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 
Abstract— Potential instability of power amplifiers (PAs) under 

mismatch effects is analysed, with emphasis on the ease and 
generality of application of the stability criteria. The methodology 
is based on the evaluation of a large-signal version of the µ factor, 
considering mismatch effects in the fundamental frequency and 
three relevant sidebands: the baseband, the lower sideband and 
the upper sideband. This requires an outer-tier scattering-type 
conversion matrix of order 3×3 to be obtained, with the rest of 
sideband equations acting as an inner tier. It is taken into account 
that the circuit behaves nonlinearly with respect to the termination 
at the fundamental frequency. The consideration of three 
sidebands will enable the prediction of the two major forms of 
large-signal instability: incommensurable oscillations and 
frequency divisions by two. The analysis is preceded by an 
evaluation of the circuit own stability properties (proviso) under 
open and short circuit terminations at the sidebands, for all 
possible values of the termination at the fundamental frequency. 
Three different µ factors can be defined between any two ports of 
the scattering matrix. The analysis of the relationships between 
these factors and their continuity properties will allow the 
derivation of a single number able to characterize the PA potential 
instability for each fundamental-frequency termination. Results 
have been exhaustively validated with independent circuit-level 
simulations based on pole-zero identification and with 
measurements, using a variable output load and loading the PA 
with an antenna. 
 

Index Terms— Stability analysis, bifurcation, antenna 
mismatch. 

I. INTRODUCTION 

nstability of power amplifiers (PAs) under termination 
conditions other than 50 , usually due to antenna mismatch 
[1]–[4], can give rise to severe malfunctioning, as reported in 

many previous works [5]–[11]. Furthermore, some applications 
impose stable operation even under highly reflective loads [6], 
[8]. The stability analysis under output mismatch is involved 
since it must be carried out under unknown termination 
impedances. To be precise, the practical stability analysis of a 
periodic solution with harmonic components kfin, where k goes 
from –N to N, is based on the introduction of a perturbation at 
the positive frequency f [12]–[15], which will give rise, through 
mixing effects, to the sideband frequencies kfin+f. The aim is to 
predict the reaction of the periodic solution to small 
perturbations, so the circuit will be linearized about this 
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solution and its frequency response will be obtained by 
sweeping f. Under mismatched conditions, the frequency-
dependent load impedance will exhibit unknown values at kfin 
and kfin+f, where |k| ≤ N.  However, some considerations can be 
made. In the PA, the harmonic amplitudes are generally 
significant at the device output terminals, but quite low at the 
final 50  termination of the output network [16]–[23]. For 
instance, in a Class-E amplifier [16]–[17] a nearly sinusoidal 
fundamental-frequency current flows through the output series 
resonator, so the impedance at the fundamental frequency is the 
most influential one. As stated in [17], the load network may 
include a low-pass or a band-pass filter to suppress harmonics 
of the switching frequency at the final output 50  load [19]–
[20]. On the other hand, in a class–F amplifier [21]–[23] the 
output network forces the output voltage to be ideally sinusoidal 
and additional resonators are added to tune the harmonic 
components. The mismatch effects occur after the PA output 
network, at the reference plane indicated in Fig. 1(a), so, in 
general, they will have a negligible effect at harmonic 
frequencies kfin, where |k|2.  

Taking all the above into account, the approach in [9]–[11] 
assumes a bandpass filtering action of the PA output network, 
such that the particular values of the load impedances at 

frequencies other than the fundamental frequency inf  and its 

lower and upper sidebands, l inf f f   and u inf f f  , have 

a negligible impact on the stability properties. With this in 
mind, the analysis of mismatch effects is limited to the three 
frequencies , ,in l uf f f , at which the termination impedances 

may take any value. Then, a two-tier conversion matrix analysis 
is carried out [10]–[11]. The outer-tier system is based on a 2×2 
scattering-type matrix at the two mismatched sideband 

frequencies *
l inf f f    and uf , defined at the PA 

termination plane. The inner-tier system accounts for the rest of 
sideband frequencies, whose termination impedance values 
should have a negligible impact on the stability properties. 
Thus, they can be arbitrarily terminated in 50 .  

The two sideband frequencies *
lf  and uf  act as two virtual 

ports, which has enabled the extension of the Rollet stability 
criteria [24]–[25] to large-signal operation under output 
mismatch effects [10]. However, [10] assumed a particular 
(matched) termination condition o = 0 at the fundamental 
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frequency fin. The generalization to arbitrary o terminations 
implies some analysis difficulties, since any change of o leads 
to a different steady-state solution, which must be calculated 
with harmonic balance (HB). Practical use and interpretation of 
data resulting from multiple amplitude and phase sweeps in o 
require a judicious technique. In this sense, [11] proposed the 
calculation of a large-signal µLS factor, obtained from the outer-

tier scattering-type matrix at *
lf  and uf , and the use of constant-

µLS contours, traced on the Smith chart corresponding to o 
(with respect to which the circuit behaves nonlinearly). A 
limitation of this method lies in the fact that only particular 
values of the perturbation frequency f are considered, though 
the stability analysis of a periodic regime at fin, must take into 
account all the f values between 0 and fin/2. In fact, an upper 
frequency higher than fin/2 will be necessary to detect the 
subharmonic resonance leading to a frequency division by 2, 
which is one of the main forms of large-signal instability [26].  
In view of this problem, one of the objectives here will be 
derivation of a new analysis method accounting for this whole 
interval of perturbation frequencies.   

In [11], a preliminary investigation including the baseband 
termination in the set of relevant mismatched terminations was 
presented. This relied on the calculation of a 3×3 outer-tier 

scattering matrix at the three sideband frequencies bf f , *
lf

and uf . However, the three-sideband analysis in [11] was only 

used for a final validation of the results obtained with the 2×2 
scattering matrix, due to the difficulties involved in the 
evaluation of the large-signal LS for three possible 

combinations of two sidebands, *( , )b lf f , ( , )b uf f  and *( , )l uf f
, considering, in each case, all possible values of the complex 
reflection coefficient at the remaining sideband, denoted as sb
. Furthermore, the evaluation of each large-signal LS must be 
carried out for each fundamental-frequency termination o and 
each perturbation frequency f, which will lead to prohibitive 
computational cost, unless some useful mathematical properties 
are identified.  

This work will present a thorough methodology for the 
stability analysis of PAs under mismatch effects that is 
mathematically consistent for all the possible values of the 
perturbation frequency f. It will be derived from an in-depth 
investigation of the relationships between the different LS 
factors that can be defined in a three-sideband analysis, and a 
detailed study of their frequency dependences. The aim will be 
to obtain a single real quantity ( )T

LS o   defining the PA 

potential stability properties in the whole perturbation-
frequency interval, for each termination o at inf . Unlike the 

two-sideband case, the analysis at *, ,b l uf f f  accurately deals 

with situations in which the dangerous frequency intervals in 

bf  and lf  are close to / 2inf  or comprise this frequency. 

Therefore, it should enable a prediction of frequency divisions 
by two, often encountered in unstable PAs [27]–[28].  

