must physically decrease, which allows reaching the 

steady-state oscillation for a perfect balance of power delivered and consumed. To make things 

more complex, circuits that are stable in small signal may become unstable under a large-signal 

drive at in [15-17]. This can be due to gain expansion, especially in the case of devices biased 

below conduction threshold, or to negative resistance exhibited by the nonlinear capacitances 

existing in transistors and diodes under large-signal periodic pumping [18-19]. The energy 

delivered by the pump signal gives rise to negative resistance around the original resonance 

frequency of the capacitor with an inductive element, in small signal conditions. A parametric 

oscillation [18-19] will arise if, from certain input power, the negative resistance dominates the 

loss effects, which will most likely occur if the frequency of the pump signal is about twice the 

frequency of the original resonance frequency. The described oscillation will enable the 
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implementation of parametric frequency dividers, but will be undesired in parametric amplifiers 

[9] and diode-based multipliers [19].  

 

Examples of instability phenomena 

Instability is extremely common in nonlinear circuits. As just mentioned, it can be the 

mechanism to obtain the desired operation regime or it can be unwanted. Examples of circuits 

requiring instability phenomena are oscillators and frequency dividers [20]. In each case, the 

desired steady-state regime (free-running oscillation or frequency division) coexists with 

another steady-state solution, which should be unstable for a regular behavior [1-2]. On the one 

hand, any free-running oscillator circuit can be resolved for a dc solution, due to the absence of 

any time-varying input sources. This solution has to be unstable (at about the desired oscillation 

frequency) to enable the oscillation start-up from the noise level. However, the desired periodic 

steady-state oscillation must be stable, or able to recover under small perturbations. On the other 

hand, any frequency divider circuit [20] can be resolved for a non-divided solution at the 

frequency of the input drive in , acting as a sole independent periodic source. This solution 

must be unstable at the subharmonic frequency to enable the build-up of the divided regime. In 

contrast, the desired divided solution must be stable or robust.  

However, in many cases instability is unwanted, like in low noise amplifiers, frequency 

mixers [21], power amplifiers or frequency multipliers [19], for instance, which do not require 

oscillations of any kind. Some examples are cited in the following. Instability of the dc regime 

(in a small-signal amplifier, for instance) may lead to an oscillation in the absence of input 

sources, with a behavior similar to that of a free-running oscillator. On the other hand, a circuit, 

expected to operate in large-signal regime, such as a power amplifier, may be stable in the 

absence of input drive, with instability arising from certain power level at the input frequency 

in [8,16-17]. The large-signal periodic regime becomes unstable at this power level and this 

instability may lead to a quasi-periodic solution (two non-rationally related fundamental 

frequencies) at in and o [as in Fig. 1(b)] or to a frequency division by 2. As an example, the 
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measurements of Fig. 2, corresponding to a power amplifier, show a frequency division by 2 

when increasing the input power. The spectra in Fig. 2(a) and Fig. 2(b) present the solutions 

measured for two different values of input power, Pin1 and Pin2. For Pin1, the periodic solution at 

the input frequency in is stable and the spectrum measured at this fundamental frequency is 

shown in Fig. 2(a). For the larger input power Pin2, this periodic solution is unstable, and the 

measured spectrum corresponds to a different solution: a divided-by-two regime [Fig. 2(b)]. In 

consistency with the reasoning above, for Pin2, a non-divided mathematical solution at in 

coexists with the divided regime as an unstable mathematical solution. This is similar to the 

coexistent unstable and stable solutions shown in Fig. 1(a) and Fig. 1(b).  

Transitions to a quasi-periodic regime at in and o [Fig. 1(b)] or to a suharmonic 

regime at in/2 [Fig. 2(b)] are fundamental instability phenomena which may be followed by 

other effects that would make the solution even more complex. For instance, after observation 

of a quasi-periodic solution at in and o, there can be a sub-synchronization of the oscillation 

to the input frequency [17], giving rise to frequency division by an order n in a certain 

parameter interval. Another possibility is the onset of a second oscillation frequency o’, which 

will likely lead the circuit into a chaotic regime, characterized by a sensitivity dependence on 

the initial conditions and the nonperiodicity of the solution waveform [8]. Note, however, that 

there are other instability mechanisms leading to chaotic regime, known as routes to chaos [22-

23].  

 

Fig. 2 Frequency division two when increasing the input power. (a) Measured periodic solution 

for the input power Pin1. (b) Measured subharmonic solution for the higher input power Pin2. 
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Another major form of unwanted behavior is hysteresis or jumps observed when 

varying a circuit parameter [17]. See an example in Fig. 3. It is the power transfer curve of a 

power amplifier [24]. For input power (Pin) between T1 and T2, the amplifier has three valid 

mathematical solutions. Solutions in the middle section (s2) are unstable. However, solutions in 

the lower section (s1) and in the upper section (s3) are stable and can be measured 

experimentally. Each coexisting stable solution has its own basin of attraction or set of initial 

values such that the system evolves to the particular steady-state solution. These initial values 

are conditioned by the sense of variation of Pin. Thus a hysteresis phenomenon [5,24] is 

observed when increasing and decreasing Pin. 
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Fig. 3 Hysteresis cycle in the power transfer curve of a power amplifier [24]. In the input power 

interval comprised between T1 and T2 there is a coexistence of three solutions, of the types S1, S2 and S3. 

Solutions of the type S1 and S3 are stable. Solutions of the type S2 are unstable. 

 

Need for a complementary stability analysis 

Even though the mechanisms leading to the major forms of instability are generally well 

understood, an a priori prediction of unstable behavior in a practical microwave circuit with full 

models of its active and passive elements is usually impossible, unless a rigorous stability 

analysis is carried out. To understand the problem, one must take into account that the number 

of resonance frequencies increases with the number of reactive elements, and the potential 

number of unstable loops increases with the number of active devices [16,25-26]. Regarding the 
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possible instability of the dc solution, circuits based on devices exhibiting broadband gain must 

be examined carefully as there can be resonance frequencies within the whole band [21], 

susceptible to give rise to instability, including low-frequency resonances associated to the bias 

networks. On the other hand, to avoid large-signal instability due to gain expansion, one should 

ensure small-signal stability for all the device bias conditions comprised in the large-signal 

excursion of the device voltages or currents [24]. The parametric oscillations, due to nonlinear 

capacitances, are more difficult to anticipate. However, these will arise more likely if the input 

frequency is near twice the resonance frequency of a nonlinear capacitance and this resonance 

has a low damping effect [2,18].  

Taking into account the high number of passive and/or active elements in most practical 

nonlinear circuits, the fact that the circuit can be unstable in small signal and/or large signal and 

the variety of instability phenomena, one can conclude that the only way to accurately predict 

undesired instability phenomena is to complement the frequency-domain simulation with a 

rigorous stability analysis. The difficulties of the widely used harmonic-balance method for the 

analysis/prediction of self-oscillations [5-7,20] are briefly explained in the following. Harmonic 

balance only provides steady-state solutions, represented with a Fourier series, usually in terms 

of one or two fundamental frequencies. The harmonic balance system is constituted by a set of 

nonlinear algebraic equations, which are solved through an error-minimization technique [4,10-

11], usually the Newton-Raphson algorithm. This algorithm is sensitive to the initial value, 

which will lead to trouble in the case of coexistence of steady-state solutions.  

As already stated, solutions containing either non-harmonic or subharmonic oscillations, 

always coexist with solutions at the frequencies delivered by the input sources, for which the 

circuit does not oscillate, such as the dc solution of a free-running oscillator. Because the 

harmonic-balance method only provides steady-state solutions, it is insensitive to the stability 

properties of these solutions, which would require the capability to predict their transient 

reaction to small perturbations. If two or more solutions coexist, default convergence of the 

error-minimization method will lead to the least demanding solution. In a free-running 

oscillator, default convergence would lead to the dc solution, this is why Oscports [11] or other 
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complementary procedures [5,20] must be used for oscillator analysis. To obtain an oscillatory 

solution, two conditions must be fulfilled: the fundamental oscillation frequency o  should be 

considered in the Fourier series representation of the circuit variables and the harmonic-balance 

system must be suitably initialized. In comparison, the time domain analysis transforms the 

continuous-time nonlinear differential-equation system into a discrete time system [1,4]. This 

involves replacing the time differentiation by a particular algebraic expression of the time 

derivatives in terms of the present sample and previous time samples (implicit methods). The 

resulting nonlinear algebraic equation is resolved at each time point tn and the waveform is 

obtained by assembling all the sequence of solutions (tn, xn). Provided the integration method 

(expression of the time derivative) and time step are properly selected [1], the time evolution of 

the circuit variables will emulate the physical evolution of these variables from the initial 

condition to the steady-state regime.   

To summarize, the frequency domain analysis only provides steady state solutions of 

particular type and are insensitive to the stability properties of the solution obtained. To check 

the physical observability of the solutions, the frequency domain analysis must be extended so 

as to consider the effect of small perturbations on the steady-state solution. One should 

emphasize that the perturbations considered must be of small amplitude. This is because in a 

nonlinear differential-equation system two or more stable solutions may coexist, each one being 

to recover under small perturbations coming from noise, etc, and thus being stable or robust. 

This can be understood from inspection of Fig. 3. Let a Pin value comprised between T1 and T2 

be assumed. When applying a large perturbation the system may evolve from either the upper 

stable solution (s3) to the lower stable solution (s1) or vice versa. A large perturbation may lead 

the system from one stable solution to another and our conclusion on the robustness of the 

solution would be wrong. Therefore, one must keep in mind that the stability properties are 

inherently local and the stability test must always be performed under small perturbations.  

