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Abstract  —  The design of high performance circuits with 

short manufacturing cycles and low cost demands reliable 
analysis tools, capable to accurately predict the circuit behaviour 
prior to manufacturing. In the case of nonlinear circuits, the user 
must be aware of the possible coexistence of different steady-state 
solutions for the same element values and the fact that steady-
state methods, such as harmonic balance, may converge to 
unstable solutions that will not be observed experimentally. In 
this contribution, the main numerical iterative methods for 
nonlinear analysis, including time-domain integrations, shooting, 
harmonic balance and envelope transient, are briefly presented 
and compared. The steady-state methods must be complemented 
with a stability steady-state analysis to verify the physical 
existence of the solution. This stability analysis can also be 
combined with the use of auxiliary generators to simulate the 
circuit self-oscillation and predict qualitative changes in the 
solution under the continuous variation of a parameter.  The 
methods will be applied to timely circuit examples that are 
demanding from the nonlinear analysis point of view.  

Index Terms — Time-domain integration, harmonic balance, 
envelope transient, stability. 

I.  INTRODUCTION 

The growing demand for high-performance radiofrequency 
circuits and systems requires the use of accurate and efficient 
simulation tools. The simulation has added difficulties in the 
case of nonlinear circuits, which are governed by nonlinear 
differential equations [1-2]. In nonlinear dynamical systems 
there is a possible coexistence of steady-state solutions, which 
may be either stable (or robust under small perturbations) or 
unstable. Instability is often associated to the presence of 
unexpected self-sustained oscillations, only possible in 
nonlinear non-conservative systems [2]. In addition, two or 
more stable solutions may coexist for the same values of the 
circuit elements and parameters, the observation of one or 
another depending on the initial conditions. Different methods 
exist for the simulation of nonlinear circuits [3-12]. The 
analytical methods, such as the describing function or Volterra 
series [3-4], are well suited for circuit design, since they give 
insight into the nonlinear behavior and its dependence on the 
circuit parameters. However, when the goal is to obtain an 
accurate solution in terms of waveforms and spectral content, 
numerical iterative methods are generally preferred [4-12]. 
Time-domain integration provides the entire evolution of the 
circuit solution from the initial value to the steady state [6,13]. 
Provided that the integration step and the algorithm are 
properly selected, the steady-state solution obtained will be 
stable or physical. Fast time-domain methods, such as 
shooting [6] and finite-difference algorithms [14], perform the 
time-domain analysis of the steady state only, avoiding the 

transient through the use of an additional constraint. In time-
domain methods, the modelling of linear distributed elements 
with loss and dispersion requires the calculation of impulse 
responses and convolution products [15-17]. In contrast, the 
harmonic balance (HB) method uses frequency-domain 
representations for the linear elements, lumped or distributed, 
maintaining the natural time domain descriptions for the 
nonlinear devices [9-12]. The circuit variables are represented 
by means of a Fourier series, with one or more fundamental 
frequencies, so only the steady state can be simulated. The 
method is unable to predict the transient reaction to 
perturbations and thus it is insensitive to the stability 
properties of the solution obtained [18-19]. The HB system of 
nonlinear algebraic equations is solved through an error 
minimization method, such that only the spectral components 
at the frequencies of the input generators are initialized by 
default. The resulting default solution may be unstable and 
never observed in practice. Therefore, the application of a 
complementary stability analysis is essential. A very practical 
method is the one based on pole-zero identification [20-21], 
relying on the fact that all the closed-loop transfer functions 
that can be defined in a linearized system share the same 
denominator and therefore exhibit the same poles. This 
method can be combined with the use of auxiliary generators 
(AGs) to simulate the possible circuit self-oscillation and 
predict qualitative changes in the solution under the 
continuous variation of a parameter [18-19]. This contribution 
presents several examples of timely circuits which are 
demanding from a simulation point of view, including pulse 
injection-locked oscillators [22-23], rotary travelling wave 
oscillators (RTWO) [24-25] and unstable power amplifiers.      