This work will also take into account the need to verify the 
fulfilment of a proviso, with identical meaning to Rollet’s 
proviso [29]–[30] in a small-signal analysis, ensuring the 
observability of mismatched-induced instabilities from the 

output reference plane. This will require verification of the 
circuit stability under both open and short circuit terminations 
at the three relevant sidebands for all the possible values of the 
fundamental-frequency termination o. The analysis strategy, 
based on pole-zero identification, will take advantage of the 
continuity of the circuit equations, in order to avoid an 
unmanageable amount of data of difficult interpretation. The 
methods will be illustrated by means of its application to a PA 

at inf  0.8 GHz with 80% efficiency at 22 dBm output power. 

The paper is organized as follows. Section II presents the 
calculation of the three-sideband scattering matrix. Section III 
describes the potential instability analysis at three sidebands. 
Section IV presents a validation based on the calculation of 
stability circles. Section V proposes a new global stability 
parameter that is exhaustively validated with measurements.  

II. CALCULATION OF THE THREE-SIDEBAND SCATTERING 

MATRIX 

The stability analysis of a periodic solution at inf  relies on 

the introduction of a perturbation at a frequency f, to obtain the 
frequency response of the circuit linearized about this solution 

[12]. This will give rise to the mixing frequencies inkf f , 

where k goes from –N to N [12]–[15], [31]–[32]. The opposite 

frequencies inkf f  , though not considered in the analysis, 

will also exist and their components will be complex-

conjugates of those at inkf f . In the case of a stability analysis 

under output mismatch effects, and taking into account the low-
pass characteristic of the output network, the mismatched 
conditions at the output reference plane [Fig. 1(a)] can be 

restricted to the fundamental frequency inf  and the three 

frequencies bf f , *
l inf f f    and u inf f f  . These 

mismatched frequencies are respectively terminated in the 
arbitrary reflection coefficients *, ,  ,  o b l u     at each 

perturbation frequency f [Fig. 1(a)]. The load impedances at the 
rest of the harmonic frequencies inkf  and sideband frequencies 

inkf f , where 0, 1,1k   , should have no impact on the 

stability properties and can be arbitrarily terminated in 
50 cZ  . Note that the analysis method takes into account all 

the harmonic and sideband frequencies without any restrictions. 
The sole assumption is that mismatch effects (at the reference 
plane, after the output network) are only relevant at inf , bf f

, *
l inf f f    and u inf f f  . Fig. 1(b) shows a sketch of the 

analysis frequencies and the termination impedances at the 
output reference plane, with the harmonic components in a solid 
line and the sideband frequencies in a dashed line. 

For each termination o at the fundamental frequency inf , a 

full HB analysis is carried out considering N harmonic terms. 
Next, the circuit is linearized about the resulting steady-state 
solution with the conversion-matrix approach [31]–[33]. The 
circuit’s linearized equations are decomposed into an outer-tier 
system at *, ,b l uf f f  and an inner-tier system at the rest of the 

frequencies inkf f , where 0, 1,1k   , terminated in 
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50 cZ  . The outer-tier system is formulated at the circuit’s 

output reference plane [Fig. 1(a)] by means of 3×3 impedance 
matrix [Z3], later transformed into a scattering matrix. The [Z3] 
matrix is obtained through the simultaneous conversion-matrix 

analysis of three circuits, terminated in o  at fin, in open circuit 

at f, inf f  and inf f , and in = 0 at the rest of the 

frequency components, as shown in Fig. 2(b). Each circuit will 
contain an independent small-signal current source at one of the 
sidebands ( ),  ( ),  ( )in inI f I f f I f f   . Then, the parameters of 

a 3×3 impedance matrix are obtained from the three respective 
circuits, as: 

( ) ( )( )
,  ,  

( ) ( ) ( )

( ) ( )( )
,  ,  

( ) ( ) ( )

( ) ( )( )
,  ,  

( ) ( ) ( )

in in
bb lb ub

in in
bl ll ul

in in in

in in
bu lu uu

in in in

V f f V f fV f
Z Z Z

I f I f I f

V f f V f fV f
Z Z Z

I f f I f f I f f

V f f V f fV f
Z Z Z

I f f I f f I f f

  
  

  
  

     
  

  
  

 (1) 

The above calculation is performed with a full conversion 
matrix approach, taking into account all the sideband 

frequencies inkf f , where k goes from –N to N . Note that we 

will have a different impedance matrix [Z3] for each termination 

o  at fin and each perturbation frequency f. The system is linear 

with respect to the terminations at the sideband frequencies, but 

nonlinear with respect to the termination o  at inf . Thus, a 

harmonic-balance analysis must be performed for any variation 
of the termination o  at inf . The (3×3) impedance matrix in (1) 

can be transformed into a (3×3) matrix of scattering type [S3], 
which will relate reflected and incident power waveforms at the 
three sidebands: 

 

* *

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

b bb o bl o bu o b

l lb o ll o lu o l

u ub o ul o uu o u

b s f s f s f a

b s f s f s f a

b s f s f s f a

       
             
            

   (2) 

 
where the asterisk denotes complex conjugation. This scattering 
matrix will allow a generalization of Rollet’s criteria [24]–[25] 
to predict potential instability under mismatch effects. The PA 
will be potentially unstable under these effects if for any pair of 
terminations at the sidebands *,l uf f , at the sidebands *,b lf f  or 

at the sidebands ,b uf f , it exhibits negative resistance when 

looking into the circuit output at bf , uf  or *
lf , respectively. 

This verification must be performed for every passive 
termination o  at inf  and every perturbation frequency f. 

However, the analysis described will only be able to detect the 
circuit instability under fulfilment of the Rollet proviso [29]–
[30], [34]–[35], which must be adapted here to the problem of 
three mismatched sideband frequencies. 

To fulfil the proviso, the circuit terminated in o  at inf  must 

be stable on its own, or equivalently, it must not exhibit any 
poles on the right-hand side of the complex plane (RHP) when 
the three sidebands are in open and short circuit conditions. The 

proviso must be verified for each passive termination o  at inf

, with the three sideband frequencies f, inf f  and inf f  in 

all possible combinations of short-circuit and open-circuit 
terminations. Indeed, short-circuit terminations facilitate the 
detection of unstable series resonances, which might not be 
observable from the analysis reference plane, whereas open-
circuit terminations facilitate the detection of unstable parallel 
resonances.  
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Fig. 1 Power amplifier under output mismatch effects. The transistor is an 
Avago ATF-50189, and the element values are Lchoke = 150 nH, CD = 2.2 pF, 
LD = 18 nH, Lout =  12.5 nH, Cout = 1.5 pF, LG = 2.5 nH and CG = 1.5 pF. In the 
modified PA, the output inductor is Lout = 8 nH. (a) Circuit schematic. (b) 
Sketch of the termination impedances (replacing the original 50  load) at the 
analysis frequencies, including harmonics, in a solid line, and sidebands, in a 
dashed line. (c) Photograph.  

 
The verification of the proviso can be carried out with pole-

zero identification [8], [15], fully applicable under open/short 
circuit terminations, since the load remains fixed at real 
impedance values at all the sideband frequencies inkf f , 

given by zero, near infinite or 50 . In fact, any complex-
impedance (with a non-zero imaginary part) must physically 
vary with f, so pole-zero identification should not be applied 
under constant complex termination impedances at the sideband 
frequencies. The pole-zero identification will be carried out 
versus variations in the termination o  at inf .  
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Fig. 2 Two-tier conversion-matrix analysis. For each termination 

o  at 
inf , 

the perturbed circuit is represented with a 3×3 scattering matrix, calculated at 
the PA output terminals, as shown in Fig. 1. (a) Three circuit replicas used for 
the calculation of the 3×3 impedance matrix [Z3]. (b) Sketch of the outer-tier 
scattering matrix and load impedances at the three sideband frequencies with 
mismatch effects. 