In this article, the most relevant stability analysis method will be introduced from a 

historical perspective. For a detailed comparison of their foundations, ease of implementation 

and capabilities, they will be applied to simple circuits, which will enable a thorough analytical 
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evaluation and comprehension. Such level of detail would be impossible with practical 

examples due to their high order, given, in lumped circuits, by the number of reactive elements. 

The methods considered are the Rollet stability analysis [9,27], applicable to dc solutions only, 

the Nyquist stability analysis of the characteristic system [15,16], the normalized determinant 

function [16,25-26] and pole-zero identification [28-31]. The three last methods are accurate 

and complete and can be applied to both dc and periodic solutions. However, thee three methods 

have different conditionings and properties that will be shown through the article and are briefly 

summarized in Table I.    

  

Rollet’s stability analysis  

Rollet’s stability analysis was published in 1962 [27]. This analysis is intended for two-port 

networks expected to operate in linear regime with respect to an input source at the frequency 

in. The aim is to prevent the possible self-oscillation of the network under certain loading 

conditions of the two-port. Instability may lead to a qualitatively different dc operation point, 

but in most cases it will lead to a large signal oscillation at a frequency o at the expense of the 

energy delivered by dc sources. Obviously, because the circuit behaves linearly with respect to 

the input source at in, superposition applies and the circuit stability can be analyzed 

suppressing this input source. Remind that in measurements the so-called small signal 

instabilities are observed by simply biasing the active components, prior to the connection of the 

RF input sources, since they do not come from these sources. They are due to the instability of 

the dc regime.  

The aim of the Rollet stability criteria is to prevent the two-port network [containing the 

active device(s)] from exhibiting negative resistance when looking into its input or output, in 

order to avoid the energy unbalance that would lead to a possible instability of the dc solution. 

Assuming that the two-port network fulfills the so-called Rollet proviso [27,32-34], to be 

discussed later, the two-port network will be absolutely stable if it does not exhibit negative 

resistance at its input (output) for any passive load (source) impedance, connected to the 

opposite port. The absolute stability conditions are written in a compact manner in terms of the 
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Rollet factor k and the determinant of the scattering matrix (or alternatively, the  factor [34]). 

If the two-port network is not absolutely stable, input and output passive loads should be 

restricted to certain regions of the Smith chart, delimited by the stability circles [9].  

           Table I Brief comparison between the main stability analysis methods. 

Method Applicable to 

commercial HB? 

Dependent 

on 

observation 

port? 

Relevant characteristics 

Analysis of 

characteristic 

system 

No. It requires access 

to Jacobian matrix of 

nonlinear functions. 

No It would be definitive if one could calculate the 

complex roots of the characteristic determinant. 

Nyquist analysis is applied to determine number of 

unstable roots. 

Normalized-

determinant 

function 

Yes No It is based on an open-loop analysis that requires 

access to the device intrinsic nonlinear models. 

To open the model, the device control voltage is 

replaced with an independent excitation signal. 

Pole-zero 

identification 

Yes It may 

depend, due 

to possible 

pole-zero 

cancellations 

It is a closed-loop method that does not require 

access to the device models. 

It is easy to apply through simple introduction of an 

independent small signal source at a sensitive 

location. 

It provides not only the number of unstable poles but 

also the values of these poles. 

The pole evolution under variation of a parameter 

can be obtained through a sequence of two-stage 

analyses: steady-state calculation, plus pole-zero 

identification. 

 

 

The perturbation frequency considered in the analysis must vary from dc to the highest 

frequency at which the active devices may exhibit gain. Note that the physical perturbations 

coming from noise will expand through the whole spectrum, obviously including the circuit 
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critical-resonance frequencies. When using the so called stable loads (within the stable regions 

of the source and load Smith charts), the two-port network will exhibit input and output 

impedances with positive real part. However, this will only imply absolute stability if the Rollet 

proviso is fulfilled. The proviso takes into account the limited observability of the two-port 

network from its input and output ports. Indeed, the network may contain instability 

mechanisms that are not observable from the input and output. As can be easily understood, this 

lack of observability is more likely in circuits with complex topologies, although there are 

simple counter-examples too [32]. In order for the input/output observation to be sufficient, the 

two-port network must fulfill the Rollet proviso [32-33], which ensures that the two-port is 

stable on its own, that is, when loaded with infinite and zero impedances. If the two-port 

network is unstable in these conditions, the instability might remain when the circuit is loaded 

with passive impedances, even when though this instability is not detected from the analysis of 

the input and output impedances of the two-port network.  

Two examples are shown in Fig. 4. The circuit in Fig. 4(a) is unstable when terminated 

in open circuits and the one in Fig. 4(b) is unstable when terminated in short circuits. Let us 

consider first the circuit in Fig. 4(a), with termination ports used to measure the scattering 

parameters.  For 1 2 3|| 1 /R R G  , the input and output impedances of the two-port network 

will always have a positive real part, corresponding to stable behavior with the ill-applied Rollet 

criterion. As shown in the analysis of Fig. 5(a), it exhibits  > 1 for all the perturbation 

frequencies. However, when connecting any passive resistances R1 and R2, such that 

1 2 3|| 1 /R R G  , the circuit will oscillate [Fig. 5(b)]. This is because the small value of 

negative resistance in parallel dominates the positive one. For the circuit in Fig. 4(b), the 

situation is the dual one. When connecting any passive resistances R1 and R2, such that 

1 2 3R R R   , the circuit will oscillate [Fig. 5(d)]. However, it fulfills  > 1 for all the 

perturbation frequencies [Fig. 5(c)]. The apparent contradiction is due to the fact that when 

defining the two-port network for the evaluation of  we “break” the circuit at the defined 

reference planes. We change the nature of the series (Fig. 4a) or parallel (Fig. 4b) connection of 
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the active element to its passive loads, so the unstable resonance is dominated in each case by 

other impedance contributions.  
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Fig. 4 Two simple circuits that do not fulfill the Rollet proviso. (a) Parallel configuration. (b) Series 

configuration. 
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Fig. 5 Analysis of the circuits in Fig. 4. (a) and (b),  factor and transient analysis of the circuit in Fig. 

4(a). Initial condition Vo = 10 V. (c) and (d),  factor and transient analysis of the circuit in Fig. 4(b). 

Initial condition Vo = 100 V. 

 

Characteristic determinant 

In most cases, instability of the dc solution leads the circuit to an oscillation, which can be 

physically explained as due to resonance with a negative resistance excess, employed in the 

transient growth of the oscillation amplitude. In 1968, Kurokawa published a very complete 

study of negative resistance oscillators [14], including mathematical conditions for the 

oscillation start-up from the noise level. The well-known conditions were derived for single 

resonator oscillators: only one inductor and only one capacitor. They can still be applied to 

circuits with more complex topologies, provided the circuit is analyzed at a suitable loop or 

node, with sufficient observability to detect the resonance responsible for the oscillation start-

up. In a loop analysis, the total series impedance will be considered, whereas in a node analysis, 

the total parallel admittance is evaluated. In terms of total admittance T T TY G jB  , the 

oscillation start-up conditions are given by:  

( ) 0

( ) 0

( ) 0

T c

T c

T
c

G

B

B















     (1) 

The need for a positive sign in the frequency derivative of the susceptance is discussed later in 

the text. In general, the resonance frequency c  will not exactly agree with the steady-state 

oscillation frequency o  but will be close. The discrepancy can be understood from the 

nonlinear dependence of the susceptance, which should lead to zero large-signal value ( 0TB  ) 

at a different frequency. An analogous condition in terms of the total impedance would detect an 

oscillation start-up due to an unstable series resonance. However, these evaluations of the 

oscillation start-up conditions rely on a partial single admittance (or impedance) analysis and 

may fail to predict instability in circuits with a complex topology. Evaluations of the total 

impedance when breaking the circuit at a particular loop or the total admittance at a particular 
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circuit node constitute just partial observations of this circuit that may be incapable of detecting 

internal instability mechanisms. How to proceed then?. The only way to obtain reliable 

information on the solution stability properties is to apply an accurate and complete stability 

analysis method. 

The foundations of the stability analysis are better understood in time domain, which 

will be considered here only for conceptual reasons. In time domain [1-5] the number of state 

variables 1 2( ), ( ) ... ( )Nx t x t x t  is given by the highest time derivation order N required to describe 

the system. These state variables will be assembled in the vector ( )x t . They usually correspond 

to voltages across the capacitors and current through the inductors. To analyze the stability of 

the dc solution dcx  we will consider a small perturbation at the initial time only and analyze the 

circuit reaction to this perturbation. For stability, the small increment undergone by the 

variables, represented with the vector ( )x t , must exponentially decrease in time 

lim ( ) 0t x t   , so that the system returns to the original dc solution dcx . This analysis can be 

performed under a very convenient simplification. Because the perturbation must necessarily be 

small, we can linearize all the circuit nonlinearities elements about the dc solution dcx . This way 

the original nonlinear differential equation system becomes a much simpler linear differential 

equation system with constant coefficients, which in state form, can be compactly represented 

as  ( ) [M] ( )x t x t   , where [M] is a constant matrix [1-3]. With N state variables, the general 

solution of the linear system is [1]:  

 1 1 1 1 1( ) ( )  * *
1 1 1 1 1 1

  1

( )         c    ...k c c c c r

N
t j t j t t

k k c c c c r r
k

x t c e u c e u c e u e u      



        (2) 

where the constant vectors ku  provide the independent directions of N�  in which the increment 

( )x t  is decomposed, the constant coefficients ck depend on the initial conditions ox , and the 

exponents k, which can be real or complex conjugate, are the eigenvalues of [M]. Clearly, for 

stability we must have lim ( ) 0t x t   , which implies that all the k must have negative real 

part or, equivalently, be located on the left-hand side of the complex plane (LHP). For any 



 15

positive real eigenvalue or any pair of complex-conjugate eigenvalues with positive real part, 

the increments undergone by the circuit variables will grow unboundedly in (2) and the dc 

solution will be unstable. Of course, the variables do not grow ad infinitum. What happens is 

that the system obtained by linearizing the nonlinear elements about the dc solution becomes 

invalid from certain amplitude of the system variables. This is why the linearization is unable to 

predict the steady-state solution to which the circuit evolves from the unstable dc solution.  