II. TIME-DOMAIN METHODS 

Time-domain integration relies on the formulation of the 
circuit as a set of differential algebraic equations (DAE) 
through the modified nodal approach (MNA) [26]:  

  ( ( )) ( ( )) [ ( )] ( ) ( ) 0
tdq

i v t v t h t v d g t
dt

  


             (1) 

where v   RP is the vector containing the node voltages and 
branch currents, q  RP  is the vector of charges and fluxes, 
i   RP are the sums of currents (that enter each node) and 
branch voltages, [ ]h  contains the impulsive responses of the 
distributed elements, and ( )g t  RP are the input generators. 
Several algorithms [13] exist for the numerical integration of 
(1), depending on the way how /dq dt  is approximated, in 
terms of the time samples. In implicit algorithms, ( ( 1))q v n   
is a function of itself, as in 
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Backward Euler’s approximation. Replacing this expression 
into the MNA and discretizing the convolution operation, one 
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The error function 1( )ne t   has to be minimized at each time 

step, which is usually done thorough a Newton-Raphson 
procedure. The trapezoidal approximation estimates the 
derivative /dq dt  using the average of its value at tn and tn+1. 

There are also more complex multi-step algorithms, which 
require two or more past points. A given algorithm has M 
order when the solution ( ( ))q v t and its M first time 

derivatives are continuous at the limits of the interval [tn,tn+1]. 
Provided that the integration step keeps relatively small, it will 
be possible to use a larger time step with a higher order 
algorithm. For a same continuous-time system, each algorithm 
gives rise to a different discrete-time equation. The stable 
solution of the continuous-time system may become an 
unstable solution of a particular discrete-time system. 
Problems are most common in systems having time constants 
of different order of magnitude, such as relaxation oscillators. 
Time domain integration has been applied for the analysis of a 
pulsed-injection locked oscillator (Fig. 1).  
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Fig. 1. Oscillator at 5.7 GHz with an input pulse at 100 MHz [23]. 

The objective is to reduce the phase noise of the higher 
frequency oscillator [22-23], operating at 5.7 GHz, through 
the synchronization to a pulsed signal of a much lower 
frequency, in the order of 100 MHz (Fig. 2). The high ratio 
between the two frequencies prevents the use of harmonic 
balance, which would require a high number of harmonic 
terms. Furthermore, the frequency intervals with synchronized 
behaviour are delimited by instability phenomena and their 
prediction with HB would be demanding. The input signal 
switches the oscillation on and off, so the steady-state solution 
consists of a series of oscillation bursts. Fig. 2(a) and Fig. 2(b) 
show the simulated and measured synchronized solution for 
three different values of the pulse frequency. Fig. 2(c) and Fig. 
2(d) show the oscillator waveform for two different values of 
the pulse frequency, with undesired frequency divisions by 2 
[in (c)] and quasi-periodicity [in (d)]. Time domain integration 
can be combined with a Poincaré map technique [13,23] to 
analyze the qualitative variations of the steady-state solution 
versus the pulse frequency fp. At each fp, the solution is 
examined in a time interval (Tstart, Tend), such that the circuit 

behaves in steady-state regime in this interval. The map is 
obtained by detecting all the relative maxima of the circuit 
solution in the analysis interval. If, in steady state, all the 
oscillation bursts are equal, they will all have the same 
maximum and only one point will be obtained. If the period of 
the steady-state solution is n-times the period of the input 
signal Tp, n different maxima will be detected. If the 
oscillation bursts are not periodic, the burst maxima will have 
many different values and a distribution of points will be 
obtained. Fig. 3 shows the map resulting from the application 
of this technique.  

 
Fig. 2. Oscillator in Fig. 1. (a) Simulation in synchronized operation. 
(b) Measurement. (c) Divided by two regime. (d) Quasiperiodic 
solution. 
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Fig. 3. Map of oscillation burst maxima versus the pulse frequency. 
Inset shows qualitative changes of the solution stability  

The shooting methods [8,11-13] provide, through an 
optimization technique, a vector of initial conditions ov , from 

which the circuit behaves in steady-state regime. In the case of 
periodic solutions ( )v t , the constraint is (0) ( ) 0v v T  , with 

T being the solution period. Let ( )v t  be expressed as: 

( ) ( ) ( ( ),0, )o ov t v t v t t  [6]. Then, the shooting equation 

system is ( ,0, ) 0ov T  , which contains P equations in P 

unknowns. To solve this system one must take into account 
that 1( )nv t   is an implicit function of ( )nv t . A Newton-



Raphson algorithm is used to solve ( ,0, ) 0ov T   in terms of 

ov . This requires the calculation of the sensitivity matrix 

  ( ,0, ) /o oJ v T v    . Thus, the circuit solved through a 

two-level Newton-Raphson algorithm. The outer level 
corresponds to the shooting equation system. The inner level 
corresponds to the time-domain integration through the 
interval (0, )T . Due to the limited length of this interval, the 

solution obtained could be unstable. 