 
A double sweep in the amplitude and phase of o  provides 

disconnected circles, which impedes taking advantage of the 
continuity properties of the harmonic-balance system. Indeed, 
this set of nonlinear algebraic equations is continuous with 
respect to all of its variables and parameters [12], [14]. Thus, it 
will also exhibit a continuous dependence on the load reflection 
coefficient at the fundamental frequency o .  The analysis can 

be carried out following a single spiral curve, depending on a 
single parameter h, which will define both the amplitude and 
phase of the reflection coefficient 

(2 )( ) 0.999 , 0 1, 11hj N h
o hh h e h N      . For a smaller h step, 

and higher values of Nh, the Smith chart will be covered in a 
finer way. Additionally the unit circle o| | 1   can be 

considered for a detailed analysis of the effect of purely reactive 
impedances. 

 
Fig. 3 Application of the proviso to the original PA in Fig. 1, following the 

spiral curve (2 )( ) 0.999 j N h
o h h e    , 0 1, 11hh N    (a) Spiral curve 

considered, traced on the Smith chart. (b) Pole evolution versus the parameter 

h in o( )h  under short-circuit terminations at the relevant sidebands.  

 
The analysis of the Rollet proviso will be applied to the 

Class-E PA in Fig. 1(a), with specified output power 22.5 dBm 
and efficiency 80% at fin = 0.8 GHz and Pin = 12 dBm. The 
original values of the output inductor and load resistance are 
Lout = 5 nH and R = 41.5 . The resistance is implemented 
through an L-C matching section, terminated in 50  (Fig. 1). 
The analysis has been carried out with N = 7 harmonic terms. 
This number of harmonic terms will be considered through the 
whole manuscript, for both the circuit-level simulations and the 
two-tier conversion-matrix analysis, based on [S3] in (2). Fig. 
3(a) shows the spiral considered in the Smith Chart. Fig 3(b) 
evidences that the circuit does not fulfil the proviso. This figure 
shows the variation of the real part of the dominant poles versus 
the parameter h when using short-circuit terminations at the 
sidebands. When these sidebands are short-circuited, the circuit 
is unstable even under a 50  termination at fin. Note, however, 
that it is stable when fully matched, that is, when operating 
under a 50  final-termination load at all the harmonic and 
sideband frequencies. With the spiral curve, advantage is taken 
of the continuity of the circuit equations for an undemanding 
analysis. To improve the robustness of the circuit under 
mismatch-induced instability, some modifications have been 
performed in the output network. The output inductor has been 
changed to Lout = 8 nH and the new load resistance, also 
implemented with an L-C section, is R = 45  . When repeating 
the analysis of the proviso through the spiral curve ( )o h , the 
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circuit is stable under open and short circuit terminations at the 
three relevant sidebands, as shown in Fig, 4. Therefore, the 
potential instability analysis described in the next section will 
be applicable. 

 

 
Fig. 4 Application of the proviso to the modified PA with Lout = 8 nH and 
R = 45 , following the spiral curve in Fig. 3a. (a) Under open circuit 
terminations at the relevant sidebands. (b) Under short-circuit terminations. 
 

III. POTENTIAL INSTABILITY ANALYSIS AT THE THREE-
SIDEBANDS 

The works [36]–[37] demonstrate an extension of Rollet’s 
analysis to three-port linear networks, which is based on the 
sequential definition of three different two-port networks. In 
each case, the two ports are taken from those of the original 
three-port network, under a variable passive termination   in 
the remaining port. In [11], this procedure is adapted to the 
three-band stability analysis under mismatch effects. Under a 
termination sb  at any of the three sideband frequencies 

, ,in inf f f f f   , the 3×3 matrix [S3] in Fig. 2 can be reduced 

to a 2×2 matrix [S2] [36]–[37]. Three different 2×2 matrixes can 

be defined. The first matrix is *
, ( )b u lS  , at the virtual ports at

bf  and uf , depending on *
sb l   . The second matrix is 

, ( )b l uS  , at the virtual ports bf  and *
lf , depending on sb u  

. The third matrix is , ( )l u bS  , at the virtual ports *
lf  and uf , 

depending on sb b   . Using (2), the matrix *
, ( )b u lS   is 

obtained as: 
 

* * 1
,

* * 1
,

* * 1
,

* * 1
,

( , , ) /( )

( , , ) /( )

( , , ) /( )

( , , ) /( )

bb r o l bb bl lb l ll

bu r o l bu bl lu l ll

ub r o l ub ul lb l ll

uu r o l uu ul lu l ll

s f s s s s

s f s s s s

s f s s s s

s f s s s s









     

     

     

     

   (3) 

 
where the subindex r stands for reduced matrix. An analogous 
calculation is carried out for the other two matrixes , ( )b l uS   

and , ( )l u bS  . For each of the three 2x2 matrixes, six large-

signal equivalents of the µ factor [38] can be defined. This will 
be done using the same expressions as in [38], but considering, 
in each case, the two virtual ports of the reduced matrix instead 
of the two physical ports 1 and 2.  

The factors *
, ( )b u l   and *

,' ( )b u l  , calculated from 
*

, ( )b u lS  , respectively provide the distance to the stability 

circle in the b  and u  planes at each *
l  value.  Analogous 

factors 
, ( )b l u   and 

,' ( )b l u  , calculated from , ( )b l uS  , and 

, ( )l u b   and 
,' ( )l u b  , calculated from , ( )l u bS  , will also be 

considered. In each case, the   and '  factors provide the 

same stability information. Thus, the conditional stability 
analysis can be carried out in terms of three factors: *

, ( )b u l  , 

, ( )b l u   and 
, ( )l u b  , globally denoted as LS  factors. This 

three-sideband analysis is demanding since each LS  factor 

depends on sb  (agreeing in each case with the reflection 

coefficient inside the parentheses), together with  o  and the 

perturbation frequency f. Due to this complexity, the three-band 
analysis was used in [11] only for validation purposes, under 
two specific o  values. In the following, the properties of 

matrix (2) and the three LS  factors will be studied in order to 

simplify the analysis methodology. 

A. Consideration of all possible passive values of sb  

Let any of the three factors *
, ( )b u l  , 

, ( )b l u   and 
, ( )l u b   

be considered, which for simplicity will be denoted 
1,2 3( )  , 

where 1, 2 and 3 may correspond to any of the three sidebands 
, ,in inf f f f f   . The terminations at Port 1, Port 2 and Port 

3 will be denoted as 1, 2 and 3 , respectively. A potentially 

unstable case will be assumed. By definition, 
1,2 3( )   

corresponds to the distance from the centre of the Smith chart 
2 to the stability circle, which must be evaluated for all the 
passive values of 3 . Let the set of 3  values providing 

1,2 3( ) 1    be denoted as 3
U . Then, for any 3, 3

U
x  , there 

will be a set of 2 loads, denoted by 2 3,( )U
x  , such that for any 

2, 2 3,( )U
x x    the input reflection coefficient when looking 

into Port 1, _1in , fulfils _1 2, 3,| ( , ) | 1in x x    . The set 

2 3,( )U
x  , which will include passive loads, is delimited by a 

stability circle in 2 , expressed as 
2 3,( )xC  . 

