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Abstract— A two-level simulation methodology for coupled-
oscillator systems is presented. The inner level corresponds to the 
harmonic-balance analysis of the elementary oscillator in free-
running regime, so as to obtain a one-port reduced-order model. 
The outer level corresponds to the analysis of the coupled system, 
deriving a formulation that explicitly relates the oscillation-
frequency deviation and the amplitude and phase distributions to 
magnitudes characterizing the coupling network and oscillator 
elements. A stability analysis based on this formulation is also 
carried out obtaining a mathematical condition that determines 
the stable phase-shift interval. The formulation provides valuable 
insight into the system behavior and allows the derivation of 
realistic criteria for an optimum coupled-system performance. 
The two-level analysis has been extended to injection-locked 
systems, which enables an investigation of the impact of the 
number of oscillator elements and relative position of the 
injection signal on the locking bandwidth. 

Keywords— Coupled-oscillator system, stability analysis, phase 
noise analysis, near carrier noise 

I.  INTRODUCTION 

Coupled-oscillator systems can be used for beam steering 
of phased-array antennas and spatial-power combination [1-3]. 
As shown in [1-3], in a one-dimensional array, a constant 
phase-shift distribution can be obtained detuning the outermost 
oscillators only. The analysis of these systems often relies on 
simple oscillator models, of the Van der Pol type. In [4] a 
harmonic-balance (HB) analysis, using an auxiliary generator 
(AG) per oscillator element (to sustain the individual 
oscillations) has been presented. However, this circuit-level 
simulation becomes computationally unaffordable for high 
number of oscillator elements. The works [5-6] proposed the 
use of a reduced-order model of the free-running oscillator, 
obtained from a HB simulation, which extends the technique in 
[7], (previously applied to frequency dividers) to coupled-
oscillator systems. This enables a two-level simulation of these 
systems, such that the inner level corresponds to a HB analysis 
of the individual oscillator in free-running regime and the outer 
level corresponds to the analysis of the coupled system using 
the HB-oscillator models. By means of a first-order 
approximation of the coupled-system equations (such as the 
one applied in [1-3] to the Van-der-Pol models), it is possible 
to derive insightful expressions that explicitly relate the 
coupled-system oscillation frequency and the amplitude and 
phase distributions to magnitudes characterizing the coupling 
network and oscillator elements. A key aspect is that, as will be 
demonstrated, the steady-state response of a system with n 

oscillator elements can be inferred from that of a system of 
only three elements. Taking the stability properties into 
account, mathematical criteria are derived for an optimum 
system performance, with minimum frequency deviation and 
unambiguous excursions of the tuning parameters. The 
methodology will be extended to coupled-oscillator systems 
with an injection-locking signal [8]. This will enable an 
understanding of the impact of the number of oscillator 
elements and relative positions of the injection signal on the 
locking bandwidth. 

II. TWO–LEVEL ANALYSIS 

The coupled-oscillator system is analyzed with a two-level 
procedure, described in the following. 

A. Inner level 

When isolated from the coupled system, the total 
admittance function of the oscillator circuit (current-to-voltage 
ratio) at any analysis node is equal to zero. When introduced 
into the coupled system, this admittance function will be 
different from zero since there will be current entering through 
the coupling networks (Fig. 1). However, provided this current 
has small amplitude (as in the most common case of weak 
coupling) it will only undergo a small variation. Therefore, it 
can be modeled with a first-order Taylor series about the free-
running solution. Thus, each oscillator element will be 
described with the partial derivatives of the admittance 
function Y (current-to-voltage ratio) with respect to the 
amplitude V, frequency  and tuning parameter , respectively 
given by VY , Y , Y  . These derivatives are calculated 

introducing a voltage AG in the isolated oscillator [7], at the 
same node where the coupling network should be connected at 
a later stage (Fig. 1). At the quiescent point, the AG frequency 
agrees with the oscillation frequency and its amplitude AAG0 
agrees with the free-running node-voltage amplitude. The 
admittance-function derivatives are calculated through finite-
differences. For instance, the derivative VY  is calculated 
keeping the AG frequency and tuning voltage at their steady-
state variables and performing a small sweep in the amplitude 
AAG about the free-running value AAG0  V0 [7]. This technique 
has been applied to the individual oscillator of Fig. 1 at 
5.22 GHz, which is based on the FET NE3210S01. It provides 
the derivatives: YV = 0.044-5.75º -1/V, 
Y = 2·10-1147º -1/rad and Y = 0.0068-140º -1/V. 
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Fig. 1 Coupled-oscillator system with n oscillator elements. (a) Elementary 
oscillator at 5.22 GHz, based on the FET NE3210S01. (b) Coupling network.  