III. HARMONIC BALANCE 

The HB technique [6,11-12] uses frequency-domain 
descriptions for the linear elements, while keeping the original 
time-domain descriptions for the nonlinear devices. In the 
nodal HB, the Fourier-series expansions of the vectors 

( ),  ( ),  ( ),  ( )v t q t i t g t  are introduced into (1). Taking into 

account the orthogonality of the Fourier basis, one obtains the 
following relationship between the Fourier coefficients: 
     ( ) ( )       ( ) ( )   0E V I V j Q V H j V G            (3) 

where  [ ] ( )...( ) ( )N k Nj diag j j diag j     , N is the 

number of harmonic terms, and ( )E V  is an error function. 

Calculation of ( )I V  and ( )Q V  requires inverse (F-1) and 

direct (F) Fourier transforms. In the case of quasi-periodic 
regimes, a different time variable is associated to each 
fundamental frequency, performing a sequential calculation of 
fast Fourier transforms in the different time variables. The 
error function in (3) is usually minimized through the Newton-
Raphson algorithm. Calculation of the Jacobian matrix 
requires the derivative matrixes /I V  , /Q V   obtained 

from the harmonic components of the time-domain functions 
/i v   and /q v  . Since the vectors i  and q  include both 

linear and nonlinear functions, the Jacobian matrix will have 
many zero elements (sparse matrix) [27-29]. This will enable 
the straightforward application of sparse-matrix techniques for 
linear-system solution, such as preconditioned Krylov 
subspace methods [27-29].  

When the solution contains a self-oscillation at fo, the HB 
system decomposes into a forced subsystem and a 
homogeneous subsystem at frequencies containing multiples 
of fo. The later admits a zero solution, so the circuit can always 
be resolved for a non-oscillatory regime, which will be 
unstable in most cases [18-19]. To simulate the oscillatory 
solution, an AG operating at FAG = fo, with an amplitude AAG 
can be introduced into the circuit. The two variables FAG and 
AAG must be calculated in order to fulfil non-perturbation 
condition ( ,  ) 0AG AG AGY A F  , where YAG is the ratio between 

the AG current and voltage. This condition is resolved with 
the pure harmonic-balance system as an inner tier. The use of 
AGs enables an efficient frequency domain analysis of complex 
oscillator configurations, such as the recently proposed rotary 
travelling wave oscillator [24]. It is based on the use of Möbius-
ring-like differential transmission line, with gain stages 
periodically distributed along the path [24-25], which allows 

obtaining multi-phase solutions with a quasi-square 
waveform. Fig. 4 shows an implementation using sections of 
nonlinear transmission line (NLTL) that reduce the number of 
gain stages needed for the quasi-square shaping. Phase values 
at consecutive nodes should be 2 /(2 )m m N  , with 

m = 0 ... 2N-1. However, there is a possible coexistence of 
oscillation modes, due to the system symmetries [25]. 
Assuming identical amplitudes, the total admittance matrix 
exhibits repeated eigenvalues, associated with different phase 
distributions. For the analysis/design of this oscillator 
configuration, nAG auxiliary generators are introduced through 
the structure (Fig. 4), fulfilling the conditions YAGi = 0, where i 
= 1 to nAG, which are solved simultaneously. This avoids 
undesired HB solutions having any of the gain stages in a non 
oscillatory state and allows presetting the phase shifts 
corresponding to each possible oscillation mode. The 
simulated and measured waveforms are compared in Fig. 5(a) 
and Fig. 5(b). The coexisting in-phase mode [Fig. 5(c)] is 
unstable. The variation of the oscillation frequency of the two 
modes versus the drain voltage is shown in Fig. 5(d).  

 

Fig. 4. NLTL-based rotary-travelling wave oscillator [25] at 
fo = 700 MHz. 