Now a reduction of the 3×3 scattering matrix to Port 1 and 
Port 3, depending on 2 , will be considered, performing the 

analysis in terms of the factor 
1,3 2( )  . Because the first 

analysis port (Port 1) is the same as in the previous case, for any 
load 2, 2 3,( )U

x x    connected to Port 2 and 
3, x  connected 

to Port 3 we will have _1| | 1in  . Thus, condition 1,3 2( ) 1    

must be fulfilled for any pair of loads 2 2 3, 3 3,( ),  U
x x     
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. Therefore, if there are 3  values such that 
1,2 3( ) 1   , there 

must be 2  values such that 1,3 2( ) 1   .  

Next, the connection of a passive load 
1

1, _1 2, 3,( , )x in x x


        to Port 1, where 2, 2 3,( )U

x x   , 

and the load 2, x  to Port 2 will be assumed. By Kirchoff’s laws, 

the reflection coefficient when looking into Port 3 will 
necessarily fulfil 

_ 3| | 1in  . In an analogous manner, when 

connecting the passive loads 1,x  to Port 1 and 3,x  to Port 3, 

the reflection coefficient when looking into the Port 2 will fulfil

_ 2| | 1in  .  

One can conclude that if any of the factors *
, ( )b u l  , 

, ( )b l u   

and  
, ( )l u b  is smaller than one for some passive values of the 

reflection coefficient within the brackets, the other two will also 
be smaller than one for certain passive values of the reflection 
coefficient on which they depend. Therefore, to determine 
whether the amplifier is potentially unstable under mismatch 
effects it will be sufficient to evaluate exhaustively one of the 

LS  factors for all the possible passive values of its 

corresponding sb . 

B. Relationship between the three LS  factors at the 

passivity boundary 

Let particular terminations at the two sidebands
* ,  l in u inf f f f f f     , given by * ,l u  , be assumed. 

Then, it will be possible to write: 

* * */  ;   = /l l l u u ua b a b        (4) 

The above relationships can be combined with (2) to obtain 
the input reflection coefficient _in b  at the baseband, given by 

_ = /in b b bb a . This provides the following expression, 

depending on * ,  l u   and the scattering parameters: 

* *

_ * *

  

1   
bl lb l bu ub u l u

in b
uu u ll l l u

s s s s P

s s Q

     
 

      
   (5) 

where the parameters P and Q, depending only on the scattering 
parameters, are given by:  

  ( ) ( )         

  
bu ub lu lb uu bu lb ul ub ll

bb uu lu ul

P s s s s s s s s s s

Q s s s s

   
 

(6) 

The amplifier will be unconditionally stable under mismatch 
effects if 

_| | 1in b   for any pair of values of *
l  and u , 

fulfilling *| | 1l   and | | 1u  . For notation simplicity, the 

circles delimiting the passivity boundaries in each of the two 
planes will be denoted *| | 1l   and | | 1u  .To determine the 

images of the passive regions *| | 1l   and | | 1u  , one can 

take into account that for each constant value of *
l , equation 

(5) defines a bilinear transformation [17] in the other parameter 

u . In an analogous way, for each constant value of u , 

equation (5) defines a bilinear transformation in the other 

parameter *
l . Thus, the image of the circle | | 1u  , given by 

 _ | | 1in b u   , will be the boundary of the images of all the 

passive loads | | 1u  , so all the images  _ | | 1in b u    are 

either inside or outside the transformed circle  _ | | 1in b u   . 

The same applies for the bilinear transformation in terms of *
l

, depending on u . 

Applying a similar reasoning, the images of the two circles 

_| | 1in b   and *| | 1l   in the u  plane, obtained through (5), 

form a global boundary of the images of all the possible passive 
combinations of 

_in b  and *
l . This can be rigorously 

demonstrated as follows. First, let us consider all the pairs 
* ,l u   fulfilling: 

 *
_ , 1 j

in b l u e          (7) 

where  *
_ ,in b u l  

 
is given by equation (5). Solving for u  

one obtains the function: 

 * ,u u l                               (8)  

Now the following set L will be defined: 

 * *,  , , such that | | 1u l lL          (9) 

The above mapping can give rise to u  values fulfilling either 

| | 1u   or | | 1u  . In particular, application of the mapping to 

the passivity boundary * 1 j
l e   ,   [0,2 ]   , denoted as 

*| |  1l  , will provide a set of circles Cu (see Fig. 5), 

depending on the phase  : 

 *( ) | | 1,u u lC        (10) 

For each  , the whole region *| | 1l   is mapped either 

inside or outside the circle ( )uC  , which constitutes a frontier 

between points u  belonging or not to the set  L for that   

value. When performing this operation  [0,2 ]   , the 

boundary of the region L is constituted by points belonging to 
the Cu circles. These points will agree with those in the whole 

set of stability circles traced in the u  plane for * 1 j
l e   ,

 [0,2 ]   . The factor *
, ( )b u l   provides the distance [28] 

to the stability circle in the u  plane for each *
l . Because the 

set of circles ( )uC  ,  [0,2 ]    constitutes the boundary 

of the u  points such that *| | 1l  , it will be sufficient to 

evaluate the factor *
, ( )b u l   through the circle * 1 j

l e    to 

determine the potential instability properties. In fact, a relevant 
function will be the one providing the minimum value of 

*
, ( )b u l   when evaluated through * 1 j

l e   . The resulting 

value will be denoted as 
,min [ (1 )]j

u b u e 
  . 

From the analysis of the mapping in (8), when evaluating 
*

, ( )b u l   through a circle * j
l oe

  , where 1o  , the 

minimum 
,min [ ( )]j

b u oe 
    will be larger than u  and smaller 

than the one obtained for any other magnitude o  . 

However, when using 1o   instead of the passivity boundary
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1o  , one must be aware that the three LS
 
factors will 

provide different potential stability predictions, as the analysis 
is not exhaustive and the evaluation of each of the three LS

 
factors will leave out some regions of | | 1b   , *| | 1l   and 

| | 1u    .  

0( )uC 

1( )uC 

2( )uC 

0

1

2

* 1l  1u 

*Im  l

*Re  l

Im  u

Re  u

 
Fig. 5 Formation of the limit set L in the l  plane. 

 
For the potential stability analysis, the three parameters 

,min [ (1 )]j
u b u e 

  , 
,min [ (1 )]j

l b l e 
   and

,min [ (1 )]j
u l u e 

   will be initially considered, where it has 

been taken into account that (in agreement with the properties 
discussed in subsections A and B) the minima resulting from

, (1 )j
b u e   and , (1 )j

l u e   should be identical, although 

obtained for a different phase   in each case. The parameters 

l  and u  respectively agree with the minimum distance to the 

stability circle in the *
l  and u  planes under phase variations 

in 1 j
sb e   . In order to obtain the minimum distance to the 

stability circle in the b  plane, the parameter 

,min[ ' (1 )]j
b b l e   , agreeing with 

,min[ ' (1 )]j
b u e  , must also 

be considered. Note that '  factors provide the distance to the 
stability circle in Smith chart corresponding to the “source” 
termination. 