B. Outer level 

The oscillators are coupled by means of equal sub-networks 
[1-3], which generally consist of a transmission-line section 
bounded with series resistors (Fig. 1). Each sub-network is 
described by a symmetrical 2×2 admittance matrix Yc2: 
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Applying Kirchoff’s laws and assuming a constant inter-
stage phase shift , one obtains, for n oscillator elements, the 
following system in the increment  with respect to the free-
running frequency, and the increments Vi, i (i=1 to n) with 
respect to the free-running amplitude and tuning parameter: 
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To balance the system, an arbitrary tuning parameter 2 is 
set to zero. Note that according to [1-3] the inner parameters 
will only undergo negligible variations, since the constant 
inter-stage phase shift is varied by detuning the two outermost 
oscillators only. The outer-level system (2) is nonlinear in the 
phase shift, but linear in the amplitude and tuning-voltage 
increments. Splitting system (2) into real and imaginary parts, 
this system can be written in a compact manner as 
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where × indicates the cross product of real and imaginary parts 
and a,b b aphase(Y ) phase(Y )   . On the other hand, when 

solving (2) for 1 one obtains: 
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and 2 varies symmetrically about  = 0º. Because all the 
inner equations of system (2) are identical, the same analytical 
results (3) and (4) are obtained with the following system of 
three elements: 
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Furthermore, all the amplitude increments of the inner 
oscillators are the same and agree with the predictions from (5). 
Expressions (3) and (4) provide insight into the system 
behavior. As shown in (3), the oscillation-frequency deviation 
 varies sinusoidally with  about an offset value , that is: 

0( ) W cos( )      . The offset  comes from the 
change in the oscillator load due to the “self-coupling” element 
Ye. It increases with |Ye| and decreases with |Y|, thus, with the 
oscillator quality factor. The magnitude |W| is zero for 

v,nbsin(α ) 0  and otherwise increases with |Ynb| and decreases 

with |Y|. Note that according to [9], a stable free-running 
oscillation must fulfill v,sin 0  . On the other hand, for 

maximum parameter excursion at ±90º, one should have 

v,nbsin(α ) 0 , which provides a parameter deviation equal to 

the constant offset in (4) at =0º, and increments of 

nb v,Y / Y sin    at ±90º. 

The method has been applied to the system in Fig. 1. 
Initially, the system coupling strength has been evaluated, 
obtaining the locking bandwidth of two oscillator elements: 

 lock nb v,2 Y / Y sin    . With Rc=330  and l = 33.9 mm 

(one wavelength), this provides flock=29 MHz, whereas full 
HB at circuit level provides flock,HB=26 MHz. In Fig. 2, results 
from (3) to (5) are compared with those obtained with HB for 
n=3,4,5,6. HB convergence was not possible with n>6.  

For the stability analysis, small increments in all the 
oscillator amplitudes and phase values, as well as the 
oscillation frequency, are considered. System (5) is linearized 
about the solution with constant phase shift , which provides 
the following linear-time-invariant (LTI) system: 

i
r

0

r
i

r
0 v

i i
r v

r
0 v

ir
vi

r
0 v

ii
vr

0

r
i

0

Y
0 0 Y 0 0

V

Y
0 0 Y 0 0

V Y 0 0 a a 0

Y Y 0 0 b b 0
0 0 0 Y 0

V 0 Y 0 c d a
X(t) X(t)

0 Y 0 e f bY
0 0 0 Y 0

V 0 0 Y 0 c c

0 0 Y 0 e eY
0 0 0 0 Y

V

Y
0 0 0 0 Y

V



















 
 
 
 
 

  
     
   

            
  

    
 
 
 

 
 



(6) 



where  

 

i r r i
nb nb nb nb

i r r i
nb nb nb nb

i r
nb nb

a Y cos( ) Y sin( ) ;   b Y cos( ) Y sin( )

c Y cos( ) Y sin( ) ;   e Y cos( ) Y sin( )

d 2Y cos( ) ;  f 2Y cos( )

        

        

    

   (7) 

and the vector X(t) is defined as t tX =( V  )   .  Due to the 
system autonomy, one of the eigenvalues is 1=0. Some 
algebraic manipulation provides the following approximate 
expression for the real part of the dominant eigenvalue 2:  

 nb v,nb v,r 2
2 lock v,nb v,

3 Y cos sin 3
cos (sin )

2 Y 4

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where r
2  has been related to the locking bandwidth. The 

dominant eigenvalues of (6) can only have a zero real part at 
=±90º, where the cos() functions are zero. Then, with 

v,nbcos 0   ( v,nbcos 0  ), the stable interval is 

90º 90º     (90º<<270º). One possible design goal is to 

minimize the oscillation-frequency variation () when 
changing  through the stable phase shift interval -90º to 90. 
This is obtained by imposing the two conditions: v,nbsin 0   

and v,nbcos 0  . These conditions are fulfilled for the 

coupling line length lopt = 37.5 mm, different from the common 
choice of one wavelength. 
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Fig. 2 Comparison between results obtained with the two-level analysis 
(dashed line) and with full HB circuit-level simulations. Various numbers of 
oscillator elements (n=3,4,5,6) have been considered. (a) Frequency deviation. 
(b) Tuning voltage. (c) Amplitude distribution. 