As an example, the circuit in Fig. 6 will be analysed in the following. In this equivalent 

circuit, the nonlinear transconductance 1( )i v  has been linearized and replaced with 

1 1( ) mi v g v   . The state variables will be the current through the inductor L, given by ( )Li t , 

and the voltages across the two capacitors C1 and C2, given by 1( )v t  and 2 ( )v t . This 

notation, making use of the increment symbol , is preferred since the nonlinear function 1( )i v  

has been linearized as 1 1( ) mi v g v   . Applying Kirchoff’s laws, the circuit is governed by the 

following differential equation system: 

1 2

1 1
1

1 1

2 2
1 2

2 2 2

1 1

1

1

L

L

m
L

d i
v v

dt L L
d v G

i v
dt C C

gd v G
i v v

dt C C C


    


   


      

   (3) 

where 1 11/G R  and 2 2 31 / 1 /G R R  . Clearly, the above system can be written in a matrix 

form as ( ) [M] ( )x t x t   , where 1 2( ) [ ( ), ( ), ( )]T
Lx t i t v t v t     , T indicating transpose, and 

the matrix [M]  is: 

  1

1 1

2

2 2 2

1 1
0

1
M 0

1 m

L L
G

C C

g G

C C C

 
 
 
 

  
 
 
   
  

 

The k in (2) correspond to the eigenvalues of [M] . For 0.2 Smg  , the three eigenvalues are 

3.862 109    j 2π 10.569 109 and -9.201 1010, so the dc solution is unstable.  
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Fig. 6 Circuit containing a voltage controlled current source and a feedback element. 

 

In principle, the eigenvalues k can also be obtained from a frequency domain analysis 

of the circuit. To show this, a signal of the form 1 2[ , , ]st T st
LX e I V V e     , where T indicates 

transpose and s is a complex frequency, will be introduced into system (3). After simplifying the 

exponential terms, this provides the following system: 

1 2

1
1 1

1 1

2
2 1 2

2 2 2

1 1
                              (a)

1
                               (b)

1
             (c)

L

L

m
L

s I V V
L L

G
s V I V

C C

g G
s V I V V

C C C

     

    

       

  (4) 

Clearly the above homogeneous system can be written in the form  [M] 0sU X   , where U 

is the identify matrix. The roots of the characteristic determinant  det [M] 0sU    agree with 

the eigenvalues k, confirming that they can be calculated through a frequency-domain analysis 

of the system. It is also interesting to note that these eigenvalues can also be obtained if we 

reduce number of system equations by substitution. Solving (4)(b) and (4)(b) for LI  and 2V  

in terms of 1V , and replacing into (4)(a), one obtains: 

13 2
1 2 2 1 1 2 1 2 1 2 1 2

1
1 0

( ) ( ) mg V
LC C s G LC G LC s C C G LG s G G

 
          

       (5) 

 

This example illustrates how it is possible to reduce the number of equations at the 

expense of a higher order in the frequency s. Indeed, system (4) is composed by three first order 

equations in s, whereas (5) contains a single equation of third order in s. 
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In the following, a general formulation for the stability analysis of dc solutions, 

applicable to circuits with arbitrary topology, will be presented. It is derived from a harmonic-

balance formulation of the piecewise type [10,20], which is more compact than the nodal one 

[4] since it uses a smaller set of state variables. The relationship between the two formulations is 

analogous to the one existing between the two equivalent analyses presented for circuit in Fig. 

6, the one based on (4), with three state variables, and the one in (5), with only one state 

variable.  

The circuit partitioning in the piecewise harmonic-balance formulation is sketched in 

Fig. 7. In the common case of a circuit without nonlinear fluxes, the state variable of this 

formulation will be the control voltages of the nonlinear current sources and charges, 

corresponding to the voltages 1( ) ( )Pv t v t  in Fig. 7. The harmonic components of this set of 

state variables will be ranged into a vector V . We will have another set of elements, constituted 

by the nonlinear functions controlled by 1( ) ( )Pv t v t . These functions can be nonlinear 

currents and nonlinear charges, respectively corresponding to 1 Mi i  and 1 Lq q  in Fig. 7. 

The dependence of these purely nonlinear functions on their control voltages is defined in time 

domain, through instantaneous relationships. This is a fundamental characteristic of the 

harmonic balance method, which relies on the natural time-domain description of the nonlinear 

elements. Note that any linear element of the device models will be included in the global linear 

embedding network. For the frequency domain analysis, the harmonic components of all the 

nonlinear currents and charges will be ranged in another vector I . The dependence of this 

vector on the control voltages will be expressed, in a general manner as ( )I V . The circuit will 

also have independent sources 1 1,g gR g gSe e i i  , which will be ranged, at their corresponding 

frequencies, in a vector G .  

After defining these three vectors, V , ( )I V  and G , one must take into account that, in 

the circuit operation, the components of these vectors will be connected through the mentioned 

linear network (as sketched in Fig. 7) at each of the analysis frequencies. Thus, the vector I  
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will have a double dependence on the state variables V : through the instantaneous 

characteristics of the nonlinear elements , providing ( )I V , and through the linear network, 

which will also account for the influence of the input generators G .  

Application of Kirchoff’s laws to the linear network (by simply considering the 

components of ( )I V  as voltage-controlled current sources and capacitances) at each of the 

harmonic frequencies leads to the following system, expressed in matrix form: 

   ( )  ( ) ( ) 0GV Z I V Z G        (6) 

where    ( ) , ( )GZ Z   are linear matrixes, obtained through evaluation of the passive linear 

network. To avoid excessive mathematical detail, a general dependence on  is considered. In 

fact, in the harmonic-balance analysis of periodic (or quasi-periodic) solutions, the compact 

system (6) will decompose into several coupled subsystems, one at each frequency k  

considered in the Fourier series. The coupling will be due to the dependence of the nonlinear 

elements on all the harmonic components of the control voltages.   

The piecewise formulation in (6) will be used to derive the formulation used for the 

small-signal stability analysis. As already stated, this depends only on the stability properties of 

the dc solution, so all the small signal generators can be set to zero. Thus, the only components 

different from zero in the vector G  will be those corresponding to the dc sources, and system 

(6) will provide the dc solution that will be the object of the stability analysis. For this analysis, 

a small perturbation will be applied. Because the perturbation is small, we can linearize the 

nonlinear elements about the dc solution. This implies, for instance, replacing the nonlinear 

transconductance function of FET devices with the linear model about the particular dc 

operation point, in terms of / ,  /m ds gs ds ds dsg i v g i v      . See for instance the linearization 

1 1( ) mi v g v   , considered in the circuit of Fig. 6. In the formalism (6) that is being used here, 

we will have a matrix composed by the derivatives of all the nonlinear elements with respect to 

the control voltages, which will be represented as /
DC

I V  . Another essential fact is that the 

passive frequency-dependent components must be evaluated at a complex frequency s. Reason 
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for this is that we are not analyzing a steady-state regime (for which the frequency would be 

real) but evaluating a perturbation transient, with a solution of the form (2). Proceeding as 

described, one would obtain a system expressible in the following form [10,20]:   

     ( )  ( )  0
DC DC

I I
V Z s V U Z s V

V V

             
      (7) 

where I  are the increments in the nonlinear currents and charges, V  are the increments of 

control voltages and matrix [Z(s)] accounts for the linear relationships between V  and I , 

obtained through the evaluation of the circuit passive network. Note that the whole system (7) is 

equated to zero since there are no sources at the perturbation frequency s. The matrix  ( )Z s  

provides the relationship  ( )  V Z s I     between V  and 
DC

I
I V

V


  


, calculated by 

considering the linear part of the circuit only. Therefore, the matrix  ( )Z s has a “feedback 

effect” [6].  

To have V  different from zero, the matrix affecting this vector must be singular. The 

associated determinant, termed characteristic determinant [10,15,20] must be equal to zero:  

   det( ) det ( )  0
DC

I
s U Z s

V

       
   (8) 

Note that the order of the characteristic determinant (8) must agree with the order N of the time-

domain system, as in the two formulations (4) and (5). Moreover the roots of (8) agree with the 

eigenvalues k in (2), since they are independent of the choice of the state variables.  
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V

 I VG

   ( )  ( ) ( )GZ ZV GIV    

 

Fig. 7 Circuit partitioning in piecewise harmonic balance. There are three sets of elements: control 

voltages, nonlinear elements depending on these voltages and independent generators. The vectors are 

composed by the harmonic components of these elements. The linear embedding network connects the 

components of the three vectors at each of the analysis frequencies.  

