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  
Abstract—A methodology for the prediction and in-depth 

understanding of the stability properties of coupled-oscillator 
systems is presented. Unlike former investigations, all possible 
combinations of phase-shift values between the oscillator 
elements are considered. This provides greater insight into the 
mechanisms leading to instability. The analysis is based on the 
determination of the bifurcation loci in the space defined by the 
inter-stage phase shifts, enabling the detection of both ordinary 
and co-dimension two bifurcations. The new methodology for 
bifurcation detection is applicable to any number N of oscillator 
elements. For illustration, the case of three oscillator elements is 
considered. This is representative of the behavior for any number 
N and admits a planar representation of the bifurcation loci. The 
loci facilitate the comprehension of stability changes commonly 
observed during the system tuning and enable the evaluation and 
increase of the stability margins. Using these loci, it is possible to 
predict and synthesize the stable phase-shift regions, which will 
have interest in the case of non-constant distributions used in null 
formation and other applications. Good agreement has been 
found between simulations and measurements of a practical 
coupled-oscillator system at 3.85 GHz. 
 

Index Terms—Coupled-oscillator system, stability analysis, 
bifurcation analysis. 
 

I. INTRODUCTION 

OUPLED-OSCILLATOR systems are applied for spatial 
power combining and beam steering of phased-array 

antennas [1]–[5]. As demonstrated in [1], [2], when the 
oscillators are synchronized, it is possible to obtain a constant 
phase shift progression between the oscillator elements by 
tuning the peripheral elements only. Non-constant phase-shift 
distributions can also be synthesized for null formation and 
other applications related to beam forming [6]–[9]. The 
coupled system often operates under weak coupling 
conditions, which reduces the amplitude and frequency 
variations when changing the inter-oscillator phase shift and 
virtually eliminates the risk of oscillation extinction in any of 
the oscillator elements [10]. Several works [1]–[4], [10]–[17] 
have addressed the stability analysis of coupled-oscillator  
systems with constant phase-shift distributions. Their main 
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goal has been to check the physical existence of particular 
solutions and/or determine the constant phase-shift interval 
with stable behavior. For a one-dimensional array of N 
oscillators one could expect, in principle, up to 2N-1 coexisting 
solutions with different stability properties [3], [11]–[12], 
[14]. In [11], an effort was made to analyze all the solutions 
coexisting with the one that exhibits a constant phase 
progression. This was done for a standard design of the 
coupling network [1]–[3] with a one wavelength transmission 
line bounded by two resistors, in a series connection. 
However, to our knowledge, no previous work has addressed 
the stability analysis of all possible combinations of phase-
shift values and the investigation of the bifurcations, or 
qualitative stability changes [12, 18], undergone by the 
coupled system when varying the tuning parameters. This 
analysis will provide valuable information on the various 
instability phenomena commonly observed during the system 
tuning. Furthermore, it will enable a global determination of 
all the stable (physical) phase-shift combinations in a given 
coupled-oscillator system. This information can be used at the 
design stage for an evaluation and increase of the stability 
margins. It will also be of interest in applications requiring 
non-constant phase-shift distributions. 

The analysis will be based on the determination of the 
bifurcation loci in the space defined by the different inter-
stage phase-shifts. As will be shown, using these analysis 
parameters, solutions that may coexist for the same values of 
the system parameters are univocally defined, which greatly 
facilitates the global determination of all the stable phase-shift 
combinations. The analysis is applicable to any number N of 
oscillator elements. For illustration, a “canonical” system of 
three oscillator elements will be considered here. In previous 
works [14]–[15], this system has been found to be 
representative of coupled systems with any number N of 
oscillator elements. With N = 3 it will be possible to illustrate 
the various bifurcation phenomena [12], [18] through a planar 
tracing of two-dimensional bifurcation loci. To our 
knowledge, this is the first in-depth analysis of the bifurcation 
mechanisms delimiting the stable operation ranges of coupled-
oscillator systems. The analysis provides the D–type and Hopf 
bifurcation loci, as well as the co-dimension two bifurcations 
[18]–[19], requiring the fine tuning of two parameters. The 
double-zero eigenvalue bifurcations [18] (of co–dimension 
two) correspond to the distinct points at which the Hopf locus 
and the D–type locus merge. A simple analytical expression 
for the D–type bifurcation locus is derived, which is 
demonstrated to depend only on one angle, determined by the 
coupling network and the individual oscillator model. This 
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fully new analytical expression (derived for the general case of 
arbitrary inter–stage phase shifts) is complemented with 
mathematical conditions for the double–zero eigenvalue 
bifurcations. Together with additional information on the 
magnitudes affecting the Hopf locus, this investigation of the 
bifurcation behavior provides the designer with great insight 
and control over the coupled-system performance. Major 
novelties with respect to previous works are the extension of 
the stability analysis to the case of non-constant inter-stage 
phase shifts, the new methodology for bifurcation analysis in 
terms of the phase shift between the oscillator element, and the 
detailed bifurcation analysis of the coupled system, including 
analytical expressions. The boundedness of the inter–stage 
phase shifts enables an efficient and exhaustive calculation of 
all the coexisting solutions and their stability properties. 

The paper is organized as follows. Section II presents the 
formulation used for the stability analysis of the coupled-
oscillator system in the general case of non-constant inter-
stage phase shift. Section III presents the Hopf and D–type 
bifurcation conditions, the analytical expressions for the D–
type locus and the mathematical conditions for the double–
zero eigenvalue bifurcation. In section IV the mathematical 
expressions are applied to an array of three oscillators at 
3.85 GHz, studying the evolution of bifurcation loci when 
varying the length of the transmission line in the coupling 
networks. Their impact on the location and size of the stable 
regions will be determined with the aid of these analyses. 
Stability of coexisting steady-state solutions is addressed in 
section V. 

II. FORMULATION FOR THE STABILITY ANALYSIS WITH 

ARBITRARY PHASE-SHIFTS 

The formulation for the stability analysis of coupled 
oscillators in weak coupling conditions and with arbitrary 
phase-shifts will be developed for a three-oscillator system 
[Fig. 1(a)]. As demonstrated in the works [14]–[15], limited to 
the case of a constant phase-shift progression, under weak–
coupling conditions, the steady-state response with any 
number N of oscillator elements can be inferred from that of a 
system of three elements N = 3. In the following stability 
analysis, all possible values of the two inter–oscillator phase 
shifts 1,2 2 1     and 2,3 3 2     will be considered. The 

oscillator elements are assumed equal. When isolated from the 
system, they oscillate at the free-running frequency 0 and 
voltage amplitude V0 (at the connection node), for the tuning 
parameter value 0. Under weak coupling conditions, the 
current to voltage ratio (admittance function Y) of each 
oscillator element will only undergo a small increment with 
respect to the free-running value Y0 = 0. This is determined by 
its derivatives with respect to the voltage (YV), frequency 
(Y), and tuning parameter (Y), evaluated at the free-running 
point. Applying Kirchoff’s laws to the N = 3 oscillator nodes 
at the fundamental frequency, one obtains the following 
system of steady-state equations H1 to H3:  
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3 2
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1 V 0 1 0 0 1 e 0

j( )
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 
 

      

 

    

  

      

 

  (1) 

where Ye and Ynb correspond to the parameters Y11 and Y12 of 
the admittance matrix of the coupling network, assumed 
passive and symmetrical, and 1 2 3 1 2V , V , V , , ,       are 

the increments in the oscillation amplitude, oscillation 
frequency and tuning parameters with respect to the free–
running values (V0, 0, 0). The phases of the three oscillator 
elements are 1 2 3, ,   , though for the steady–state 

calculation, one of the them can be arbitrarily made equal to 
zero [12], [18], due to the system autonomy ( 1 0º  ). Note 

that the second order terms: 2
i i iV ,  V ,  V      with 

i = 1 to 3, have been neglected in (1). The system still has a 
non–constant amplitude distribution, due to the terms iV  

(where i = 1 to 3).  
 