IV. STABILITY ANALYSIS 

In small-signal regime the circuit behaves linearly with 
respect to the input sources, so the stability properties only 
depend on the dc regime [18-19]. For the stability analysis, a 
small perturbation is considered, at the complex frequency s. 
Due to the small amplitude of the perturbation, the devices can 
be linearized about the dc solution. In the case of a large-
signal periodic regime, the solution must be linearized about 
this periodic solution at the frequencies ojk , where k = -N to 

N. Then the perturbation frequency s gives rise to the mixing 
terms ojk + s . There are no generators at the perturbation 

frequencies, so one obtains a homogeneous system [11,18-19]: 

   

   

( ) ( )
( ) 0                       

( ) ( )
( ) 0  

dc dc

p p
o o

I V Q V
s H s V Ss

V V

I V Q V
jk + s H jk + s V Ls

V V
 

  
      

  
    

   

(4)  

where Ss and Ls, respectively refer to a small- and large-
signal stability analysis. To have 0V  , the matrix affecting 
this vector must be singular or, equivalently, its determinant 



must be zero [11-12]. For the solution to be stable, all the 
determinant roots must have negative real part. In practice, the 
roots of the determinant can be obtained from pole-zero 
identification [20-21] of any closed-loop transfer function, 
obtained by connecting a small-signal source and linearizing 
the circuit about the steady-state solution. 
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Fig. 5. Analysis of the RTWO. (a) Simulated waveforms of the stable 
multiphase mode. (b) Measured waveforms. (c) Multiphase (stable) 
and in-phase (unstable) mode. (d) Oscillation frequency vs. the drain 
bias voltage.  
 

There can be a substantial difference between the default 
HB simulation and the physical solution of a given circuit. As 
an example, Fig. 6(a) presents the default HB solution of a 
power combining amplifier. The solution is periodic at the 
frequency of the input source for all the input power values. 
However, a stability analysis based on pole-zero identification 
[Fig. 6(b)] indicates that the solution is unstable in small 
signal, with a pair of complex-conjugate poles on the right-
hand side of the complex plane (RHS) at a frequency different 
from that delivered by the input source ( / 2 )inj     . 

At the input power Pin = 0.5 dBm, the pair of complex-
conjugate poles cross the imaginary axis to the left-hand side 
(LHS) and the default periodic solution becomes stable. When 
further increasing Pin, the poles continue to evolve and at 
Pin = 4 dBm, they merge and split into two pairs of poles at 
in/2. At Pin = 4.2 dBm, one of these two pairs of poles 
crosses the imaginary axis to the RHS and gives rise to a 
frequency division by 2, so the periodic solution at in 
becomes unstable again. Fig. 6(c) shows the stable quasi-
periodic and frequency-divided steady-state solutions obtained 
with the aid of an AG. The output power has been represented 
versus Pin at each fundamental frequency. In the absence of 
input power, the circuit exhibits a free-running oscillation. 
This oscillation mixes with the frequency of the input drive up 
to the point H where the oscillation is extinguished. At F1, a 
subharmonic solution arises, which is extinguished at F2.  

 

 
Fig. 6. Unstable power amplifier. (a) Default periodic solution in 
terms of drain voltage vs. Pin. (b) Stability analysis vs. Pin. (c) Stable 
quasi-periodic and divided-by-two solutions, obtained with an AG.  

V. ENVELOPE TRANSIENT 

Circuits containing modulated signals cannot be simulated 
with HB. However, in most cases, it is possible to consider 
two different time scales [30-31]. The faster time scale t2 
corresponds to the carrier and the slower time scale t1 
corresponds to the modulation. The circuit is generally 
periodic in the “faster” time t2. Then, any state variable ( )a t  

can be expanded as: 2
1 2 1( , )  ( ) k

N
jk t

k
k N

a t t A t e 



  , where 1( )kA t  are 

slow varying envelopes. When these expressions are 
introduced in (1), the two time variables t1 and t2 will require 
two different derivative operators. For fixed t1, the derivative 
with respect to t2 will simply be obtained through the 
multiplication of the different harmonic terms by jk. This 
provides an algebraic system of differential equations in the 
harmonic terms 1( )kA t . The time variable t1 is discretized, 

replacing the time derivative with a particular expression in 
terms of the time samples, such as the backward Euler 
approximation. The integration time step t1 is determined by 
the modulation rate, so it will be noticeably larger than the one 
required for full time-domain integration. Dropping the 
subindex in t1, the envelope-transient equation takes the form: 