 

The above methodology has been applied to the simple circuit in Fig. 6. The active 

element is a voltage controlled current source i(v) that has been linearized about the dc solution 

and therefore is modelled as 1mI g V   , where 1V  is the control voltage. The function ( )Z s  in 

(7) relates the control voltage 1V  to the controlled current I . Therefore it can be seen as a 

transfer function from I  to 1V . Using the formalism (8), one obtains exactly the same 

equation in (5), which can be rewritten in a compact manner, as:  

1 ( ) 1 ( ) 0m

DC

I
Z s Z s g

V


   


    (9) 

Because there is only one state variable, the dimension of the characteristic system is one and 

system (9) agrees with the characteristic determinant. By solving (9), one obtains the 

singularities associated with the dc solution, which determine the transient reaction to 

perturbations according to the general expression (2).  

 The results obtained for three values of the linear transconductance gm are shown in 

Table II. Because the system dimension is 3 there are three roots of (5) or equivalently three 
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eigenvalues in (2). For gm = 0.1 S, the three eigenvalues have negative real part and the circuit is 

stable. For gm = 0.1435 S, there is a significant reduction of the real part of the complex 

conjugate eigenvalues at 9.7 GHz. The poles are nearly on the imaginary axis when represented 

in the complex plane, which implies operation near a qualitative stability change or bifurcation. 

For gm = 0.2 S, the pair of complex conjugate poles has positive real part, which indicates 

unstable behaviour. For that gm value, an oscillation starts up at 10.6 GHz.   

 

Table II Eigenvalues of the circuit in Fig. 6 for different gm. 

gm (S)   jo/(2)  

0.1  -3.78 109    j 8.89 109 -7.673 1010 
0.1435  -3.93 106    j 9.699 109 -8.428 1010 

0.2  3.862 109    j 10.569 109 -9.201 1010 
 

The analysis based on (8) provides all the circuit natural frequencies or eigenvalues k. 

In comparison, the oscillation start-up conditions (1) directly check [5] for the possible 

existence of a pair of dominant complex-conjugate eigenvalues oj  , located in the right 

hand side of the complex plane (RHP). The RHP location of this pair of complex-conjugate 

eigenvalues requires a positive value of the frequency derivative of the susceptance [5] at the 

resonance frequency, as imposed in (1). Unlike conditions (1), the characteristic determinant (8) 

globally takes into account all the circuit dynamics, as it does not depend on any observation 

port or node. However, resolution of (8) in terms of the complex frequency s is an arduous 

problem in high order systems. Several alternative numerical methods have been proposed to 

avoid this direct resolution.  

 

Nyquist analysis of the characteristic determinant 

In 1985, the work [15] proposed the application of Nyquist criterion to the determinant function 

det( )s  in (8).  The Nyquist criterion relies on a crucial property [12] of any linear complex 

function of a complex variable s, denoted by F(s), named argument principle. The complex 

function F(s) must tend to zero or a constant value in the limit s  . Consider the plot 
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resulting from evaluating F(s) along a closed contour  of the complex plane, in a clockwise 

sense [12]. This plot must not pass through any zero or pole of F(s). Then the number (NT) of 

clockwise encirclements of the plot F() around the origin of the complex plane  is equal to the 

difference between the number of zeroes (Z) and poles (P) of the complex function F, contained 

inside the contour , that is, NT = Z – P.  

For the stability analysis of a circuit dc solution, the complex function considered 

is ( ) det( )F s s , that is, the characteristic determinant in (8). We want to determine the number 

of zeroes of this function located on RHP, which agrees with the solution poles. This region of 

the plane is bounded by the entire imaginary axis j  and a semi-circular trajectory of infinite 

radius s  . Note that for the application of the Nyquist criterion to det( )s , this function 

must tend to zero or a constant value for s  , which must be satisfied by (8).  Thus, it will 

be sufficient to evaluate det( )s  along the imaginary axis j , with   going from   to  , 

calculating det( )j . The determinant is clearly complex since terms at – j are not included in 

the calculation. The Nyquist plot is obtained by sweeping   and tracing  Im det( )j  versus 

 Re det( )j . As already stated, the number of clockwise encirclements of the origin is 

NT  = Z – P. However, the poles of (8) can only come from the matrix  ( )Z s  which due to its 

passivity [15] cannot introduce any unstable poles in the determinant function det( )s . Note that 

this matrix originates from the evaluation of impedances and/or admittances of the passive 

linear elements. However, the function det( )s  can have RHP roots (corresponding to unstable 

circuit poles), which would come from the multiplication of  ( )Z s by the linearized device 

matrix /
DC

I V  .  

Because of the absence of RHP poles of the determinant function, the number N of 

clockwise encirclements around the origin of the complex function det( )j , evaluated from 

      to      , will directly provide the number Z of unstable roots of det( )s . This is 

not true when using other functions, such as the total admittance from a given observation node 
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(1) or total impedance through a given observation loop. Those functions may have both zeroes 

and poles on the RHP, since due to the variable reduction in the calculation of the current-to-

voltage or voltage-to-current functions, coefficients associated with the device linearization will 

affect both the numerator and denominator. This is why the use of the total immittance 

functions may fail to predict instability.  

As an example, the Nyquist stability analysis described above has been applied to the dc 

solution of the circuit in Fig. 6. The complex function used in the Nyquist plot is obtained by 

replacing the complex frequency s with j in (5): 

3 2
1 2 2 1 1 2 1 2 1 2 1 2

1
det( ) 1

( ) ( )( ) ( )( ) mj g
LC C j G LC G LC j C C G LG j G G


  

 
         

     (10) 

The imaginary part of det( )j  is then traced versus the real part (see Fig. 8). Because of the 

Hermitian symmetry of the frequency domain system, the function det( )j  is symmetrical 

(complex conjugate) for   0   and  0  , so it is sufficient to consider positive  . The 

analysis has been performed for several values of the linear transconductance gm, sweeping the 

perturbation frequency from zero to 25 GHz. As can be seen, for gm < 0.1435 S, the plot does 

not encircle the origin and the circuit is stable, due to insufficient gain. For gm> 0.1435 S, the 

plot encircles the origin and the circuit is unstable. At the critical value gm = 0.1435 S, the 

circuit undergoes a qualitative change of stability. This corresponds to a Hopf bifurcation, in 

which a pair of complex-conjugate poles crosses the imaginary axis to the RHP, giving rise to 

an oscillation. 

The frequency c at which the Nyquist plot crosses the negative real semi-axis provides 

an estimation of the oscillation frequency. For instance, with the transconductance value 

gm = 0.1435 S, the crossing frequency is fc = 9.7 GHz. The steady-state oscillation frequency 

calculated with time domain integration is fo = 9.55 GHz. The similarity in these frequency 

values is in close relationship with the fact that at the steady-state oscillation, the Jacobian 

matrix of the harmonic-balance system is singular and fulfills  Re det( ) 0oj   and 

 Im det( ) 0oj   [5-6,15]. The singularity is due to the invariance of the oscillator solution 
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with respect to changes in the phase origin [1,5,6,10]. Because the imaginary part mostly 

depends on the reactive elements, with most of them being linear, the frequency c at which 

 Im det( ) 0cj   is fulfilled will be relatively close to the actual oscillation frequency o . 

These results have been validated with time-domain integration. The transient simulations for 

gm = 0.1 S, gm = 0.1435 S (very close to the bifurcation point) and gm = 0.2 S are shown in Fig. 

9. The proximity to the bifurcation point [Fig. 9(b)] is characterized by a slow transient response 

associated with the small magnitude of the real part  of the dominant pair of complex-

conjugate poles.  

 

Fig. 8 Stability analysis of the circuit in Fig. 6 based on the application of the Nyquist criterion to the 

characteristic determinant of the harmonic-balance system, linearized about the dc solution. It is stable for 

gm <  0.1435 S, unstable for gm >  0.1435 S and undergoes a Hopf bifurcation for gm  = 0.1435 S. 
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Fig. 9 Time domain analysis of the circuit in Fig. 7. The results agree with those predicted by the Nyquist 

analysis in Fig. 8. (a) gm = 0.10 S, stable. Oscillation extinction. (b) gm = 0.1435 S, near bifurcation. (c) 

gm = 0.2 S, unstable, with oscillation start-up. 

 

Normalized determinant function 

The Nyquist stability analysis applied to the characteristic determinant (8) relies on the full 

computation of the device linearization matrix /
DC

I V  , which is not available in commercial 

harmonic balance simulators. An alternate technique proposed in [25-26] enables an indirect 

calculation of the determinant det( )j  from open-loop functions that can be obtained with 

commercial software. To enlighten the possibility to obtain this normalized version from an 

evaluation of open-loop transfer functions, just note that in the case of a single nonlinearity and 

a single control voltage, the left-hand side of equation (7) would be formally identical to the 

denominator of the transfer function of a feedback loop [12]: H(s) = A / (1 – AB), where A and B 

are the direct and feedback transfer functions, respectively. The so-called return ratio is defined 
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by RR = –AB [25-26]. In terms of the return ratio RR, the denominator of the closed-loop 

transfer function H(s) is given by: F = 1 + RR. Still considering a single active element, a 

voltage-controlled current source, for instance, the functions ( )Z s  and /
DC

I V  would play 

the role of A and B. The product  ( ) /
DC

Z s I V   constitutes the open-loop transfer function of 

the system. When the loop is closed, the control voltage V constitutes both the system input and 

output.  

The calculation of the NDF is intended for later application of the Nyquist criterion [25-

26]. Therefore, it will be calculated in terms of j instead of the complex frequency s. To obtain 

the open loop transfer function of the circuit in Fig. 6, the closed loop is broken, making the 

current depend on an external voltage Vext, and obtaining the voltage drop at the original 

location of the control voltage 1 'V [Fig. 10]. The open loop circuit is formulated as: 

1 3 2
1 2 2 1 1 2 1 2 1 2 1 2

1

1
'    

( ) ( )( ) ( )( )

'   ( )  0

m ext

m ext

V g V
LC C j G LC G LC j C C G LG j G G

V Z j g V

  


  
      

   
 (11) 

So the open loop transfer function is given by: 

1 '
 ( ) m

ext

V
RR Z j g

V



        (12) 

And the so called Normalized Determinant Function, calculated as 1 ( )NDF RR j  , 

fully agrees with the Nyquist function det( )j in (10).  