 

The explicit expressions (3)-(4) can be easily introduced in 
commercial HB simulators to evaluate the impact of any 
modification of the oscillator design at circuit level, on the 
coupled-system operation. In this way, only the individual 
oscillator is simulated, instead of the coupled system. For 
illustration, variations in the output inductance Ld (Fig. 1) are 
considered in Fig. 3, which is swept down from its original 
value. At each step, three actions are carried out. (a) Simulation 
at circuit level of the new free-running oscillatory solution. To 
keep the desired oscillation frequency f0, the AG frequency is 
fixed as fAG=f0 and the output capacitance Cd, the gate inductor 
Lg and AAG are optimized to fulfill the non-perturbation 
condition YAG=0. (b) After convergence, a new set of 
derivatives YV,Y,Y is calculated through finite differences. 
(c) These derivatives are introduced in the outer-level 
formulation to optimize the coupled-system performance. Fig. 
3(a) shows the variation of vY  and v,sin α  . In the outer-

level analysis, the coupling-line length is swept, selecting the 
value that fulfills the double condition v,nbsin 0   and 

v,nbcos 0  . See an example in Fig. 3(b), for a particular Ld 

value. In Fig. 4 results obtained with the original coupling-line 
length (l = 33.9 mm) and with the optimized value 
(lopt = 37.5 mm) are compared. In the two cases, the system was 
analyzed with full HB, at circuit level. The optimized design 
enables minimum frequency deviation and maximum 
parameter excursions at ±90º. Measurements of frequency 
derivation and tuning voltages have been superimposed. 
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Fig. 3 Two-level analysis of the coupled-oscillator system in Fig. 1. (a) 
Variation of the angle of Yv and function v,sin   versus the inductance Ld. 

(b) Example of graphical determination of the optimum coupling-line length. 
  

III. EXTENSION TO INJECTION-LOCKED OPERATION 

In injection-locked conditions, an external signal is introduced 
at any of the coupled oscillators and the new system is:  
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where Is, s and s are, respectively, the amplitude, frequency 
and phase of the injection source. It is immediately derived 



from (9) that the locking bandwidth is zero when the injection 
source is connected to any of the two outermost oscillators 
(tuned to change ). When connected to any of the other 
elements, the bandwidth is independent of the choice of the 
injected oscillator (k). The band is the same for 3 oscillator 
elements and for an arbitrary number n and corresponds to: 
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where free ( )   refers to the frequency deviation in free-

running conditions, given in (3). Within the locking band, the 
phase shift  between adjacent oscillator elements can vary in 
the full interval -180º  180º (although not all these values 
will correspond to stable solutions). Expression (10)(b) 
evidences the opposed effects of oscillator coupling and 
injection locking. Maximum bandwidth is obtained for 

v,nbsin 0  , which minimizes the oscillation-frequency 

deviation due to coupling effects [see (3)]. At each constant 

s , the phase values s and  fulfill the relationship: 
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Linearizing the injection-locked coupled-system equations, 
one obtains that the stable phase-shift interval is maximized 
for v,nbsin 0  . If v,nbcos 0  , this interval corresponds to 

90º 90º    . In Fig. 5, the inter-stage phase shift  = 45º is 

maintained through the whole synchronization bandwidth. 
Results are successfully compared with the numerical 
technique in [5] and with costly HB simulations. 
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Fig. 4 Comparison of the original design (l =33.9 mm) and an optimum design 

fulfilling v,nbsin 0   and v,nbcos 0    (l =37.5 mm).  (a) Frequency 

deviation. (b) Tuning parameters. 
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Fig. 5. Two-level analysis with an injection signal in a design fulfilling 

v,nbsin 0   and v,nbcos 0  . Inter-stage phase shift is fixed at ϕ = 45º. (a) 
Phase shift s versus s for n=5 when introducing the injection signal at 
different oscillator elements. (b) Amplitude distribution for n=7.  

CONCLUSIONS 

A two-level simulation methodology for coupled-oscillator 
systems has been presented. The fact that a system of 3 
elements constitutes a valid model for a system with an 
arbitrary number n of elements has been demonstrated. 
Mathematical conditions for minimum frequency deviation and 
unambiguous tuning-parameter variation have been derived. 
The analysis methodology has been extended to the case of 
coupled-oscillator systems with injection signals.  
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