The analysis of the three parameters b , l  and u  has been 

applied to the PA in Fig. 1 operating at 0.8 GHz. In an initial 
study, a o  load describing a spiral curve, ( )o h , has been 

considered. The analysis procedure is as follows. At each o
and for each perturbation frequency f, the phase   of the 

reflection coefficient 1 j
sb e    is swept from 0º to 360º, in a 

fine step, evaluating the factors ,' (1 )j
b l e  , 

, (1 )j
b l e 

, (1 )j
b u e   and 

, (1 )j
l u e   at each step. Note that N = 7 harmonic 

components are taken into account in the calculation of the 3×3 
scattering matrix that enables the determination of these factors. 
This is the number N considered for all the analyses presented 
in this work. For each f, only the minimum values versus   are 

kept, agreeing with the parameters ( )b f , ( )l f  and ( )u f , 

where the frequency dependence of these parameters is 
indicated explicitly. The results obtained for four particular o  

values in the spiral curve are shown in Fig. 6. As expected, the 

minima of 
, (1 )j

b u e   and 
, (1 )j

l u e   are overlapped for all the f 

values. 
The three parameters ( )b f , ( )l f  and ( )u f  provide the 

same information on the potential instability of the PA, in 
agreement with the derivations in subsections A and B. Indeed, 
the three parameters are either larger or smaller than 1 in the 
same intervals of perturbation frequency f. They cross unity at 
exactly the same frequency values [see the expanded view in 
Fig. 6(d)]. 

 

 
Fig. 6 Variation versus the perturbation frequency f the minima of the three 

factors 
, ( )b u  , 

, ( )b l   and 
, ( )l u   with 1sb  , for five particular 

values of o . The number of harmonic components considered is N = 7. (a) 

110.5º0.287 j
o e  , (b) 159º0.386 j

o e  , (c) 283.5º0.416 j
o e  , (d) 

150º0.557 j
o e  ,  and (e) 162º0.995 j

o e  . An expanded view is shown in Fig. 

6(d) to show the simultaneous crossing through 1. 
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For illustration, Fig. 7 presents the values taken by the 
parameter ,min [ ( )]j

b l oe


    versus the perturbation frequency f 

, for o  going from 0 to 1, in steps of 0.1. The termination 

considered at the fundamental frequency is 283.5º0.416 j
o e  , in 

Fig. 6(c). As can be seen, the parameter l , agreeing with 

,min [ (1 )]j
b l e 

   provides the minimum value at each f.  

Identical results are obtained when analyzing the other two 
factors *

, ( )b u l   and 
, ( )l u b  .  

 

 
Fig. 7 Frequency variation of the parameter ,min [ ( )]j

b l oe


    for o  

going from 0 to 1, in steps of 0.1. The termination considered at the 

fundamental frequency is 283.5º0.416 j
o e  , in Fig. 6(c). The number of 

harmonic components is N = 7. The parameter l , agreeing with 

,min [ (1 )]j
b l e 

    provides the minimum , ( )b l u   at each f.  
 

C. Frequency variation of the parameters b ,  l  and u  

For the stability analysis of a periodic regime at fin one should 
consider variations in the perturbation frequency f between 0 
and a value larger than fin/2, to enable the detection of frequency 
divisions by 2. In Fig. 6, the parameters b ,  l  and u  have 

been evaluated in the whole frequency range 0 to fin. The 
frequency f is an offset with respect to dc, inf  and inf . 

Therefore, the information obtained for the higher frequency 
values should be redundant. Indeed, when increasing f, the 
parameter l  provides an “image” of the predictions by the 

parameter b  at lower frequencies. This is very clear in the 

analyses of Fig. 6(a) and Fig. 6(c).  
The frequency variation observed in Fig. 6 is in agreement 

with the stability properties of periodic solutions. In fact, the 
poles of periodic solutions, agreeing with the Floquet 
exponents, are not univocally related to the Floquet multipliers, 
which do define the stability properties of periodic solutions in 
a unique manner [29]–[31]. Equivalent poles, associated with 
the same pair of complex-conjugate Floquet multipliers, are 
symmetrically located about the spectral lines of the harmonic 
frequencies of the original periodic regime 2 ink f , that is, they 

are distributed as (2 2 )inj f k f    . Therefore, the two 

bands with 1LS   observed in the analysis in Fig. 6 are linked 

and correspond to the same potential instability, at f  and 

inf f .  

Note that the poles at f  and inf f  are symmetrically 

located about /2inf , and may tend to this value under variation 

of a circuit parameter [26], [41]. From Fig. 6, one can expect 
potential frequency divisions by 2 when the fundamental 
frequency is terminated at the o  values considered in Fig. 6(a) 

to Fig. 6(d). However, the region of subharmonic impedances 
leading to this division is expected to be small, since the values 
of b  and l  are close to 1.  

The potential frequency division by two predicted in Fig. 6 
has been validated with an independent simulation. A small 
signal current source at fin/2 is introduced into the circuit at the 
output reference plane [Fig. 8(a)]. At fin, the circuit is loaded, in 
each case, with one of the o  values considered in Fig. 6. 

Instead of using a modified conversion-matrix approach as in 
[33], [42], a harmonic balance analysis at fin/2 is carried out. It 
is taken into account that there must be a phase relationship 
between the subharmonic current source and the input 
generator, due to the coherency of the two signals. The phase of 
the subharmonic source is set to zero (phase origin). Then, the 
phase of the input source in  is swept, using the small-signal 

current source to calculate the input admittance at the 
subharmonic component ( / 2, )in in inY f   at each phase step. The 

opposite admittance values ( ) ( / 2, )Lb in in in inY Y f    fulfill a 

limit condition for frequency division by 2, with subharmonic 
amplitude tending to zero, and provide the boundary in the 
Smith chart corresponding to the subharmonic load. The points 
of this boundary correspond to flip bifurcations [26], [41]. To 
obtain the frequency-division boundary in the Smith chart at

/ 2inf , the reflection coefficient associated to ( )Lb inY   must be 

calculated.  
The above method has been applied for the o  values 

considered in Fig. 6(b), (d) and (e), corresponding to 
159º( ) 0.39 j

o b e  , 150º( ) 0.56 j
o d e   and 162º( ) 0.995 j

o e e  . The 

division boundary, obtained with the technique in Fig. 8(a), has 
been traced in Fig. 8(b) for the three cases. It only intersects the 
Smith chart for ( )o b  and ( )o d . The passive / 2inf  loads 

enabling the frequency division are inside the division 
boundary. This division region is small, in agreement with the 
quantitative predictions of Fig. 6. This correspondence is found, 
despite the fact that the two types of analysis are fundamentally 
different, since the subharmonic current source in Fig. 8(a) has 
a phase relationship with the input generator.  

The capability to obtain frequency divisions for passive loads 
within the boundaries obtained in Fig. 8(a) has also been 
validated with an independent HB simulation. For the 
subharmoinc load 294.4º( / 2) 0.993 j

L inf e   and 

  159º0.386 j
o inf e  , one obtains the spectrum of Fig. 8(c).  