Note that the feedback formulation used in (7) is not the only possible one to derive the 

circuit characteristic system. For instance, we could have analyzed the circuit using 2x2 

admittance matrixes to describe the active element and the passive network, using a formulation 

of the type: 

  11 12 1

21 22 2

0 0 ( ) ( )
( )   = 0

0 ( ) ( )T
m

Y s Y s V
Y s V

g Y s Y s V

      
              

     (13) 

And the associated characteristic determinant is that of the matrix on the left-hand side of (13). 

Unlike (7) the above formulation is not normalized. The function 1NDF RR   agrees with the 
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normalized determinant, or ratio between the characteristic determinant det( )s  obtained with 

any formulation [such as (13)] and the determinant obtained when the active elements are 

switched off, det ( )o s .  Applying this to the particular formulation in (13), one obtains: 

12 11 22 12 21

11 22 12 21

12

11 22 12 21

( ) ( ) ( ) ( ) ( )det( )
=

det ( ) ( ) ( ) ( ) ( )

( )
= 1+  = 1+Z(s) 0

( ) ( ) ( ) ( )

m

o

m
m

g Y s Y s Y s Y s Y ss
NDF

s Y s Y s Y s Y s

g Y s
g

Y s Y s Y s Y s

 
 






   (14) 

In the case of multiple active elements, obtaining the normalized determinant function 

NDF is more involved. In fact, the NDF calculated by opening the circuit at just one single 

active element can contain poles on the RHP [25-26]. To illustrate this, we will consider M 

independent active devices of transconductance type, gm1 … to gmM, each depending on its own 

control voltage. Then the characteristic system can be written as: 

11 12 11 m1

21 22 22 m2 2

1 2 mM

( ) ( ) ( )' g 0 0

( ) ( ) ( ) 0 g 0
0

( ) ( ) ( ) 0 0 g

M ext

M

m m MMM M

z j z j z jV V

z j z j z jV V

z j z j z jV V

  
  

  

       
              
      
             

 

 

        

 

  (15) 

Clearly, the open loop transfer function 1 '

ext

V
RR

V


  obtained through resolution of the 

above linear system may contain poles on the RHP, resulting from the action of the 

transconductances gm2 … to gmM. Therefore, we cannot apply the Nyquist plot to the function 

1+RR, due to the possible existence of both RHP zeroes and poles. Note that in these conditions 

the number of encirclements around the origin of the Nyquist plot, agreeing with N = Z - P, 

would not be conclusive.  
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Fig. 10 Circuit analysis in open-loop conditions for the determination of the return ratio. (a) 

Original circuit containing a single active device. (b) After opening the loop, the ratio V’/Vext provides the 

open-loop transfer function –RR = V’/Vext. The return ratio is given by RR. 

 

The works [25-26] have demonstrated that in the presence of multiple active devices, 

the determinant in (8) can be calculated by recursively obtaining M open-loop transfer 

functions, with the M active elements in different operation conditions. The calculation [25-26] 

starts by obtaining the return ratio associated with the first active element RR1. This is calculated 

by breaking the loop associated with this controlled element, as in the single-element case, and 

keeping the rest of the active elements 2 to M in nominal operation. Then the return ratio RR2 

associated with the second active element is calculated with the second active element in open 

loop conditions, doing –RR2 = V2’/Vext, where V2’ is the voltage across this element when it is 

made depend on the external voltage Vext instead of the actual control voltage V2. The return 

ratio RR2 is calculated by turning off the first active element and keeping elements 3 to M in 

nominal operation. The recursive calculation of return ratios finalizes with RRM, obtained with 
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all the previous active elements 1 to M-1 switched off and the last active M in open loop 

conditions. It can be analytically demonstrated [25-26] that the normalized determinant function 

can be calculated as:  

1 2( ) (1 )(1 )...(1 )MNDF j RR RR RR             (16) 

  The NDF can be evaluated in commercial software from the determination of the return-ratio 

functions RR1 to RRM, which requires access to all the different active elements that must 

alternatively be in nominal operation, open-loop configuration and turned off.  

The analysis based on the NDF has been applied to the circuit in Fig. 11, containing two 

nonlinear transconductances. The Nyquist plots obtained with gm = 0.25 S, gm = 0.30 S and gm = 

0.35 S are shown in Fig. 12. For gm = 0.25 S the plot does not encircle the origin, so all the 

circuit poles should be located on the LHP. For gm = 0.30 S the plot crosses through the origin, 

which corresponds to a bifurcation condition (limit stability situation). For gm = 0.35 S, the plot 

encircles the origin in clockwise sense, this indicating instability with a pair of complex-

conjugate poles at a frequency near the one at which the plot crosses the negative real semi-axis. 

For gm > 0.35 S, an oscillation starts up from the noise level (Fig. 13). The oscillation is odd 

mode, that is, there is 180º phase shift between the two circuit branches. The odd mode 

oscillation is potentiated by the circuit symmetry since in these conditions the branching nodes 

become virtual short circuits, which reduces the positive resistance seen from the device 

terminals.  
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Fig. 11 Circuit containing two active devices and feedback elements in a power-combining topology.  

 

Fig. 12 Application of the normalized determinant function (NDF) to the circuit in Fig. 11. Nyquist plots. 

(a) gm = 0.25 S. Stable. (b) gm = 0.30 S. Hopf bifurcation. (c) gm = 0.35 S. Unstable. 
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Fig. 13 Time domain analysis of the circuit in Fig. 11 for gm = 0.35 S. (a) Transient. (b) Steady state 

showing an odd mode oscillation. 

 

Pole-zero identification 

A transfer function of a given linear system is defined as the ratio between a particular system 

output and input when all the system initial conditions are zero. By control theory [12], all the 

closed loop transfer functions that can be defined in a linear system (such as the circuit 
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linearized about a particular dc solution) share the same denominator, and, as will be shown, 

this denominator agrees with the system characteristic determinant. The works [28-31] proposed 

the application of pole-zero identification to a closed-loop transfer function obtained by 

linearizing the circuit about the examined dc solution.  

Assume that a small-signal input current source In at the frequency  is introduced into 

the circuit. Due to the small amplitude of the current generator, the nonlinear devices can be 

linearized about the dc solution, as in the case of the stability analysis based on (7). This 

provides the linear system: 

     ( )   ( )G n

DC

I
U Z j V Z j I

V
 

        
   (17) 

where [ZG] is the column matrix relating the circuit variables to the current generator In. In (7), 

the perturbation was applied at the initial time only, so it does not appear in the linearized 

equation. In (17), a small-signal sinusoidal generator In  is permanently connected to the circuit, 

which behaves linearly with respect to this generator.  

As already stated, whatever input is connected to a linear system, all the possible 

transfer functions share the same denominator, which depends only on the system itself, instead 

of the particular location or nature of the input and output signals. This can be gathered from 

inspection of (17). The calculation of any possible transfer function Sout / In, where Sout is an 

arbitrary output, requires the inversion of the matrix on the left-hand side. This matrix is 

formally identical to the one analyzed in (7) for the determination of the system singularities. 

Actually, the matrix in (17) is obtained by simply doing s = j in (7). For the definition of the 

transfer function, a very convenient output (for reasons of numerical accuracy) is the voltage Vn 

at the node where the current generator is connected [28-31]. Thus, the transfer function 

considered is: 

( )
( )

( )
n

in
n

V j
Z j

I j




     (18) 
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Using pole-zero identification, the complex function ( )inZ j  is fitted through a least squares 

technique, with a quotient of polynomials of the form [28,31]:  

1

1

( ) ( )
( ) ( )

( ) ( )
n m

in
n n

V j z j z
Z j j A

I j p j p

  
 
 

 
 




  (19) 

Note that the zeroes and poles of ( )inZ s  depend on the constants 1 mz z  and 1 np p , as the 

Zin expression would be formally identical in terms of s. The pole-zero identification should be 

performed between   0 and the frequency max. Accurate identification in a very wide 

frequency interval may require a high order n of the polynomial in the denominator of (19), so 

the quality of the identification thus may degrade. As a matter of fact, the required order would 

be theoretically infinite in the case of circuits containing distributed elements. However, 

because the transfer function ( )inZ j  is linear, the total frequency interval 0 to max may be 

divided into sub-intervals, which will allow an accurate identification using a smaller order n in 

the denominator of (19). 

As already stated, all the closed-loop transfer functions that can be defined in a given 

linear system share the same denominator [28-31]. In contrast, the numerator depends on the 

particular definition of the transfer function. Thus, it will depend on the node selected for the 

connection of the current source. Because of this, cancellations of unstable poles with zeroes in 

the RHP may take place at some particular locations. If unstable poles are cancelled, a wrong 

conclusion about the stability of the solution may be obtained. This is why the pole-zero 

identification should be performed for different locations of the current source. The terminal 

nodes of the active devices are the most convenient for this analysis, due to their proximity to 

the potential “sources” of instability. Although the case of a current source connected in parallel 

has been considered, the technique is equally applicable with a voltage source Vn in a series 

connection, using an admittance transfer function Yn = In / Vn. As shown in [30], the admittance 

type transfer function is more convenient if there is a passive impedance of small value, 

dominating the impedance coming from the active part, where instability occurs. Note that the 

possible existence of zeroes in the RHP does not have any implication for system stability. If a 
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transfer function has poles and/or zeros in the RHP, then the system shows non-minimum phase 

behaviour [12]. 