 
Fig. 1. Generic schematic of a three-element coupled-oscillator 
system. (a) The coupling network consists of a transmission line of 
length l bounded by two resistors Rc in series connection. (b) 
Schematic of the individual oscillator circuit based on the FET 
NE3210S01. (c) Photo of the three-element coupled-oscillator 
system. 
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System (1) is linear in i 1 2V , , ,     but nonlinear in the 

phase values. For a realistic description of the oscillator 
elements, the derivatives VY ,Y ,Y   are calculated through 

finite differences in harmonic balance (HB), using an auxiliary 
generator (AG), as shown in [20]. The inter–stage phase shifts 

1,2 2 1 2       and 2,3 3 2     are modified by 

simultaneously varying the two independent tuning parameters 

1 2,   of the two outermost oscillators. The formulation (1) 

is applicable to non–purely sinusoidal oscillators provided the 
harmonic content is relatively low, so that the currents injected 
by the coupling networks at higher harmonic components have 
a small effect on the coupled system behavior. 

For the stability analysis, a small perturbation is considered 
in all the amplitude and phase variables of (1), which become: 

 

1 0 1 1

2 0 2 2

3 0 3 3

1 1

2 2 2

3 3 3

V (t) V V V (t),

V (t) V V V (t),

V (t) V V V (t),

(t) 0 (t),

(t) (t),

(t) (t)

    

    
    

   
    
    

       (2) 

 
where 1 0º   has been assumed, due to the system autonomy.  

Let the state-variable vector t
1 2 3 2 3X ( V , V , V , 0, , )       be 

defined. Because the perturbation is small, it is possible to 
linearize the coupled system (1) about the steady–state 
solution oX . The linearization will also be carried out in terms 

of the frequency variable , which is justified from the 
identical design of all the oscillator elements and the fact that 
they should be stable prior to their connection to the coupled 
system. In these conditions, instability can only arise as a 
result of the weak coupling and may only lead to unstable 
poles with zero or small imaginary part [1]–[3],[12]. This will 
be in the order of the difference between the individual 
oscillation frequencies. Performing this linearization, one 
obtains the following perturbed system: 
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)

j ( t)j ( t)
nb 0 e 0Y V e Y V e 



  

  (3) 

 
where s is the derivative operator. The exponentials of the 
phase variables can be approached as: 

 i ij ( t ) j
ie e 1 j (t)   �         (4) 

where i = 1 to 3. Application of the derivative operator s to 
any of the time varying terms ij (t)

iV (t)e 
 provides the 

following increments:  

 iji
i 0

0

V (t)
j (t) V e

V
 

  
 


  (5) 

where the dot indicates a time derivation and the second–order 
terms have been neglected. Replacing (5) and (4) into (3), and 
retaining only the first order terms [in consistency with system 
(1)], one obtains the following differential equation system: 
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To obtain a compact equation in matrix form, the following 
vector will be defined: 

    Tr i r i r i
1 1 2 2 3 3H H , H , H , H , H , H       (7) 

where the sub-indexes in H  refer to the  components of the 
steady–state system in (1) and the super–indexes indicate real 
and imaginary parts. After cancelling the steady-state terms in 
(6), the following Linear Time Invariant (LTI) system in the 
time-varying increments is obtained: 
 

 
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
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where oX  is the steady-state solution of (1), at which the 

derivatives in (6) are calculated and the vector X(t) of time-

varying increments has been defined. The derivative matrixes 
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in (8), obtained from simple inspection of system (6), are 
given by: 
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r
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   (10) 

Note that the functions r i r i r ia ,a ,b ,b ,c ,c in the above matrix 
correspond to the real and imaginary parts of the phase 
dependent terms in (1), that is: 
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 The stability of a particular steady–state solution 

t
o 1 2 3 1,2 2,3X ( V , V , V ,0, , )       is determined by the 

eigenvalues of the constant matrix [M] in (8). In the case 
considered here, N = 3, the order of matrix [M] is 6×6. Note 
that when doing 1,2 2,3     , the formulation particularizes 

to the one in [14], which only considers the case of a constant 
inter-stage phase shift. Due to the autonomy of the system (1), 

the matrix [M] will have a zero eigenvalue for all the possible 
steady state solutions X , obtained by varying the tuning 
elements 1 2,  . Therefore, the stability will be determined 

by the 5 remaining eigenvalues of [M], which can be real or 
complex conjugate. 

III. BIFURCATION ANALYSIS 

A key aspect to understand the stability properties of the 
coupled system is the fact that its eigenvalues vary in a 
continuous manner versus any analysis parameter. This comes 
from the continuity of the system equations. As gathered from 
inspection of (8), the functions on the right hand side of this 
equation system are derivable, so the system is continuous. 
The continuity of the eigenvalues implies that small changes 
in the operation conditions turn into small variations of the 
eigenvalues. Prior to the connection to the coupled system, 
each individual oscillator in free-running conditions contains a 
zero eigenvalue, associated to solution autonomy. After its 
introduction into a weakly−coupled system, these critical 
eigenvalues will undergo a small variation, except one of them 
( 1 0  ), which will necessary remain at zero due to the 

autonomous behavior of the coupled system. Therefore, in 
weak coupling conditions an N–oscillator system will have 
N−1 eigenvalues located relatively close to the imaginary axis. 
For stability, these N−1 eigenvalues must be on the left−hand 
side of the complex plane.  

Departing from the formulation developed in the previous 
section, in Sub−Section III.A we will present mathematical 
conditions enabling the detection of Hopf and D−type 
bifurcations, which, respectively, correspond to the crossing of 
a pair of complex-conjugate eigenvalues and a real eigenvalue 
through the imaginary axis [12], [18]−[19],[21]. A major 
advantage of the new method comes from the fact that 
detection of bifurcation points does not require obtaining the 
steady state solution in (1). Bifurcations can be detected from 
the analysis of Jacobian matrixes depending only on the 
individual oscillator derivatives VY , Y , Y  , the admittance 

matrix of the coupling network and the particular phase shift 
values 1,2  and 2,3 . In Sub–Section III.B an analytical 

expression for the D–type bifurcation locus will be presented, 
as well as the mathematical conditions for the occurrence of 
double-zero eigenvalue bifurcations (of co-dimension two), at 
which the Hopf locus and the D–type locus merge [18].  