 ( ( )) ( ( )) ( ( )) [ ]* ( ) ( ) 0
d

I V t j Q V t Q V t H V d G t
dt

       (5) 

The computation of the convolution products is less 
demanding than in standard time-domain integration, since the 
impulse responses can be narrowband about the harmonic 
frequencies k. The initial condition is obtained from an 
ordinary HB analysis at the initial time to = 0. From this time 
value, the Newton-Raphson algorithm is applied to obtain the 



solution ( )V t  along the simulation interval. In the case of 

circuit containing self-oscillations, the oscillation frequency 
should be considered in the Fourier basis representation of the 
circuit variables [19,31]. However, the envelope sampling step 
may be too large to predict the frequency variations during the 
oscillation start-up. One way to cope with the problem is to 
perform an initial HB analysis (in the absence of modulation 
signals) with the aid of an AG [19]. The resulting solution is 
stored and used as initial value for the envelope-transient 
simulation. Alternatively, the AG may be connected to the 
circuit at the initial time only [19], using a time varying 
resistor R(t) in a series connection, switching from zero to 
very high value at t > to.     

In the absence of modulations, the amplifier analyzed in 
Fig. 7(a) exhibits a subharmonic instability for Pin > 4.2 dBm. 
An amplitude modulation of the input signal has been 
considered, such that this signal is above the “static” 
instability threshold for a fraction of the modulation period. 
For this dynamical analysis, the circuit variables will be 
represented in a Fourier basis at fin/2, with time-varying 
harmonic terms ( )kA t . The magnitude of the subharmonic 

component 1( )A t  for different modulation frequencies fmod is 

shown in Fig. 7(b), where the time axis has been normalized 
to the modulation period. The fraction of the period in which 
the subharmonic component is present decreases with fmod. 
From certain fmod, time above threshold is too short to enable 
the oscillation start-up [32]. 
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Fig. 7. Unstable amplifier with amplitude modulation. (a) Amplitude 
is above instability threshold for a fraction of modulation period. (b) 
Subharmonic component at fin/2 for different values of fmod. 

 
Next example corresponds to a self-oscillating power 

amplifier (SOPA). In Class-D amplifiers, a high amplitude 
signal (switching signal) at the frequency fo makes the 
transistors switch between on- and off- stages and the output 
voltage has a rectangular waveform. In the case of a SOPA, 
the Class-D amplifier [32-34] is inserted into a feedback loop 
(Fig. 8), which should enable an oscillation at fo, with no need 
for an extra source. The circuit has been analyzed with 
envelope transient, using an AG to initialize the oscillation at 

fo = 750 MHz. Fig. 9 presents the output power spectrum 
obtained with WCDMA-like signal centred at 200 MHz [34]. 
It shows the dithering effect of the higher frequency 
oscillation. The impact of the input signal on this oscillation 
has been analyzed by means of two tones spaced f ≈ 2 MHz. 
High envelope excursions lead to an instantaneous reduction 
and even extinction of the oscillation amplitude, as shown in 
the time-domain analysis of Fig. 10(b), where denser traces 
are due to the self-oscillation. The envelope analysis in Fig. 
10(c) predicts the variation of the oscillation amplitude in an 
efficient and clear manner.  

 

Fig. 8 Self-oscillating power amplifier with an oscillation at 
fo = 750 MHz and an input signal at fin= 200 MHz.  
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Fig. 9 Output-power spectrum of the SOPA obtained with a 
WCDMA signal [34]. Dashed line: measurements (averaged). Solid 
line: simulations. 

 
Fig. 10 Influence of the input signal on the self-oscillation. (a) Input 
signal: two tones with f ≈ 2 MHz.  (b) Time-domain analysis of the 
SOPA with VGG = -0.7 V. (c) Envelope analysis. Amplitude at the 
oscillation frequency. 



VI. CONCLUSION 

A brief description of iterative nonlinear simulation 
methods has been presented, with emphasis on oscillation and 
instability problems. The methods have been illustrated with 
timely circuit examples of complex behavior, such as pulse 
injection-locked oscillators, rotary travelling wave oscillators 
and unstable power amplifiers.  
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