The transfer function (19) exactly agrees with the inverse of the total input admittance at 

the node n where the current source is introduced, namely ( ) ( ) / ( )in n nY j I j V j   . 

Assuming that Yin() is evaluated at a sensitive location, it is possible to relate the oscillation 

start-up conditions [see (1)] derived by Kurokawa ( ) 0, ( ) 0in c in cG B   , ( ) / 0in cB      

to the existence of a pair of unstable complex-conjugate poles in the closed-loop transfer 

function ( )inZ j  [inverse of ( )inY j ], as has been shown in [5]. The dual is true for an 

analysis based on the series connection of a voltage generator in terms of the input impedance. 

 Pole-zero identification has been applied to the circuit in Fig. 11. To calculate a closed-

loop linear transfer function, a small-signal current source In() is connected in parallel at node 

2. The stability analysis of the dc solution with gm = 0.35 S provides the pole-zero locus of Fig. 

14(a). The frequency interval considered to obtain this particular locus is 0 to 10 GHz. The 

stability has also been analyzed versus the linear coefficient of the transconductance function 

gm. For each gm value, two different analyses are performed. The first analysis provides the dc 

solution. The second is a small-signal analysis in which the frequency  of the current source is 

swept to obtain the transfer function ( )inZ j . Pole-zero identification is applied to each of the 

functions ( )inZ j  obtained in this manner. In Fig. 14(b) the real part of the dominant poles 

(the ones with largest real part ) of ( )inZ s  has been traced versus the linear transconductance 

coefficient gm. 
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Fig. 14 Stability analysis of the dc solution of the circuit in Fig. 11 using pole-zero identification. (a) 

Pole-zero locus for gm = 0.35 S. (b) Evolution of the dominant pair of complex-conjugate poles versus gm. 

 

Stability analysis of a periodic solution 

As already stated, the so-called small signal instability is due to the instability of the circuit dc 

solution, since the circuit behaves linearly with respect to the small-signal input sources and, 

therefore, these sources cannot have any impact on the stability properties of the dc solution. In 

contrast, the large signal stability analysis (in circuits depending nonlinearly on the time-

varying input sources) must be addressed taking into account the effect of these input sources 

[5-7,15-16,20]. All the stability analysis methods described for the stability analysis of dc 

solution have an extension for the case of periodic regimes. The main difference is that in the 

case of a large-signal periodic regime, one must take into account the combined effect of steady-

state frequency o and the complex perturbation frequency s, coming from noise or fluctuations. 

Due to the “mixing” between these two frequencies, the general expression of the perturbation, 

in time domain, is the following [1-3]: 
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1 1 1 1 1( ) ( )  * *
1 1 1 1 1 1

  1

( )    ( )    ( )    ( )  c   ( )  ...k c c c c r

N
t j t j t t

k k c c c c r r
k

x t c e u t c e u t c e u t e u t      



     
 (20) 

where N agrees with the number of reactive elements. The complex vectors ( )ku t , k = 1 to N, 

are periodic with the same period 2 / oT    as the periodic solution, and the complex 

exponents k  are constant. The complex constants ck, k = 1 to N, depend on the initial 

conditions, i.e., on the particular value of the small perturbation applied. Note the similarity 

with the general expression of the perturbation of a dc solution in (2). Because the vectors 

( )ku t  are periodic, the extinction of the perturbation ( lim ( ) 0t x t   ) will only depend on the 

real part of the different exponents k  in (20). Due the periodicity of ( )ku t , if any k  is 

increased in a multiple of the fundamental frequency k ojp  , where p is an integer, 

perturbation ( )x t  will take the same value after any integer number of periods. Time tending 

to infinity implies an infinite number of periods, so the exponents k  are non-univocally 

defined. The problem is circumvented with the Floquet multipliers, which constitute a set of N 

numbers defining the stability properties of the periodic solution [1,5-7,31-35]. The Floquet 

multipliers km  are related to the Floquet exponents k  through the expression:  

k k oT T jp T
km e e         (21) 

which resolves the non-univocity of k . Whether the increment ( )x t  will decay to zero or 

grow unboundedly will solely depend on the limit value of n
km  with n tending to infinity. 

Clearly, if any of the multipliers has a modulus bigger than one, the perturbation will tend to 

infinity and the solution will be unstable. The calculation of Floquet multipliers is cumbersome 

except in the case of very simple circuits. However, knowing the meaning of these multipliers 

and keeping in mind the non-univocal relationship (21) is essential to understand the stability 

properties of periodic solutions.  

In most cases, the microwave designer makes use of the harmonic-balance method to 

obtain the steady-state periodic solution of the circuit analyzed, at the fundamental frequency  
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o. Assuming for compactness a piecewise formulation (Fig. 7), the state variables will 

correspond to the harmonic components [10,20], going from –NH to NH, of the control voltages 

of the active devices, composing the unknown vector sV . This vector fulfills the following 

system of harmonic balance equations [5-6,20]: 

   ( ) ( )  ( ) ( ) 0s o s G oH V V Z jk I V Z jk G        (22) 

where the vector G  contains the input generator signal(s) at the fundamental frequency o  and 

the linear matrices    ( ) ,  ( )I o G oZ jk Z jk   describe the passive network. Note that (22) is 

composed by a set of vector equations, at the different harmonic frequencies, which is indicated 

by the general dependence on ( )ojk , where k goes from –NH to NH.  

For the stability analysis of the steady-state solution sV , a small instantaneous 

perturbation is considered. The complex frequency s  associated with this perturbation will give 

rise to a small increment V  in the circuit variables at the mixing frequencies ojk s  . Due 

to the small amplitude of the perturbation, the nonlinear elements can be linearized about the 

periodic steady-state solution sV  [15,36-37]. This is conceptually similar to the linearization 

about the dc solution carried out under a small-signal stability analysis. However, the steady-

state solution is now periodic and the linearization involves the calculation of the conversion 

matrix  
s

I

V




, composed of the derivatives of the harmonic components of the nonlinear 

elements with respect to the harmonic components of the independent variables [36,37]. In the 

case, for instance, of the nonlinear transconductance current of a FET device, the conversion 

matrix will be composed of the derivatives of each harmonic of this current with respect to each 

harmonic of each of the two control voltages, the gate-to-source voltage and the drain-to-source 

voltage. On the other hand, due to the effect of the perturbation, the circuit reactive elements 

must be evaluated at the frequencies ojk s  . Because there are no generators at these 

frequencies, one obtains the following characteristic system:  
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       ( )   ( )  0o o

s

I
U Z jk s V JH jk s V

V
 

           
  (23) 

It is an homogeneous system, so in order to have 0V  , the associated characteristic 

matrix  ( )oJH jk s   must be singular. For stability, all the roots of the characteristic 

determinant  det ( ) 0oJH jk s    must be located in the LHP. For NH tending to infinity, 

these roots agree with the Floquet exponents in (21) of the periodic solution, as shown in [31]. 

Due to the non-univocal relationship between Floquet exponents and multipliers (21), the poles 

will have the form oj jp     or ojp  , with NH p NH   , with each set obtained 

for different k values being associated with the same Floquet multiplier and therefore providing 

the same information. 

As an example, the characteristic determinant of a resonant circuit containing a 

nonlinear capacitance will be derived next (Fig. 15). The circuit is composed of a resistor, an 

inductance and a varactor diode [7,18]. As will be shown from certain input power, the circuit 

exhibits a parametric instability, leading to a frequency division by 2. When driven with 

sufficiently large input power, the varactor diode is able to exhibit negative resistance in a 

certain frequency interval about the small signal resonance frequency, which is due to a phase 

shift between current and voltage larger than 90º. In this example, the capacitance is modeled as 

( )c v a bv  , with a = 1.0 pF, and b = 0.3 pF/V. The element values are R = 5 , L = 10 nH 

and the input frequency is fo = 3 GHz. For simplicity, the periodic steady-state solution is 

calculated considering only the fundamental frequency o = 2πfo. The characteristic determinant 

is: 

    

 

3

0 1 1

3 1 0 1

2 1 0

det ( )  

0 0 ( ) 0 0

det 0 0 0 0

0 0 0 0 ( )

0

o o
s

o o

o o

Q
U Z jk s jk s

V

j s R L j s C C C

U s R Ls C C C

j s R L j s C C C

 

 

 





 
     

          
              
               


(24) 
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where [U3] is the identity matrix of dimension N = 3. Note that iC  are the harmonic components 

of c(v) evaluated at the steady state. The characteristic determinant in (24) has an order 8, which 

provides 8 generalized eigenvalues or poles. Equation (24) has been solved for three different 

values of the input voltage Ein.  For each Ein, this involves two different steps (i) calculation of 

the nonlinear periodic regime, with diode voltage *( ) o oj t j tv t Ve V e     and (ii) evaluation of 

the coefficients iC , which are replaced into (24).  

The dominant poles for the three different input voltages Ein are shown in Table III.  For 

Ein = 1 V, there are two pairs of dominant poles, with the same real part, located about the 

divided-by-two frequency. They correspond to the mixing terms , ( )a o aj j        

[remember (21)], and could have equally been written [5,24] as 

( / 2 ),  ( / 2 )o oj j           . These two pairs of poles are on the LHP, so the 

solution at o is stable. As Ein increases, the two pairs of poles approach each other, merge and 

split into two independent pairs of poles (with different  values) at / 2o  . For Ein = 2.525 V 

one of them is approximately located in the imaginary axis, which corresponds to a near 

bifurcation condition. The other pair is in the LHP. For Ein = 3 V, the critical pair of poles is in 

the RHP, which gives rise to transient to a divided-by-two regime.  

in

 

Fig. 15 Nonlinear resonator. the capacitance is modeled as ( )c v a bv  , with a = 1.0 pF, and b = 0.3 

pF/V and the element values are R = 5 , L = 10 nH.  