A.  Calculation of bifurcation loci 

The poles associated to a given steady–state solution will 
correspond to the roots of the characteristic determinant [12], 
[18]–[19] of the Linear Time Invariant (LTI) system (8), 
expressed in terms of the complex frequency s: 
 

 

 
6 5 2

6 5 2 1

5 4
6 5 2 1

det s[I] [M] p s p s p s p s

s p s p s p s p 0

      

     




   (12) 

 
where [I] is the 6×6 identity matrix and the coefficients pi, 
with i = 1 to 6, depend on the individual oscillator 
derivatives VY ,Y , the coupling parameter nbY , the free–
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running oscillation amplitude V0 and the phase shift values 

1,2 2,3,  . Equation (12) has a root s = 0 due to the autonomous 

behavior of the coupled-oscillator system. Dividing the 
polynomial expression by s and replacing s with the imaginary 
term j, we will have the following bifurcation condition: 

5 4
6 5 2 1p ( j ) p ( j ) p ( j ) p 0            (13) 

Hopf bifurcations are obtained for j 0   and D–type 

bifurcations are obtained for j 0  . In the following, a 

detailed description of the implications of these two 
bifurcations and the methodologies for their practical 
numerical/analytical calculation will be presented. The 
relevant case of double-zero eigenvalues, of co–dimension 
two, will also be considered. 
 
1) Hopf bifurcation 
 Let the fundamental frequency of the periodic solution of 
the coupled oscillator be . At a Hopf bifurcation [12], [18]–
[19], [21] a pair of complex-conjugate eigenvalues j   , 

where 0   is incommensurable with , crosses the 
imaginary axis of the complex plane. Incommensurable 
frequencies are not harmonically related, which implies 

m

n
   , where m and n are integers. The Hopf bifurcation 

gives rise to the onset of a quasi–periodic solution at the two 
fundamental frequencies , . For the Hopf bifurcation 
detection, the complex equation (13) should be numerically 
solved in terms of 1,2 2,3,   and  through an error 

minimization technique. An alternative procedure, based on 
eigenvalue computation, is used in this work, noting that a 
Hopf bifurcation will occur at the pairs of inter–stage phase 
shift values 1,2 2,3,  (acting as the analysis parameters) that 

fulfill the condition: 
 

 1,2 2,3 1,2 2,3( , ) 0,    ( , ) 0         (14)  

 
The eigenvalues are calculated using LAPACK [22] routines 

to implement the associated matrix factorizations such as LU 
(Lower Upper), QR, Cholesky and Schur decomposition. The 
bifurcation detection will be based on the computation, 
classification and ordering of the eigenvalues of the matrix 
[M]. For each pair of inter–stage phase shift values 1,2 2,3,  , 

the eigenvalues λi of the matrix 1,2 2,3M( , )     are calculated 

and rearranged as: 
 

 1 2 3 2
r r r r

N          (15) 

 
where the superindex r means real part. The first eigenvalue 


1
 0  is associated to the system autonomy. Due to the 

arrangement in (15), if the third eigenvalue has a zero real part 

3 0 r , the second eigenvalue will necessarily have a zero 

real part too 2 0 r . There are two possible causes for this 

situation. The first and more general is the Hopf bifurcation, 
for which two complex conjugate eigenvalues are located on 

the imaginary axis j  . The second one is the co–

dimension–two bifurcation, corresponding to a degenerate 
Hopf bifurcation, for which the imaginary part of the 
complex-conjugate eigenvalues is equal to zero (double–zero 
eigenvalue bifurcation [18]). As will be shown in Sub–Section 
III.B, the co–dimension–two bifurcations correspond to 
distinct (isolated) points in the parameter plane. Note that at 
ordinary D–type bifurcations (where a single real eigenvalue 
crosses the imaginary axis) condition 3 0 r  is fulfilled, due 

to the arrangement in (15).  
Taking the above reasoning into account, Hopf bifurcations 

can be detected from the analysis of the real part of the third 
eigenvalue. For this detection, the following two–dimensional 
function will be defined: 


3
(

1,2
,

2,3
)  

3
r     (16) 

The function (16) provides a surface in the space 1,2 2,3,  , 

which is obtained by two undemanding nested phase sweeps 
in 1,2 2,3,  , bounded in the interval (–180º, 180º). Then, the 

entire Hopf locus can be directly traced by obtaining the 
intersection of the surface (16) with the plane 

3
 0. Once 

the phase-shift values at the Hopf bifurcation locus have been 
calculated, the corresponding values of the tuning voltages can 
be directly obtained by solving the linear system (1). 

 
2) D–type bifurcation 

As already indicated, system (8) will exhibit an eigenvalue 
1 = 0 for all the possible values of 1,2 2,3,  , which is due to 

the system autonomy. The crossing of an additional real 
eigenvalue through zero (2 = 0) will give rise to a D–type 
bifurcation, associated with a singularity of the solution curve 
when traced versus any analysis parameter. In fact, D–type 
bifurcations, leading to qualitative stability changes at the 
fundamental frequency (without generation of any new 
frequency components in the solution spectrum) necessarily 
have an impact on the geometry of the solution curve [12], or 
set of solutions obtained when varying the analysis parameter. 
Note that any singularity of the matrix [M] in (8) will be due 

to a singularity of 
0X

H
[JX]

X





since the matrix 
0

1

X

H

X




 
 is 

constant for all the parameter values and nonsingular, as can 
be easily verified. Due to the free–running behavior of the 
coupled system, at the D–type bifurcation the Jacobian matrix 
[JX] will have two zero eigenvalues: one inherent to the 
system autonomy and the other due to the D–type bifurcation. 
Applying the properties of the square matrixes, the rank and 
Kernel dimension of [JX], denoted, respectively RX and KX, 
will fulfill: 

 X X XK 6 R ,    K 1        (17) 

Note that the kernel dimension agrees with the number of zero 
eigenvalues. The condition XK 1  is due to the system 

autonomy. A new matrix [JC] will be defined here, which is 

obtained by replacing the column 
1

H


 with 
H


 in the matrix 

[JX], where   is the angular frequency. Thus, the matrix [JC] 
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can be expressed as: 

1 2 3 2 3

H H H H H H
[JC] , , , , ,

V V V

      
        

     (18) 

Since [JX] and [JC] differ only in one column, their rank can 
differ at maximum in one unity and, from equation (17): 

JC XK K 1     (19) 

Note that, any one of the last three columns of [JX] 
corresponding to the phase derivatives can be expressed as a 
linear combination of the other two. Since   is an 
independent parameter, not expressible as a linear 
combination of the state variables  1 2 3 2 3V ,V , V , ,  , the 

replacement of 
1

H


 by 
H


implies that JC JXK K 1  . 

To assess the rank of [JC] we will take into account that 
steady–state system (1) can be solved in terms of 

 t

1 2 3 2 3X V , V , V , , ,         for most pairs of tuning–

parameter values 1 2( , )  . According to the Implicit 

Function Theorem [23], this implies that the Jacobian matrix 
[JC] is invertible at those parameter values, fulfilling 

JC 1 2K ( , ) 0   . From the matrix comparison above, 

matrix [JC] will be singular (and therefore non invertible) at 
the points 1o 2o( , )   at which [JX] exhibits two zero 

eigenvalues. Therefore, a singularity of matrix [JC] implies a 
D–type bifurcation.  