The results of the three-band analysis have been compared in 

Fig. 9 with that obtained when using the single LS  factor 

considered in [11], for which the analysis is restricted to the 

lower and upper sidebands *
lf  and uf . This two-band LS  

factor should agree with the one obtained with 
, ( )l u b  , when 

imposing a particular termination at baseband, such as 0b  , 
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which was considered in [11] and also here. Therefore, it has 
more limited prediction capabilities. As an example, in Fig. 9, 
corresponding to the fundamental-frequency termination 

  150º0.557 j
o inf e   in Fig. 6(d), the two-sideband method 

predicts stable behaviour, whereas the three-sideband one 
predicts potential instability. 

To extend the method to mismatch effects at higher harmonic 
terms one should consider all possible sets of harmonic 
impedance terminations, and obtain an M-port scattering matrix 
for each combination of harmonic impedances, where M is the 

total number of mismatched sidebands. All the LS  factors 

defined between any two ports of the M-port scattering matrix 
will provide the same information on the potential instability, 
under the condition that the reflection coefficients of the 
termination loads at all the other ports describe a unit circle. 
Such computational effort will not be worth in most cases due 
to the filtering action of the output network.  

 

Fig. 8 Validation of the capability to predict frequency divisions by 2. (a) 
Independent simulations using a small-signal current source at fin/2 (b) 
Boundaries of passive loads at the subharmonic frequency giving rise to 

frequency divisions for three o  values considered in Fig. 6. (c) Spectrum of 

the subharmonic solution obtained with an independent HB simulation for 
294.4º( / 2) 0.993 j

L inf e   and 159º0.386 j
o e  . 

   
 
The three-sideband stability analysis will be validated with 

measurements, in Section V, and with independent simulations 
through pole-zero identification, in the next section. 

Verification through simulation enables a high accuracy, under 
the certainty that the passive and active component models are 
identical. This validation will rely on the calculation of stability 
circles in the plane corresponding to the baseband termination 

b . The predictions obtained with these circles will be 

compared with the results of an accurate pole-zero 
identification at circuit level [15], [28], [39].  

IV. STABILITY CIRCLES IN THE THREE-SIDEBAND ANALYSIS 

In this section, the use of stability circles when considering 
three sideband frequency terminations (besides the 
fundamental-frequency termination o ) is presented and 

applied for an independent validation of the new outer-tier 
methodology. Selecting particular sets of values *, , ,b l o u     
with different stability properties would require a demanding 
implementation of a frequency dependent load ( )L f , 

exhibiting the values *, , ,b l o u     at the corresponding 

frequencies. Instead, a simple passive network will be 
considered here, which under modification of an element value 
should give rise to different stability conditions of the PA. Next, 
the values exhibited by the load at the four frequencies 

*, , ,b l in uf f f f  will be calculated to check the consistency with 

the potential instability analysis.  
The load will consist of an inductor L in series with a resistor 

R, which fits commonly used antenna models. When connected 
to the amplifier output (replacing the nominal 50  load) and 
under variations of the inductor L, at constant R = 5 , it gives 
rise to different stability conditions, as predicted by the pole-
zero identification method. Fig. 10 presents the variation of the 
real part of the dominant pair of complex-conjugate poles 
versus the inductor L, at constant input power Pin = 12 dBm. As 
gathered from Fig. 10, the PA is stable for L < 10.69 nH, and 
unstable for  L ≥10.69 nH. The circuit exhibits a Hopf 
bifurcation at the inductor value Lc1 = 10.69 nH.  

 
 

LS

 
 
Fig. 9 Comparison of the results obtained with the new potential-
stability analysis, using the three factors b ,  l  and u , with those 

obtained using the single LS  factor considered in [11]. 

 
The first validation will be carried out at the Hopf bifurcation 

point obtained for Lc1 = 10.69 nH. The poles crossing the 
imaginary axis have the critical frequency fc = 204.595 MHz, as 
obtained from the pole-zero identification. At the baseband, 
lower sideband, fundamental and upper sideband frequencies 
given by fb,c = fc = 204.595 MHz,  fin = 0.8 GHz, in cf f  and
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in cf f , the R–L load exhibits the reflection coefficients shown 

in Table I.  

 
Fig. 10 Variation of the real part of the dominant pair of complex-
conjugate poles versus the inductor L, with R = 5 , at constant input 
power Pin = 12 dBm. 

 
TABLE I 

REFLECTION COEFFICIENT OF THE R-L LOAD AT THE 

BIFURCATION POINT 
 Frequency 

(MHz) 

b 204.595 0.82998·ej148.9º 
l 595.405 0.88534·ej102.3º 
o 800.000 0.91156·ej85.58º 
u 1004.59 0.93173·ej72.86º 

 
Next, the [S3] outer-tier matrix in (2) will be used to obtain 

the stability circles in the b  Smith chart, when the perturbation 

frequency f varies in the interval from f1 =30 MHz to f2  = 370 
MHz about the critical value fb,c = 204.595 MHz. At the 
fundamental frequency fin = 0.8 GHz, the load exhibits the 
reflection coefficient 85.58 º0 .91156 j

o e  . For this particular 

o , the stability circles will be obtained reducing the [S3] 

matrix to a 2×2 matrix at the sideband frequencies f  and 

inf f , depending on the termination * ( )l f . This reduced 

matrix will be expressed as  *, ( )bu lS f f . At each f the 2×2 

matrix is calculated for the precise * ( )l f  value exhibited by 

the series R-L load at inf f  .  

The stability circles obtained from the matrix  *, ( )bu lS f f  

are traced in the plane b , for perturbation frequencies from 

f1  to f2 [Fig. 11(a)]. For perturbation frequencies such that 

,| | 1uu rs  , the stability circle is traced in solid line. When 

,| | 1uu rs  , the circle is traced in a dashed line. This allows 

distinguishing between the potentially unstable and stable 
regions. The circle obtained for the critical perturbation 
frequency fb,c = 204.595MHz is traced in a bolder line. The 
variation of the reflection coefficient exhibited by the series R-
L load ( )L f  through the interval f1  to f2  has also been 

represented. Around the critical frequency fc, the load values 
( )L f  are located, as expected, in the potentially unstable 

region.  
Next, the bifurcation condition at fb,c = 204.595 MHz will be 

validated. At this frequency, the R–L load exhibits the 

coefficient  * 102.3º
,( ) 0.88534 j

l L in b cf f e      , shown in 

Table I. Setting the reflection coefficient at the baseband 
frequency to 148 .9 º0 .82998 j

b e   and using the matrix 

 *, ( )bu lS f f  one obtains at the upper sideband frequency 

fin + fb,c the input reflection coefficient 72.85º
_ 1.0743 j

u in e  . 

This value fully agrees with the inverse of the reflection 
coefficient exhibited by the R–L load at the upper sideband 
frequency, i.e. 72.85º0.93173 j

u e    (see Table I). Thus, the 

bifurcation condition 
_ / 1u in u    is fulfilled, in total 

consistency with the results of pole-zero identification.  
 