Table II Dominant poles of the circuit in Fig. 15 for different Ein. 

Ein (V)   j /(2) 

1 -2.5 109    j 1.419 109 

-2.5 109    j 1.584 109 

 
2.525 5.526 106    j 1.51 109

3 2.2944 108    j 1.51 109
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In the general case, the direct calculation of the complex roots of 

 det ( ) 0oJH jk s    is nearly an impossible task. Instead, the Nyquist-stability criterion 

can be applied to this characteristic determinant. Replacing s by j, the Nyquist plot is obtained 

calculating the function  det ( )oJH jk j  , where k goes from –NH to NH. It is a complex 

function because only the “plus” sign is considered for the perturbation frequency . The 

Nyquist plot is obtained by sweeping  and tracing   Im det JH  versus   Re det JH . 

Taking into account the aforementioned repetition of poles, the -sweep can be reduced to the 

interval (0,o). Because the poles of the determinant function can only come from the linear 

matrices describing the passive networks, one can be sure that the number of clockwise 

encirclements NT of the Nyquist plot will agree with the number of RHP zeroes of the 

determinant function, and therefore with the number of unstable eigenvalues. To obtain an 

accurate result, sufficient number NH of harmonic terms must be considered in the steady-state 

solution [15].  

The Nyquist criterion has been applied to the R-L-diode circuit considered in Fig. 15. 

To obtain a valid result, two harmonic terms, o and 2o, had to be considered in the steady-

state solution. The stability has been analyzed for three different values of the input amplitude 

Ein (Fig. 16). For Ein = 1 V, the circuit is stable since the plot (blue line) does not encircle the 

origin of the complex plane [see expanded view in Fig. 16(b)]. For Ein = 3 V, the circuit is 

unstable since the plot (red line) encircles the origin. For Ein = 2.7 V (solid line), the circuit is 

approximately at a bifurcation situation. 
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Fig. 16 Nyquist plots of the R-L-diode circuit in Fig. 15 for an input frequency is fo = 3 GHz. (a) Three 

different values of input voltage are considered. (b) Expanded view. 

 

The determinant function used to evaluate the circuit stability by means of a Nyquist plot can 

also be obtained through a recursive calculation of open loop transfer functions, by means of an 

extension of the so-called Normalized-Determinant Function, presented in [16]. The nonlinear 

dependences to be analyzed under open-loop conditions will be those susceptible to give rise to 

instability in large-signal conditions, that is, nonlinear transconductances and nonlinear 

capacitances [5]. From inspection of (23), this would imply a sequential replacement of each 

component ( ok  ) of each control voltage with an independent source ,
ext

m kV  at the same 

frequency ( ok  ). For each k value, one should obtaining the increments undergone by the 

controlled current (or charge) at all the sidebands op  , with NH p NH   . This 

calculation must be recursively carried out for k going from –NH to NH. The steady-state 

solution must remain unaltered when doing so, so the circuit loops must remain closed at all 

frequencies ok  of the steady-state regime. Furthermore, at each open-loop calculation, the 
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input stimulus ,
ext

m kV  must be zero at all sidebands different from ko + . Thus, an ideal 

bandpass filter at ko +  must be added to the external source stimulus, as demonstrated in 

[16].  

 

Pole-zero identification 

The characteristic matrix in (23) contains full information on the periodic signal response to 

small perturbations. Indeed, the exponents k  of (20) agree with the singularities of its 

associated determinant. When considering any small signal input at any sideband frequency 

( )in oS k s  , the calculation of any possible output, at whatever the sideband frequency, 

( )out oS p s   will imply the inversion of a same characteristic matrix, agreeing with the one in 

(23). Thus, the denominator of any possible transfer function, agreeing with the characteristic 

determinant, should be the same, no matter the input or output considered in the particular 

transfer function [28-29]. The transfer function is formally the same when written in terms of 

the complex frequency s or in terms of j , so this transfer function can be obtained introducing 

a small-signal input into the circuit, at the frequency  , non-harmonically related to the 

fundamental frequency o . Then, the harmonic-balance system is linearized about the periodic 

solution sV , with respect to a small-signal input at . As in the case of dc solutions, the small-

signal input can be a current source In at the frequency . This source will be connected in 

parallel at a sensitive circuit node n, such as those corresponding to the transistor terminals. The 

circuit operates in a linear regime with respect to ( )nI  , so it can be analyzed by replacing the 

nonlinear elements with their conversion matrices. This will provide the following linearized 

system: 

       ( )   ( )  I o G o n

s

I
U Z jk j V Z jk j I

V
   

          
     (25) 

The matrix on the left-hand side contains the full information on the circuit topology, so any 

closed-loop transfer function must share the same denominator. A convenient choice for the 
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output of the transfer function is the lower-frequency sideband Vn() of the voltage at the node 

n at which the current generator ( )nI   is connected [28-29]. Hence, the considered single 

input-single output transfer function is: Zin() = Vn() / In(). The zeroes of the closed-loop 

transfer function will depend on the particular definition of this function, so undesired pole-zero 

cancellations may be obtained at particular locations of the current source. To extract the 

stability information from the transfer function Zin(), this complex function is modeled with a 

quotient of polynomials in a manner similar to (19). As already known, the poles of a periodic 

solution at o are also periodic, arranged in sets of the form m + jko or m  jm + jko, where 

k is an integer number. Because of the periodicity of the poles, the frequency sweep in  may be 

limited to (0,o). Division into sub-intervals of smaller length, and using a lower order n, will 

generally increase the accuracy.  

Pole-zero identification has been applied to the demonstrator power amplifier in Fig. 17, 

which operates at fin = 1.5 GHz [24]. The circuit poles have been analyzed versus the input 

power Pin at the particular gate bias voltage VGS = -1V [Fig. 18(a)]. To obtain the closed-loop 

transfer function, a small signal current source Id() has been connected to the drain node of one 

of the two transistors. The transfer function considered is Z() = Vd() / Id(), which is 

calculated with the conversion-matrix approach. For each Pin, two analyses are carried out: (i) a 

harmonic balance analysis, to obtain the periodic large-signal steady state, and (ii) a conversion-

matrix analysis, sweeping , to obtain the function Z(). Pole-zero identification is applied to 

each of the functions Z() resulting versus Pin.  

Transformations between poles of periodic solutions, taking into account (21), have 

been analyzed in depth in [5]. An example of these transformations is explained in the 

following. At small signal (Pin = -30 dBm), the amplifier in Fig. 17 exhibits two pairs of 

dominant complex-conjugate poles, associated with a same complex multiplier, located on the 

LHP. These two pairs of poles can be expressed as ( / 2 )inj     . As Pin increases the two 

pairs of poles approach each other and merge ( 0 ) at Pin = 7 dBm. Since the dimension of 

the near-critical subspace must be preserved, after this merging they will split into two 
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independent pairs: / 2, ' / 2in inj j     . One of these two pairs crosses to the RHP at Pin = 8 

dBm and to the LHP at Pin = 21 dBm. Within the interval (8 dBm, 21 dBm) the circuit exhibits a 

subharmonic oscillation at / 2in . The results of pole-zero identification have been validated by 

obtaining the subharmonic steady-state solution in harmonic balance [Fig. 18(b)]. This analysis 

has required the use of an auxiliary generator [5] at the subharmonic frequency, to avoid 

undesired convergence to the coexistent non-divided solution. Details of this technique are 

given in the next paragraph. As gathered from the figure, the subharmonic solution arises when 

the pair of poles at in/2 crosses to the RHP and is extinguished when it crosses again to the 

LHP. The steady-state subharmonic component degenerates to zero amplitude at the two points 

at which the pair of poles at in/2 is exactly located in the imaginary axis. As shown in the next 

paragraph, this relevant property enables a straightforward detection of the boundaries of the 

stable interval.    

 

Fig. 17 Power amplifier demonstrator at fin = 1.5 GHz.   
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Fig. 18 Stability analysis of the circuit in Fig. 15 for VGS = -1 V. (a) Pole-zero identification versus Pin. (a) 

Validation with harmonic balance, by tracing the solution curves at fin and fin/2 with the aid of an auxiliary 

generator [5,6]. The components of the subharmonic solution are represented in red. 

 

Bifurcations 

A bifurcation is a qualitative change in the stability of a steady-state solution or in the number 

of solutions when a parameter  is varied continuously [1-3,10]. The most relevant bifurcations 

in microwave circuit are those giving rise to oscillations and those giving rise to turning points, 

such as the points T1 and T2 in Fig. 3. The local bifurcations take place when either a real pole 

(for turning points) or a pair of complex conjugate poles cross the imaginary axis of the 

complex plane. The type of bifurcation depends on the original regime in which the circuit 

operates, dc or periodic, and the value of the critical frequency or frequencies, as shown in 

Table IV. A primary Hopf bifurcation is obtained when a pair of complex conjugate poles 

j   of a dc solution crosses the imaginary axis, which gives rise to the onset (or extinction) 

of an oscillation at the frequency of these poles. The secondary Hopf bifurcation takes place 

from a periodic regime at o , and corresponds to the crossing of a pair of complex conjugate 
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poles j   through the imaginary axis, such that the frequency   is non-harmonically 

related to o . This gives rise to the onset (or extinction) of a self-oscillating mixer regime. The 

flip bifurcation also takes place from a periodic regime at o , and corresponds to the crossing 

of a pair of complex conjugate poles / 2oj   through the imaginary axis, which gives rise to 

the onset (or extinction) of a subharmonic regime at / 2o . Finally, the turning point bifurcation 

can occur in either dc or periodic regime and corresponds to the crossing of a real pole through 

the origin of the complex plane, which leads to a singularity of the steady-state equation system. 