The geometrical implications are demonstrated next. Let 
nX  be the point n of the solution curve obtained when varying 

any of the two tuning parameters i , where i = 1,2. Next 

point n+1, expressed as n 1X 
 , and obtained after an arbitrarily 

small incremental change in the analysis parameter (either 

1  or 2 ), can be approached: 

  T

1 2 3 2 3 i
i

H
JC V V V 0


        


     (20) 

The above constant increments should not be confused with 
the time varying increments resulting from the system 
perturbation in (2). For compactness, the following vector will 
be defined: 

  T

1 2 3 2 3X V  V  V              (21) 

Dividing both terms by the scalar i  and solving for the 

resulting vector one obtains: 

  
i

1
0

i i i

X dX H
lim JC

d
 


 

  
  

 (22) 

Therefore, a singular matrix [JC] implies an infinite slope of 
the solution curve (traced in terms of any of the variables 

1 2 3 2 3V , V , V , , ,      ) versus any of the two parameters 

i , where i = 1,2.  

B. Analytical expression of the D–type bifurcation 

Due to the existence of numerous zeroes in the matrix [JC], 
most coming from the three first columns of amplitude 
derivatives in (18), it will be possible to obtain a manageable 

analytical expression for the determinant det[JC]. This 
determinant is operated first. Then, the various inner products 
and cross products existing in the resulting expression are 
carefully identified, which provides: 

 

2,3 1,2 v,nb v,nb

2
2,3 1,2 v,nb

2
2,3 1,2 v,nb

det[JC] C [ sin( )sin cos

1
cos( )(3 4sin )

2
1

cos( )(1+2cos )]
2

      

      

    

    (23) 

 
where the constant C is: 

2 2
v v nbC (Y Y ) Y Y        (24) 

and r i i r
v v vY Y Y Y Y Y      . The angle v,nb  is given by: 

v,nb nb vangle(Y ) angle(Y )   . Therefore, the determinant 

depends on the derivatives vY , Y  of the individual oscillator 

and the parameter nbY  (parameter Y12 of the 22 admittance 

matrix of the coupling network). By setting det[JC] = 0, one 
obtains the following analytical condition for the D–type 
bifurcation locus in the plane 1 2 2 3, ,,  :  

 

2,3 1,2 v,nb

2
2,3 1,2 v,nb

2
2,3 1,2 v,nb

sin( )sin(2 )

cos( )(3 4sin )

cos( )(1+2cos ) 0

    

      

     

     (25) 

An identical result is obtained from the characteristic equation 
(12), taking into account that at a D–type bifurcation this 
equation must have a root of value zero, in addition to the one  
associated to the system autonomy (represented by the 
common factor s). Thus, the condition for D–type bifurcation 
is 1p 0 , which provides the same analytical expression (23). 

From inspection of (25), a fundamental result is derived: to the 
first-order approximation considered through the paper, the 
locus of D–type bifurcations only depends on the angle v,nb . 

Therefore, once the angle v  of the voltage derivative vY  is 

known, one can always synthesize the coupling network so as 
to obtain particular D–type bifurcation loci, which would be 
done in a straightforward manner. This property is believed to 
be highly relevant for the designer, since it enables a 
remarkable control on the global stability of the coupled 
system. It will be numerically validated in the next section, 
using both a numerical resolution of det[JC] = 0 and a more 
involved extension of the nonlinear-simulation technique in 
[10]–[13]. 

Condition (25) can be particularized to the case of a 
constant phase shift progression 1,2 2,3     . In this case, 

the work [14] demonstrated that, under weak coupling 
conditions, the stable phase-shift range corresponds to 
(−90º, 90º) when the condition v,nbcos 0   is fulfilled. This 

is true provided the system is not operating in the 
neighborhood of v,nbcos 0  . If the opposite condition 
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v,nbcos 0   is fulfilled, the stable phase-shift range is (90º, 

270º), which, again, is true provided the system is not in the 
neighborhood of v,nbcos 0  . As shown in [14], this stability 

inversion occurs continuously, but very rapidly as condition  

v,nbcos 0   is approached, such that the stable constant 

phase shift interval becomes zero at v,nbcos 0  . The work 

[14] also demonstrated that optimum behavior of the coupled 
system with constant phase shift progression is obtained for 

v,nbsin 0  , which leads to minimum variation of the 

oscillation frequency and the phase-noise spectral density with 
the constant inter-stage phase shift . When particularizing 
(25) to the case 1,2 2,3     , one obtains the following 

condition: 
2

v,nb
2

v,nb

2cos 1
cos(2 )

1 4cos

 
 

 
        (26) 

From inspection of (26), in the constant inter-stage phase-
shift progression, D–type bifurcations can only occur for 

v,nbcos 1   or v,nbcos 0  . In all the other cases, the term 

on the right hand side of (26) has magnitude bigger than one. 
The two possibilities correspond to two different situations. 

First one, v,nbcos 1  , is in correspondence with the 

condition for optimum behavior: v,nbsin 0  . In this 

situation, equation (26), satisfied at each of the two phase shift 
values 90º    and 90º  , provides the limits of the stable 

behavior interval. On the other hand, v,nbcos 0   is the limit 

condition for stability inversion [14].  
To derive an analytical expression of the Hopf locus, one 

should apply the Fourier transform to system (8), which 
provides the following characteristic determinant: 

 det j [I] [M] 0          (27) 

where  is the perturbation frequency. After elimination of 
common factor j, associated to the system autonomy, the 
analytical expansion of (26) leads to a cumbersome complex 
expression of fifth order in the frequency j. From a careful 
inspection of this expression, it is gathered that, unlike the D–
type locus, the Hopf locus depends on v nbY , Y  and the two 

angles v,nb  and v, vangle(Y ) angle(Y )    . As will be 

shown in the next section, the Hopf locus will not present a 
complex geometry, unless the system operates under small 
values of v,nb| cos |  and v,| sin | . Note that a small 

negative value of v,sin( )   implies a small stability margin 

of the individual oscillator in free-running conditions  [12] , 
[27]). As expected, as v,sin   approaches zero, the plane 

1,2 2,3,   becomes progressively void of stable points.  

In systems exhibiting both Hopf and D–type bifurcations 
(like the coupled-oscillator system), there will be, in general, 
some particular points of the parameter space where two real 
eigenvalues cross through zero simultaneously. At these 

double–zero eigenvalue bifurcations [18], of co–dimension 
two, the Hopf locus and the D–type locus merge. In fact, the 
double zero eigenvalue can be interpreted as a degenerate 
Hopf bifurcation, where the frequency of the two critical poles 
j becomes zero. Using the characteristic equation (12), 
these bifurcation points simultaneously fulfill (25) and the 
following condition: 

2 12 23p ( , ) 0           (28) 

The coefficient 2p  has a very complex analytical 

expression. However, the distinct intersection points of (25) 
and (28) are mainly determined by the angle v,nb , unless 

operating near the stability inversion (condition v,nbcos 0  ) 

where they be become very sensitive to other magnitudes, i.e., 

vY , Y . This will be numerically confirmed in the practical 

example of Section IV. 