 
Fig. 11 Stability conditions at Lc1 = 10.69 nH (bifurcation point in Fig. 10). (a) 

Stability circles for 85.58º0.91156 j
o e  traced in the b  plane for *( )l f  

values corresponding to those exhibited by the R-L load in the frequency 
interval f1 = 30 MHz to f2 = 370 MHz about the critical value 

fb,c = 204.595 MHz. For perturbation frequencies such that ,| | 1uu rs   

( ,| | 1uu rs   ), the stability circle is traced in solid (dashed) line.  The variation 

of the b  exhibited by the R–L load in the same frequency interval has also 

been represented. (b) Total admittance function 
_( )T in in u uY f f Y Y   , 

calculated with the three-sideband outer-tier analysis and with a full 
conversion-matrix approach in HB, using 7 harmonic terms. 

 
As an additional validation, the total admittance function 

_( )T in in u uY f f Y Y   , calculated with the three-sideband 

outer-tier analysis has been compared with the one obtained 
with a full conversion-matrix approach in commercial harmonic 
balance, using 7 harmonic terms. For the full conversion-matrix 
approach, a small-signal current source is introduced in parallel 
with the output R-L load to calculate the total admittance 
function, as the ratio between the source current and the node 
voltage. Results are shown in Fig. 11(b). As can be seen, the 
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curves for both the real and imaginary parts are overlapped and 
display a bifurcation point at fb,c = 204.595 MHz, where the real 
and imaginary parts of the total admittance are equal to zero.   
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Fig. 12 Stability conditions for L = 11.4 nH. (a) Stability circles for 

81.970.91733 j
o e  traced in the b  plane for *

l  values corresponding to 

those exhibited by the R-L load about the frequency of the dominant poles 
(fc = 212.176 MHz). For perturbation frequencies such that 

,| | 1uu rs   ( ,| | 1uu rs   ), the stability circle is traced in solid (dashed) line. The 

variation of the b  exhibited by the R–L load in that frequency interval has 

also been represented. (b) Impedance function 
_( ) 1 / ( )T in u uZ f Y Y   

calculated with the three-sideband outer-tier analysis and with a full 
conversion-matrix approach in HB, using 7 harmonic terms.  

 
Next, inductor values L in the unstable and stable ranges 

predicted by the pole-zero identification will be considered. 
From Fig. 10, for L = 11.4 nH, the amplifier is unstable. The 
stability circles are calculated for the new reflection coefficient 

81.97 º0 .91733 j
o e  , exhibited by the modified load R = 5 , 

L = 11.4 nH  at fin = 0.8 GHz. They have been traced in the b  

Smith chart [Fig. 12(a)] for the *
l  values exhibited by the new 

R–L load in the perturbation-frequency interval f1 = 30 MHz  to 
f2 = 390 MHz, which includes the frequency fc = 212.176 MHz 
of the dominant pair of complex-conjugate poles at 
L = 11.4 nH. The stability circle at fc has been traced in a bolder 
line and the unstable region corresponds to the outside of this 
circle, where the b  exhibited by the R-L load is located. This 

indicates, as expected, potential instability for this baseband 
termination. Next, the input admittance at the upper sideband 

( )uY f  is calculated using  *, ( )bu lS f f  and ( )b f . This 

allows the evaluation of the impedance-type transfer function 

_( ) 1 / ( )T in u uZ f Y Y  , analogous to the transfer function 

usually chosen for pole-zero identification [8], [15] [Fig. 12(b)]. 
This function has been compared with the one obtained through 
the full conversion matrix approach in harmonic balance (with 
7 harmonic terms), obtaining a full overlap of both the 
amplitude and phase. The impedance exhibits a clear resonance 
at the frequency of the dominant poles, with a positive phase 
slope that indicates unstable behaviour, in total agreement with 
the pole-zero analysis in Fig. 10. 

Next value is L = 10 nH, in the stable region predicted by the 
pole analysis of Fig. 10. Most of the stability circles obtained 
under variations of *( )l f  about the frequency of the dominant 

poles at L = 10 nH, lie outside the Smith chart [Fig. 13(a)]. The 
circle corresponding to this precise frequency value has been 
traced in bolder line and indicates absolute stability. The 
impedance transfer function 

_( ) 1 / ( )T in u uZ f Y Y   [shown in 

Fig. 13(b)], obtained with the three-sideband outer tier analysis, 
is fully overlapped with the one resulting from a full 
conversion-matrix approach in HB, using 7 harmonic terms. It 
has a negative phase slope, in agreement with the stable 
behaviour predicted by pole-zero identification.  
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Fig. 13 Stability conditions for L = 10 nH. (a) Stability circles for 

89.41º0.90547 j
o e   traced in the b  plane for *

l  values corresponding to 

those exhibited by the R-L load in the frequency interval f1 =30 MHz to f2  = 
370 MHz about the frequency of the dominant poles fc = 202.01 MHz . The 

variation of the b  exhibited by the R–L load in that frequency interval has 

also been represented. (b) Impedance function 
_( ) 1 / ( )T in u uZ f Y Y   

calculated with the three-sideband outer-tier analysis and with a full 
conversion-matrix approach in HB, using 7 harmonic terms.  
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V. DEFINITION OF A GLOBAL STABILITY PARAMETER 

As has been shown, the potential stability properties exhibit a 
multi-parameter dependence, changing with the fundamental-
frequency termination o , the perturbation frequency f and the 

terminations at the three sideband frequencies. In view of this 
complexity, the goal will be the derivation of a single quantity, 
globally accounting for the stability properties at each 
fundamental-frequency termination o . The three parameters 

( )b f , ( )l f  and ( )u f , with their crossings through 1, 

provide the same information regarding the conditional or 
unconditional stability properties. However, the actual 
parameter values are interesting since they contain useful 
information on the stability margin. Indeed, at each perturbation 
frequency they provide the minimum distance to the stability 
circles in the respective planes b , *

l  and u .  

The analysis will be initially particularized to ( )b f . In fact, 

this parameter (as well as the other two parameters l  and u  ) 

will vary with the perturbation frequency f and with the 
fundamental-frequency termination o . This is because the 

scattering matrix in (2) depends on this termination, which 
affects the steady-state solution about which the circuit is 
linearized. The double dependence will now be emphasized 
with the explicit notation ( , )b o f  . The parameter b  (as 

well as l  and u ) is continuous in the frequency f, due to the 

continuity of the scattering matrix, as evidenced by the results 
of Fig. 6. On the other hand, continuity with respect to o  is 

ensured by the smooth behavior of the set of nonlinear algebraic 
equations composing the HB system. Taking into account these 
continuity properties, a global stability parameter, associated 
with b , may be defined:   

 
 ( ) min ( , )T

b o f b o f          (11) 

 
which corresponds to the minimum value taken by ( , )b o f   

in the perturbation-frequency interval. The above parameter 
contains the full information on the potential instability 
conditions at each particular termination   o . Identical 

parameters ( )T
l o   and ( )T

u o   can also be defined for the 

lower and upper sidebands.  
To gather the whole information on the impact of the 

fundamental-frequency termination o  on the potential 

stability properties, the analysis set-up in Fig. 2(a) must be used. 
A double sweep must be carried out in the amplitude and phase 
of o  (or a spiral sweep), performing, at each sweep step, a 

large-signal small-signal analysis to obtain the impedance 
matrix [Z3]. This matrix, depending on both o  and f, is 

transformed to a scattering matrix and exported to in-house 
software to calculate the parameters ( )T

b o  , ( )T
l o   and 

( )T
u o  . Then, their variation with o  can be evaluated 

through contour plots traced in the o  Smith chart. When using 

these single numbers to characterize the potential stability 
properties, information on the most dangerous perturbation 

frequencies is lost, but can be easily recovered through 
inspection of the frequency plots used in Fig. 6, obtained with 
an undemanding spiral sweep applied to o , as done in Fig. 6. 