This is often associated with hysteresis, as in Fig. 3, though in injection-locked oscillators it can 

also be associated with synchronization [5,6].  

A relevant fact is that at the crossing point (bifurcation), the critical poles have zero real 

part. Therefore, bifurcation points can be obtained [10] replacing s j  in the expression for 

the characteristic determinant det( ) 0s  . To obtain the bifurcation point, the equation 

det( , ) 0bj   , where b  is the bifurcation parameter value, is solved in combination with the 

steady-state system. One will have 0  , for a turning point, a  , for a Hopf bifurcation 

and / 2o  , for a flip bifurcation. Because the frequency is real, the Hopf and flip 

bifurcation points fulfil conditions for a degenerate steady-state oscillation of amplitude tending 

to zero, at the respective frequencies a  and / 2o  [5]. Taking this into account, an alternative 

technique to detect bifurcation points was proposed in [38]. The technique, based on the use of 

auxiliary generators, is compatible with commercial harmonic balance.  

To detect Hopf and flip bifurcations, both leading to the onset of an oscillation, the aim 

will be to obtain the operation points at which this oscillation has amplitude tending to zero. An 

auxiliary generator (AG) is introduced into the circuit. The AG plays the role of the oscillation, 

so to obtain the bifurcation point its amplitude AAG is set to very small value (AAG = ). The 

voltage (current) AG is connected in parallel (series) at a circuit node (branch). An ideal filter is 

necessary to prevent the short-circuiting or opening of frequency components different from 

AG . In the case of a voltage generator, the ideal filter is connected in series with this generator 
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(see Fig. 17). The AG must fulfil the so-called non-perturbation condition [20], which ensures 

that it has no influence over the steady-state oscillation. For a voltage AG, the ratio between the 

AG current and the voltage delivered must be equal to zero, / 0AG AG AGY I V  , at the 

operation frequency AG  . 

In the case of a Hopf bifurcation [5-6], the additional unknowns enabling the fulfilment 

of 0AGY   will be bifurcation parameter   and the frequency AG a  . Thus, one must solve 

( , ) 0AG b aY    . In the case of a Hopf bifurcation arising from dc regime, this condition can be 

fulfilled through optimization in an AC analysis (due to the small amplitude of the AG). In the 

case of a Hopf bifurcation from periodic regime, condition ( , ) 0AG b aY     will be an outer-tier 

equation and the pure harmonic-balance system will be the inner tier. The condition 

( , ) 0AG b aY     can also be solved through optimization, either with the conversion matrix 

approach (large-signal small-signal analysis) or with two-tone harmonic balance. In the case of 

a flip bifurcation [5.6], the AG will operate at the frequency / 2AG o  , and the additional 

unknowns will be b  and the AG phase (or input source phase) AG . The condition to be solved 

will be ( , ) 0AG b AGY    , with the pure harmonic balance system at the fundamental frequency 

/ 2o  as inner tier.  

Table IV Main types of bifurcation phenomena 

Bifurcation Original regime Critical poles 
(poles crossing through the 
imaginary axis) 

Generated regime or 
phenomenon 
 

Primary Hopf dc j  Periodic oscillation at o  

Secondary Hopf periodic at o  j  Self-oscillating mixing regime o  

and a  

Flip periodic at o  / 2oj   Divided by 2 regime at / 2o  

Turning point dc or periodic  Hysteresis (and synchronization in 
oscillators)

 

 

The bifurcation analysis enables a direct determination of the stability boundaries and, 

therefore, avoids the need for successive stability analyses, considering all the possible 

parameter values in an exhaustive manner. As an example, bifurcation analysis will be applied 
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to the demonstrator amplifier in Fig. 17. The parameters considered are the gate bias voltage VGS 

and Pin. The bifurcation analysis in the plane defined by VGS and Pin will provide a “map” from 

which we can predict what kind of operation (stable or unstable) the circuit will exhibit. This 

particular choice of parameters (VGS and Pin) will also allow us to relate the small and large 

signal stability properties of the demonstrator amplifier.  

A small signal stability analysis of this amplifier (under Pin = 0 W) shows that it should 

oscillate for bias voltage 2.8 1.2 GSV V V    . This oscillation should be extinguished from 

certain input power Pin due to the natural reduction of negative resistance with the signal 

amplitude. To analyze this, the Hopf bifurcation locus will be calculated using an AG of voltage 

type (Fig. 17). The generator at the frequency AG = a, non-rationally related with in, is 

connected to the drain terminal of one of the two transistors [24]. The AG amplitude is made 

arbitrarily small, solving the non-perturbation condition in terms of a  and the analysis 

parameters, that is: ( , , ) 0AG GS in aY V P   , with pure the HB system as an inner tier. This complex 

equation in three unknowns provides a curve in the plane VGS, Pin. The locus has been 

represented in Fig. 19 with solid line. The locus is open on the right hand side. For all the Hopf 

locus points there is a pair of complex conjugate poles aj  located in the imaginary axis. The 

frequency a  is expressible either as / 2a in      or as / 2a in      and varies 

through the locus, due to its autonomous nature. At the two edge points FH and FH’, the 

frequency of the poles located in the imaginary axis tends to / 2inj . Because the dimension 

of the critical subspace must be preserved, at the two edge points there are two independent 

pairs of poles at the subharmonic frequency / 2in  located in the imaginary axis.  

In view of the above degeneration of the pole frequency to the subharmonic value 

/ 2inj , there must be a flip bifurcation locus, completing the “map” in Fig. 19. In fact, two 

flip bifurcations had already been detected with the pole locus of Fig. 18, marked with “x” in 

Fig. 19. The flip bifurcation locus is traced with a small amplitude AG at the frequency 

/ 2AG in  , solving the complex equation ( , , ) 0AG GS in AGY V P   , which provides a curve in the 
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plane VGS, Pin. The flip locus is closed and composed of two sections: a physical one (green) and 

an unphysical one (red). To understand this, one must take into account the following. At the 

two edge points of the Hopf locus there are two different pairs of poles at / 2inj . Through 

the flip locus, one of these two pairs stays on the imaginary axis / 2inj  and the other 

/ 2inj   shifts from this axis either to the left 0  , in the green section of the flip locus, or 

the right ( 0  ), in the red section. When crossing the red section, the solution instability 

persists due to the presence of the pair of poles  / 2inj  , where > 0 . The crossing of the 

green section does have a physical effect. The subharmonic component / 2in  is either 

generated or extinguished when crossing the green section, this depending on the sense of 

variation of the parameter. All the above predictions have been validated with measurements, 

superimposed in Fig. 19. In these measurements, Pin has been increased in small steps, obtaining 

at each step the VGS values that delimit the stable operation interval.  

Fig. 20 compares the predictions of the bifurcation loci [Fig. 20(a)] with the results of 

pole-zero identification at constant Pin = 18 dBm, when increasing VGS. In Fig. 20(b) the real 

part of the dominant poles has been traced versus Pin. A single value of real part is obtained 

when the dominant poles are complex conjugate at an incommensurable frequency 

( / 2 )inj    . The merging of these poles ( 0  ) gives rise to two independent pairs 

of poles at the subharmonic frequency:  / 2inj   and '  / 2inj  . Note that from the 

merging point, the real part of the poles splits into two different values. 

For very low VGS, the amplifier is stable, as expected. When increasing VGS, the 

dominant pair of complex conjugate poles aj   crosses the imaginary axis ( 0  ), which 

gives rise to the Hopf bifurcation H1, well predicted by the Hopf locus in Fig. 20(a). From H1, 

the amplifier periodic solution is unstable and it behaves instead in a self-oscillating mixer 

regime. At the Hopf bifurcation H2, the complex conjugate poles aj   cross again to the 

LHP and the amplifier periodic solution becomes stable. The incommensurable poles split into 

two pairs    / 2inj   and '  / 2inj   on the LHP and one of these pairs crosses the axis to 
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the RHP at the flip bifurcation F1, giving rise to a frequency division by 2. The same pair of 

subharmonic poles crosses again to the LHP at the flip bifurcation F2, from which the 

subharmonic regime is extinguished. The amplifier periodic solution becomes stable again at F2.  

 

Fig. 19 Bifurcation loci (Hopf locus and flip locus) of the demonstrator in Fig. 17, with measurements 

superimposed. The unstable region is shadowed. 

-20

-10

0

10

20

Gate bias voltage VGS (V)
(a)

-0.5

0

0.5

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

-1

H1 H2

F1 F2

Gate bias voltage VGS (V)
(b)

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

H2 F1

Unstable

Hopf
Flip

H1

F2

 

Fig. 20 Comparison between the predictions of the bifurcation loci (a) and pole-zero identification (b) at 

constant Pin = 18 dBm. The unstable region of (a) is shadowed. 

 

Conclusions 

Stability analysis methods have been presented in a self-contained manner. The main 

procedures have been described with analytical insight, enabling a comparison of their possible 
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limitations in terms of accuracy and complexity. Both small and large signal stability analysis 

has been considered and illustrated with examples that can be easily reproduced by the reader. 

The qualitative stability changes or bifurcations have also been addressed, with insight into their 

impact on the circuit behaviour.  
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