IV. BIFURCATION ANALYSIS OF A COUPLED-OSCILLATOR 

SYSTEM AT 3.85 GHZ  

The above formulation and bifurcation analysis has been 
applied to a practical system of N = 3 oscillators operating at 
3.85 GHz. The oscillators are designed using a field–effect 
transistor (NE3210S01) on a RO4003C substrate [Fig. 1(c)]. A 
varactor diode (SMV1232) is used as a tuning element for the 
control of the phase shift. A comparison between the 
simulated and experimental frequency versus tuning voltage 
curve of the individual oscillator (in free–running regime) is 
presented in Fig. 2. Although library models provided by the 
manufacturers have been used for all the lumped elements in 
simulation, some discrepancies between measurements and 
simulations have been found. A frequency offset of about 200 
MHz is appreciable in Fig. 2 between the two curves. These 
discrepancies are attributed to the limited accuracy of the 
component models, tolerances of the etching process, and 
typical component dispersion in hybrid technology. The 
coupling networks are composed of a transmission line section 
of electrical lengths 12 and 23, with characteristic impedance 
Zc = 100 , bounded by series resistors of value Rc = 300  
which corresponds to weak-coupling operation [14], [15]. 
Different values of 12 and 23 will be considered in this 
investigation.  
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Fig. 2. Frequency versus normalized tuning voltage of the individual 
oscillator. Simulation is plotted in solid line and measurement results 
are plotted with squares.  

 
Usually, the bifurcation loci of nonlinear circuits are traced 

in the plane defined by the system parameters, which in the 
case of the coupled system, correspond to the tuning voltages. 
However, this representation is ambiguous due to the 
coexistence, for the same parameter values, of solutions, with 
different phase values, as shown in [11]. Instead, a 
representation in the plane defined by the two phase–shift 
values 1,2 2 1     and 2,3 3 2     is carried out here. 

The bifurcation analysis considers all possible values of 1,2  

and 2,3  and, of course, includes the particular case of a 

constant phase–shift distribution 1,2 2,3      where the  

value is varied by detuning the outermost oscillators. In the 
plane defined by the two phase shifts 1,2 2,3,  , the constant 

phase shift solution 1,2 2,3      is defined by a straight line 

with unit slope.  
In Sub–Section IV.A, the new analytical expression of the 

D–type locus will be validated through independent numerical 
resolutions of det[JC] = 0 and through an extension to the case 
of a non–constant inter–stage phase shift of the already well–
established numerical method in [10]–[13]. In the next Sub–
Sections IV.B, IV.C and IV.D, the system will be analyzed for 
three different electrical length values of the transmission line 
in the coupling network. The values chosen are 345º, 363.5º 
and 273.5º. These values have been selected taking into 
account the coupled–system performance when providing the 
solution with constant phase-shift progression [14]. First value 
(12 = 23 = 345º) is not optimum but satisfies the condition 

v,nbcos 0   for the stable constant phase–shift interval 

 90º ,90º . Second value (12 = 23 = 363.5º) is optimum for 

the stable interval  90º ,90º , as it fulfills v,nbsin 0   and 

v,nbcos 0   [14]. Third value 12 = 23 = 273.5º) satisfies the 

condition v,nbcos 0  , which provides the stable constant 

phase–shift interval (90º, 270º). The values 345º and 273.5º 
have been calculated after measuring the experimental 
oscillation frequency of the coupled system. For completeness, 
two additional electrical length values are considered in Sub–
Sections IV.E and IV.F, respectively corresponding to 12 = 
23 = 183.6º and 12 = 23 = 100.1º. The first value 183.6º 
fulfils v,nbsin 0   and v,nbcos 0  , which gives rise to 

minimum oscillation frequency deviation through the stable 
constant inter-stage phase shift interval 90º to 270º. The 
second value 100.1º fulfills v,nbcos 0  , corresponding to 

one of the two limit cases for stability inversion. Finally, in 
Sub–Section IV.G the case of two different electrical length 
values 12  23 is considered. 

 

A. D–type loci for identical values of the angle v,nb  

Initially, the validity of the analytical expression in (25) will 
be demonstrated through exhaustive comparison with 

numerical calculations of the D–type bifurcation loci using 
det[JC] = 0 and an extension of the approach in [10]. Twenty 
different values of the angle v  (angle of the oscillator 

derivative Yv) have been considered, defined by 

v m 360º /20  , where the integer m goes from 0 to 19. For 

each v , the electrical length 12 = 23 =  of the transmission 

line in the coupling network is calculated, so as to have an 
identical  v,nb  value ( v,nb  = 22.12º) in all cases. This value 

agrees with the one corresponding to our actual oscillator 
derivative Yv and the electrical length 345º, considered in the 
next sub-section. As shown in Fig. 3(a), all the D–type 
bifurcation loci obtained through numerical resolution of 
det[JC] = 0 are overlapped (20 curves) and exactly agree with 
the locus provided by the analytical expression in (25). The 
results obtained through the extension of numerical method in 
[10]–[13] (20 curves) have also been superimposed and show 
an excellent agreement. Note that in the case of non–constant 
inter–stage phase shifts, convergence problems are often 
encountered with that numerical formulation, especially for 

v,nb  values near the stability inversion. The results in 

Fig. 3(a) demonstrate the correctness of the analytical 
expression (25).  

 

 
Fig. 3 (a) Ensemble of D–type bifurcation loci obtained for twenty 
different values of electrical length and angle v, but maintaining a 
constant value of the angle v,nb = 22.12º. Superimposed are the 

results of the new analytical expression (25), the numerical resolution 
of det[JC] = 0 and an extension of the simulation technique in [10]. 
(b) D–type bifurcation locus obtained from (25) (solid line) and locus 
of points fulfilling condition (28) (dashed lines), for v = 20º and 
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v = 120º. The two Hopf bifurcation points of the constant phase–
shift solutions are plotted with squares. 

 
Note that the stable regions are also determined by the Hopf 

bifurcation locus, which has not been considered yet. 
However, some points of this locus are readily available if we 
take into account the following. Unless the system operates 
near the stability inversions, and under weak coupling 
conditions, the edges of the stable interval of the constant 
phase shift progression will be given by –90º and 90º, which 
(except for v,nbsin 0  ) should correspond to Hopf 

bifurcations. On the other hand, the double–zero eigenvalue 
bifurcations provide the points where the Hopf locus and the 
D–type locus merge. They are obtained from the intersections 
of the D–type locus with the locus of 1,2 2,3,   values 

fulfilling (28).  
The D–type locus given by (25) and the locus composed by 

the points fulfilling (28) have been traced in Fig. 3(b) for two 
different values of v (20º and 120º), calculating in each case 
the electrical length 12 = 23 =  so as to have the same value 
of the angle difference v,nb  = 22.12º, considered in the 

previous analysis. The double-zero eigenvalue bifurcations, 
obtained from the intersections of (25) and (28), are marked 
with circles. As can be seen in Fig. 3(b), the intersection 
points (double-zero eigenvalue bifurcations) for the two v 
values (20º and 120º) are very close. The Hopf bifurcations 
corresponding to the solution with constant inter-stage phase 
shift are marked with squares in the same figure.  

 

B. Electrical length 12 = 23 = 345º 

Initially, the electrical length 12 = 23 = 345º has been 
considered, obtaining the loci of Fig. 3. For better illustration 
of the patterns of the Hopf and D–type bifurcation loci, these 
loci have been represented in the interval −360º to 360º in Fig. 
4(a). The set of phase points 1,2 2,3,   at which one real 

eigenvalue crosses the imaginary axis through zero (zero-
eigenvalue or D–type locus) is traced with solid line. The set 
of phase points at which a pair of complex–conjugate 
eigenvalues crosses the imaginary axis (Hopf–bifurcation 
locus) is traced with dashed line. The two loci delimit sections 
of the phase plane with different stability properties. By 
performing complementary local stability analyses in the 
various sections, using the formulation (8), it has been 
determined that the shaded region (Region A in Fig. 3) is 
stable, with all the eigenvalues on the left–hand side of the 
complex plane. This stable region is bounded by the zero–
eigenvalue locus and the Hopf locus. 