The above global analysis has been applied to the modified 
PA in Fig. 1, at the nominal operation point, with output power 
Pout = 22 dBm and efficiency 80%. Fig. 14 shows the contour 
plots of ( )T

b o   and ( )T
l o   in the o  Smith chart. At the limit 

of potential instability, corresponding to ( )T
b o   and 

( ) 1T
l o   , the contours agree in the two cases. When moving 

rightwards from these two contours, the two parameters 
decrease continuously from 1, but in a different manner. The 
parameter ( )T

l o   decreases faster than ( )T
b o  .  

 
 

Fig. 14 Contour plots of ( )T
b o   and ( )T

l o   in the o  Smith chart. The 

contours at the limit of potential instability, corresponding to ( )T
b o   and 

( ) 1T
l o   , agree in the two cases.  

 
The simulations in Fig. 14 have been validated with 

exhaustive measurements. The measurement test-bench is 
shown in Fig. 15. Initially, a triple stub tuner has been 
connected to the PA output. Multiple positions of the tuner have 
been tested. For each position, both the PA output spectrum and 
the input impedance exhibited by the tuner about the 
fundamental frequency fin have been measured. The tuner input 
impedance has been characterized with a network analyser. 
These exhaustive tests have provided the results shown in Fig. 
16. The impedance plots corresponding to stable behaviour are 
marked with squares in Fig. 16(a). The corresponding ensemble 
of output spectra is shown in Fig. 16(b) and evidences stable 
behaviour in all cases. The impedance plots corresponding to 
unstable behaviour are marked with circles in Fig. 16(a). The 
measured output spectrum corresponding to each termination 
load is shown in Fig. 16(b), in the case of stable loads, and in 
Fig. 16(c), in the case of unstable loads. These representations 
allow noting the output-power variation with the termination 
load. In Fig. 16(d) and Fig. 16(e), the output spectra are 
projected on the frequency – power plane, which, in the case of 
the unstable loads evidences undesired spectral components due 
to the PA self-oscillation.  
 
 

Very good agreement is found when comparing the 
experimental results in Fig. 16 with the stability predictions 
based on the contour plots of ( )T

b o   and ( )T
l o  in Fig. 14. 

On the other hand, the oscillation frequency is most usually 
within the regions of lowest LS  values detected in Fig. 6. It 

should be emphasized that the contour plots in Fig. 14 
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inherently contain the information on the circuit linearized 
response versus a perturbation at an incommensurate frequency 
f, as gathered from their definition in (11).  

 

 
 
Fig. 15 Measurement test-bench. A triple-stub tuner has been used as output 
load in the first measurement campaign to identify load values in the stable and 
unstable regions of the Smith Chart. It was later substituted by a microstrip 
patch antenna (Rogers 4003C). 
 

 
Fig. 16 Exhaustive measurements with a triple stub tuner, where multiple 
positions of the tuner have been tested. (a) Impedance plots for the different 
positions of the tuner, corresponding to the curves A to Q, measured in a 40 
MHz span. Stable and unstable points are marked with squares and circles, 
respectively. (b) Waterfall representation of the spectra measured for the stable 
loads. (c) The same representation for the unstable loads. (d) and (e) Projection 
of the measured spectra in (b) and (c), respectively. 

 
The results obtained with the contour plots in Fig. 14 and the 

exhaustive experimental characterization in Fig 16 have also 
been validated in conditions close to those in real applications. 

The PA has been connected to a patch antenna fabricated on 
Rogers 4003C, shown in Fig. 17(a). The VSWR of the 
manufactured antenna has been characterized and its lowest 
value is obtained at 787 MHz, instead of the PA operation 
frequency 800 MHz [Fig. 17(b)]. Fig. 17(c) shows the variation 
of its input reflection coefficient in the Smith chart.  

 

 
Fig. 17 PA behaviour when connected to a patch antenna. (a) Antenna 
fabricated on Rogers 4003C (b) Measurement of the antenna VSWR. (c) 
Measured variation of its input reflection coefficient in the Smith chart. (d) 
Spectrum received by the log-periodic antenna demonstrating the unstable 
behaviour of the PA.   

 
For the stability characterization of the PA loaded with the 

patch antenna, the transmitted signal is received by a general 
purpose log-periodic broadband antenna, connected to a 
network analyzer. See the details of the measurement test bench 
in Fig. 15. By performing the measurement without a 
directional coupler, power splitter or analogous devices, used to 
take a sample of the output spectrum, one can be sure that the 
only loading effects of the PA are those coming from the 
antenna input impedance.   

Taking into account the contour plots in Fig. 14, from a 
simple inspection of the antenna input impedance in Fig. 17, 
one can anticipate that the PA loaded with this antenna will be 
unstable. Indeed, when connecting the antenna to the PA 
output, an oscillation is obtained, shown in Fig. 17(d).  

In the next experiment, a directional coupler will be inserted 
between the PA output and the antenna. Before that, the input 
impedance of the subsystem composed by the cascade 
connection of the directional coupler and the antenna has been 
measured, obtaining the plot displayed in Fig. 18(a). The 
measured VSWR is shown in Fig. 18(b). From inspection of the 
plot in Fig. 18(a), located in the stable region of the o  Smith 

chart, according to the contour plots in Fig. 14, the PA should 
be stable. This is confirmed by the spectrum measured in Fig. 
18(c), which shows a stable behaviour. 

The three-sideband analysis followed by the contour plots 
provides an easy-to-apply methodology for the detection and 
suppression of instabilities due to mismatch effects.  
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Fig. 18 PA behaviour when a directional coupler is inserted between the PA 
output and the antenna. (a) Input impedance of the subsystem composed by the 
cascade connection of the directional coupler and the antenna. (b) Frequency 
variation of the measured VSWR. (c) Measured spectrum showing a stable 
behaviour. 
 

VI. CONCLUSION 

A general application method for the prediction of potential 
instability in power amplifiers under mismatch effects has been 
presented. It is based on the extraction of an outer-tier scattering 
matrix at the three sideband frequencies with impact on the 
stability properties, which in most cases will correspond to the 
baseband and the lower and upper frequency sidebands. With 
the inclusion of the baseband, the analysis is more accurate and 
complete, and enables the prediction of common instabilities, 
occurring around the input frequency divided by 2. The 
termination at the fundamental frequency affects the steady-
state solution and hence the outer-tier matrix, which is based on 
a linearization of the circuit about this solution. The complexity 
associated to the multiparameter dependence is resolved with a 
detailed analysis of the properties of the three different   
factors that can be associated to the 3×3 matrix.  Form these 
analysis, three new parameters have been defined, able to 
provide global information on the potential instability 
properties. Contours plots of these parameters enable a simple 
identification of the fundamental-frequency terminations 
leading to potential instability and provide valuable information 
to devise a stabilization procedure.  
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