As shown in Fig. 4(a), the Hopf locus is composed of two 
curves: Hopf–1 and Hopf–2. In similar manner, the D–type 
locus is composed by two curves Zero–1 and Zero–2, each 
containing two sections (Zero–1a, Zero–1b) and (Zero–2a, 
Zero–2b). The curve Hopf–1 arises at one end from the 
merging of Zero–1a and Zero–1b and at the other end from the 
merging of Zero–2a and Zero–2b.  The same is valid for the 
curve Hopf–2. At each merging point, the system has two 
eigenvalues at zero. As already stated, the point with double 
zero eigenvalue is a co–dimension two bifurcation. From the 

merging point and along the Hopf–bifurcation locus, the 
imaginary part  of the two eigenvalues (  j, where  = 0) 
grows from zero. Between the curves Zero–1 and Zero–2 
[Region B in Fig. 4(a)], the system contains one real 
eigenvalue on the right hand side of the complex plane. 
Therefore, it is unstable. Between the sections Hopf–1, Hopf–
2, Zero–1b and Zero–2b corresponding to Region C in Fig. 
4(a), the system has two unstable eigenvalues, either real or 
complex-conjugate. In summary, there are three zones in the 
diagram: A, B and C. Region A is stable, Region B 
corresponds to solutions with one unstable eigenvalue and 
Region C corresponds to solutions with two unstable 
eigenvalues.  

Fig. 4(b) shows the representation of the loci limited to the 
interval −180º to 180º in the two phase–shift variables 
( 1,2 2,3,  ). Note that in agreement with the fulfillment of 

v,nbcos 0  , the stable range of the constant phase–shift 

solution path 1,2 2,3      [straight line of slope 1 in Fig. 

4(b)] corresponds to (−90º, 90º). The stable region is not 
totally symmetrical about the constant phase shift solution, 
exhibiting a larger stable zone above this line. As shown in the 
next sub–section, symmetry about 1,2 2,3      requires a 

specific (optimum) design of the coupling network. 
In order to validate the analysis results, phase measurements 

of the oscillator array have been performed. A four–channel 
digital oscilloscope (Infiniium DSO90804A) with a bandwidth 
of 8 GHz and a sample rate of 40 GSa/s has been used for this 
purpose. The three outputs of the oscillator array are routed 
through coaxial cables to three channels of the oscilloscope. A 
phase calibration is previously carried out to account for any 
delay difference between the three measurement channels 
(including the external cabling). Simultaneous FFT is applied 
to the three channels to get the phase-shifts 1,2  and 2,3  

between the fundamental components of the three oscillators. 
Then, the experimental loci are obtained delimiting the border 
between synchronization and desynchronization as the tuning 
parameters (varactor bias voltages) are varied. Measurement 
results for the case 12 = 23 = 345º are superimposed in Fig. 
4(b). The measurement uncertainty associated to the oscillator 
phase-shift measurements has been estimated to be about ±5º, 
after compensation of the delay differences among channels. 
Considering this measurement uncertainty, plus the finite 
accuracy of the electrical models and the technological 
dispersion typical in hybrid prototypes, there is a reasonable 
agreement between the experimental results and the 
bifurcation loci predicted with the new method in Fig. 4(b). 

Besides the use of the digital oscilloscope, one of the 
oscillator outputs is connected to a spectrum analyzer in the 
measurement setup. This enables the distinction between D–
type [squares in Fig. 4(b)] and Hopf [crosses in Fig. 4(b)] 
bifurcations. The two different types are distinguished from 
the qualitative differences in the measured spectrum of the 
quasi-periodic solution (resulting from the bifurcation) 
obtained immediately after this bifurcation. At a D–type 
bifurcation, the quasi-periodic solution at the two fundamental 
frequencies  and , originates from zero value of the 
difference frequency  = |–|. This is in agreement with 
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the fact that a real eigenvalue passes through zero at this D–
type bifurcation point [12]. Therefore, immediately after the 
bifurcation, a dense spectrum is observed, such as the one in 
Fig. 5(a) corresponding to the bifurcation point labeled PD in 
Fig. 4(b). On the other hand, at a Hopf bifurcation the quasi-
periodic solution at  and  is generated from frequency 
difference   0 and zero amplitude at the incommensurable 
frequency  [12]. An example, corresponding to the 
bifurcation point labeled PH in Fig. 4(b), is shown in Fig. 5(b). 
Most of the measured points correspond to D–type bifurcation 
[Fig. 4(b)], with the Hopf-bifurcation points closing the two 
sections of the D–type bifurcation locus at the two co-
dimension two points.  
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Fig. 4. Bifurcation loci for coupling-line electrical length  = 345º. 
The shaded region is stable. D−type locus is traced with solid line. 
Hopf locus is traced with dashed line. (a) Bifurcation loci traced in 
the interval −360º to 360º, for better illustration of the patterns. (b) 
Same bifurcation loci represented in the interval −180º to 180º. 
Superimposed are the measured D−type (squares) and Hopf (crosses) 
bifurcation loci. The constant-phase shift solutions correspond to a 
straight line of unit slope, represented with dotted line. 

 
The above result has been validated through bifurcation 

analysis versus a single analysis parameter, corresponding to 

the tuning voltage 2 . For illustration, the pair of tuning 

voltages  1o 2o0.216 V,  0.340 V      that provides the 

constant phase shift 1,2 2,3 90º     has been initially 

selected. Then, the tuning voltage 1  is kept fixed at 

1 1o 0.216 V      . Next, the frequency deviation for all 

the solutions of system (1) is represented versus 2 .  This 

provides the closed multi-valued curve of Fig. 6(a). The two 
phase shift values 1,2 2,3,  vary along this closed curve and 

the equality 1,2 2,3    is fulfilled only at the two points 

marked with large circles. Point 

1o 2o0.216V, 0.340V       corresponds to the constant 

phase–shift solution 1,2 2,3 90º    . Point 1o 0.216 V   , 

2o 0.065 V   corresponds to a second constant phase-shift 

solution 1,2 2,3 149.6º    . Four turning points labeled T1 to 

T4 are shown in the curve of Fig. 6(a). 
 

 
Fig. 5. Distinction between D–type and Hopf bifurcations with 
spectra measured immediately after the bifurcation. (a) D–type 
bifurcation. Quasi-periodic solution originates from zero value of the 
difference frequency =|o–|. (b) Hopf bifurcation. Quasi-
periodic solution originates at   0 from zero amplitude of the 
autonomous components.  

 
Next, the real parts of the six eigenvalues of the matrix [M] 

in (8) have been traced versus 2  at constant 

1 1o 0.216 V     , with the results presented in Fig. 

6(b). For better clarity, only the three dominant eigenvalues 
are shown. One of these eigenvalues is 1 0  , associated to 

the solution autonomy. Section S1-S2 [in Fig. 6(b)] has two 

complex-conjugate eigenvalues *
2 3 2,    . At each of the 

two points S1 and S2 the pair of complex–conjugate 
eigenvalues splits into two real eigenvalues 2 3, R   . At 

each of the four turning points T1 to T4 in Fig. 6 (b), a real 
eigenvalue passes through the imaginary axis. Section H–S1 is 
stable with a pair of complex–conjugate eigenvalues on the 
left–hand side of the complex plane (LHP) [Fig. 6(b)]. Next 
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the evolution of the two eigenvalues 2 3,   when varying 2  

in the sense of the arrows [indicated in Fig. 6(a) and Fig. 6(b)] 
will be described in detail. At S1, the pair of complex–
conjugate eigenvalues splits into two real eigenvalues 

2 3, R   . At T1, 2  passes through zero, so the section T1–

T2 is unstable. At T2, the same eigenvalue crosses again to the 
LHP , so the section T2–T3 is stable. At T3, the eigenvalue 2  

passes through zero again, so the section T3–T4 is unstable 
with one real eigenvalue on the right-hand side of the complex 
plane (RHP). At T4, the real eigenvalue 3  also crosses to the 

RHP. Between T4 and S2, the solution curve has two real 
eigenvalues on the RHP. At S2, they merge into two complex–

conjugate eigenvalues *
2 3 2,     on the RHP. At the Hopf 

bifurcation H, these two complex–conjugate eigenvalues cross 
the imaginary axis to the LHP, so the section H–T1 is stable.  

 

 
Fig. 6. Bifurcation analysis versus a single analysis parameter: the 
tuning voltage 2 , at constant 1 1o 0.216 V     . (a) Frequency 

deviation traced versus 2 . Measurements are superimposed with 

squares. (b) Variation of the real parts of the three dominant 
eigenvalues of the matrix [M] in (8) versus 2 . The points marked 

with circles correspond to the only two solutions with constant phase 
shift: 1,2 2,3 90º     and  1,2 2,3 149.6º    . 

 
In total agreement with the results in Fig. 4, the Hopf 

bifurcation H takes place at 1o 0.216 V   , 

2o 0.340 V  , corresponding to the constant phase-shift 

value 1,2 2,3 90º    . Also in agreement with Fig. 4, the 

solution with constant phase shift value 1,2 2,3 149.6º     is 

unstable with two real eigenvalues on the RHP [Region C of 
Fig. 4(b)]. This stability analysis versus the single parameter 

2 constitutes an independent validation of the new method.  

The stable sections of the solution curve have been traced in 
solid line in Fig. 6(a). Measurements of the frequency 
deviation in the coupled–oscillator system are superimposed 
with squares. A reasonable agreement is found, given the 
original discrepancies in the individual (free-running) 
oscillator. 

C.   Electrical length 12 = 23 = 363.5º 

Now the analysis is performed for the electrical length 
12 = 23 =  = 363.5º. For this electrical length, the two 
conditions v,nbsin 0   and v,nbcos 0   are approximately 

fulfilled. As shown in [14], these two conditions enable an 
optimum system design for constant phase-shift progression 

1,2 2,3     , with stable phase shift range (−90º ,90º). 

Indeed, fulfillment of v,nbsin 0   implies minimum 

oscillation frequency deviation, maximum tuning range and 
minimum variation of the phase noise through this stable 
constant phase-shift interval [14]. In Fig. 7(a), the 
corresponding bifurcation loci are represented in the plane 
defined by 1,2 2,3,    , considering the phase interval −360º to 

360º, for better illustration of their patterns. In Fig. 7(b), the 
representation is limited to the interval −180º to 180º.  The 
stable region A, which has evolved into an approximate 
square, is bounded by the zero-eigenvalue loci Zero-1a and 
Zero-2a. Note that the vertical sections of these two loci are 
very sensitive to changes in the phase 2,3 , with very quick 

evolution under changes in this phase value. For the electrical 
length which exactly fulfils v,nbsin 0   and v,nbcos 0  , 

the two sections of the Hopf locus would give rise to two co-
dimension two bifurcations, located at the edges of the stable 
constant phase shift interval. No measurements are presented 
for this particular case since it is not possible, in practice, to 
achieve the precise electrical-length value fulfilling 

v,nbsin 0   and v,nbcos 0  .  
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Fig. 7. Bifurcation loci for the optimal coupling-line electrical length 
 = 363.5º. The shaded region is stable. D−type locus is traced with 
solid line. The extremely small Hopf bifurcation locus is traced with 
dashed line. (a) Bifurcation loci traced in the interval −360º to 360º, 
for better illustration of the patterns. (b) Same bifurcation loci 
represented in the interval −180º to 180º. The constant-phase shift 
solutions correspond to a straight line of unit slope, represented with 
dotted line. 

 

D. Electrical length 12 = 23 = 273.5º 

Analysis results for 12 = 23 =  = 273.5º are plotted in Fig. 
8. The stable zone (region A) and unstable zones with two 
unstable eigenvalues (region C) are inverted [Fig. 8(a)]. In 
fact, the stable region is located between the sections Hopf-1, 
Hopf-2, Zero-1b and Zero-2b. The region B, with one unstable 
real eigenvalue, preserves the original location, between the 
loci Zero−1 (Zero−1a plus Zero−1b) and Zero−2 (Zero−1a 
plus Zero−1b), which constitutes the two sections of the D-
type locus. Comparison between analysis and measurements is 
presented in Fig. 8(b), where the representation is restricted to 
the interval −180º to 180º. The constant phase shift solution 
[straight line of slope 1 in Fig. 8(b)] is stable between 90º and 
270º, in agreement with the fact that v,nbcos 0   for the 

electrical length  = 273.5º. 
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Fig. 8. Bifurcation loci for coupling-line electrical length  = 273.5º. 
The shaded region is stable. D−type locus is traced with solid line. 
Hopf loci are traced with dashed line. (a) Bifurcation loci traced in 
the interval −360º to 360º, for better illustration of the patterns.  (b) 
Same bifurcation loci represented in the interval −180º to 180º. 
Superimposed are the measured D−type (squares) and Hopf (crosses) 
bifurcation loci. The constant-phase shift solutions correspond to a 
straight line of unit slope, represented with dotted line. A set of Hopf 

loci obtained for arbitrary for values of v,  has also been traced 

with short dashed lines.   
 
The analysis method is able to predict the stability inversion 

and the simulated bifurcation loci approximately delimit the 
stable region. However, agreement between simulation and 
measurements is worse than in the previous of case. This is 
attributed to the particular electrical length value,  = 273.5º, 
very close to the value fulfilling v,nbcos 0  , given by 

 = 279.5º, at which a stability inversion takes place. As 
already discussed in Section III, near these stability inversions 
(occurring for v,nb 90º   and v,nb 270º  ) the Hopf locus 

becomes highly dependent on the angle v, . This is 

illustrated in Fig. 8(b), where a set of Hopf loci obtained for 
arbitrary values of v, is traced with short dashed lines. As 

can be observed, there is a significant variation of the pattern 
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of the Hopf loci versus v, . This high sensitivity to the angle 

v,  is only observed for v,nb  values near the stability 

inversion. Note that the D–type locus does not change with 

v, , as deduced from (25). 

E. Electrical length 12 = 23 = 183.6º 

For the electrical length 12 = 23 =  = 183.6º, the two 
conditions v,nbsin 0   and v,nbcos 0   are approximately 

fulfilled.  As shown in [14], these two conditions enable an 
optimum system design for the constant phase-shift 
progression 1,2 2,3     , with the stable phase shift range 

(90º, 270º). The corresponding bifurcation loci have been 
traced in Fig. 9(a). The global stability properties obtained 
when the above two conditions are fulfilled are reciprocal to 
the ones resulting from v,nbsin 0   and v,nbcos 0  . The 

stable and unstable regions are inverted and the edges of the 
stable constant phase shift interval are delimited by double-
zero eigenvalue bifurcations, in a manner analogous to the 
case of 12 = 23 =  = 363.5º.   
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Fig. 9 Other electrical length values of theoretical interest. D−type 
loci are traced with solid line. Hopf loci are traced with dashed line. 
The shaded region is stable. The constant-phase shift solutions 
correspond to a straight line of unit slope, represented with dotted 
line.  (a)  12 = 23 =  = 183.6º. (b) 12 = 23 =  = 100.1º. 
Neighborhood of the stability inversion. Superimposed a second 
Hopf locus, marked as Hopf’, calculated after modifying 10º the 
original value of v, . 

F. Electrical length 12 = 23 = 100.1º 

For the electrical length 12 = 23 =  = 100.1º, the condition 

v,nbcos 0   is approximately fulfilled, which, as shown in 

[14], should give rise to a stability inversion of the solution 
with constant phase shift progression, changing from 

 90º ,90º  to (90º, 270º) or vice versa, depending on the 

sense of variation of the parameters. As shown in [14], the 
inversion occurs continuously but very rapidly, and the stable 
phase interval (in the constant phase-shift progression) is zero 
for v,nbcos 0  . It is so rapid that, although for  = 100.1º 

we approach this condition to the first decimal figure, stable 
sections are observable in the constant phase shift straight line 
of Fig. 9(b). As already shown in Section IV.D, near the 
stability inversion the Hopf locus exhibits high sensitivity to 
the angle v, . This is illustrated again in Fig. 9(b), where a 

second Hopf locus, marked as Hopf’, has been calculated and 
superimposed after modifying 10º the original value of v,. 
We can observe how rather small changes in v, have a 
strong effect on the Hopf locus. 

G. Different electrical lengths 

The results in Fig. 4 to Fig. 9 have been obtained for the case 
of identical oscillators and coupling networks, with the same 
electrical lengths 12 = 23 =  . Here the impact of differences 
in the electrical length values will be investigated. In the 
system of N = 3 oscillator elements, this will give rise to two 
different values of the angle v,nb, so we can expect a big 
impact on the bifurcation behavior. Fig. 10 shows the result 
for two different values of electrical length: 12 = 345º and 
23 = 273º. For these two values, an inversion of the two Hopf-
locus sections is obtained. There is also a significant reduction 
of the stable range of the constant phase-shift solution, with 
two stable intervals, corresponding to (−90º, −66º) and 
(20º,90º), approximately (Fig. 10). Measurement results are 
superimposed in Fig. 10 showing reasonable agreement. 

 
Fig. 10. Bifurcation loci for a coupled system with electrical length 
12 = 345º of the coupling line between the first and second oscillator 
and 23 = 273º between the second and third oscillator elements. The 
shaded region is stable. D−type locus is traced with solid line. Hopf 
locus is traced with dashed line. Superimposed are the measured D–
type (squares) and Hopf (crosses) bifurcation loci. The constant 
phase–shift solutions correspond to a straight line of unit slope, 
represented with dotted line. 
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V. STABILITY OF COEXISTING STEADY-STATE SOLUTIONS 

As discussed in [3], in a coupled system with N oscillator 
elements operating in synchronized regime one can expect up 
to 2N-1 solutions coexisting for each pair of tuning–parameter 
values. This can be understood as an extension of the two 
possible phase–shift values in an injection–locked oscillator 
(with an independent sinusoidal source), as shown in Adler’s 
theory [28]. In the following, a method will be presented to 
determine the stability properties of all the steady–state 
solutions coexisting for a same pair of tuning element values 

1 2,  . In a manner similar to the methodology for the 

calculation of the bifurcation loci, the procedure will be based 
on the use of the inter-stage phase shifts as analysis 
parameters, instead of the actual system parameters 1 2,  .  

Due to the practical interest of the constant phase-shift 
distribution, the tuning-parameter values 1 2,   providing 

each constant phase-shift solution 1,2 2,3      will be 

considered, obtaining exhaustively all the steady–state 
solutions that coexist with this solution. Note that for each   

value, a particular pair of tuning element values 1 2,   is 

necessary. The method has two stages. In a first stage, all the 
solutions curves 1,2 2,3,     coexisting with the one 

corresponding to the constant phase–shift progression 

1,2 2,3      will be obtained. In a second stage, their 

stability will be graphically determined by simply plotting the 
solution curves 1,2 2,3,     over the bifurcation loci obtained 

with the technique described in the previous section.      
 

A. Stage 1: Graphical determination of coexisting solutions 

As shown in [1]–[3], the constant inter-stage phase shift 

1,2 2,3      is varied by detuning the two outermost 

oscillators. For each pair of tuning voltages 1o 2o,  , the 

constant phase–shift solution coexists with other undesired 
solutions [11]. To obtain efficiently all the coexisting 
solutions, a double sweep is performed in 1,2 2,3,   solving for 

1 2,   at each sweep point. Then, two contours are plotted 

in the plane 1,2 2,3,  . One of them corresponds to 

1 1o    and the other corresponds to 2 2o   . The 

contour 1oC( )  is composed by all the phase shift pairs  

1,2 2,3,   obtained with 1o , regardless of the value of 2  . 

In a similar manner, the contour 2oC( )  is composed by all 

the phase shift pairs  1,2 2,3,   obtained with 2o , regardless 

of the value of 1 . The intersection points of these two 

contours 1o 2oC( ) C( )   provide the phase values of all 

the solutions coexisting for 1o 2o,  .  

As an example, the above method has been applied to obtain 
all the solutions coexisting with the one having constant inter–
stage phase shift 1,2 2,3 0º      , in the coupled system 

with the electrical length  1 = 2 =  = 345º. The 
corresponding tuning parameter values are 

1o 2o0.215V, 0.215V    . The resulting contours 

1o 2oC( ),  C( )  are shown in Fig. 11. As can be seen, there 

are four intersections labeled S1 to S4, corresponding to the 
four coexisting solutions. Solution S1 corresponds to the 
constant phase shift 1,2 2,3 0º      . 

Now, variations of the constant phase shift  between −180º 
to 180º will be considered. All the solutions that coexist with 
the ones fulfilling 1,2 2,3 c     , where c goes from −180º 

to 180º and the subindex “c” indicates “curve”, can be 
obtained in an automatic manner. This is done by detecting for 
each c value the intersection points between the two contours 

1c 2cC( ),  C( )  .  This procedure has been applied to the 

system with electrical length 12 = 23 =  = 345º. In Fig. 12, 
the phase-shift values 1,2 2,3,   of the solutions that coexist 

with the constant phase-shift one 1,2 2,3 c      are plotted 

versus c. In Fig. 12(a), the extended phase interval 

c360º 360º     has been considered, for better 

interpretation of the solution–curve patterns. A detailed 
representation in the c180º 180º     interval is shown in 

Fig. 12(b). As can be seen, there are four turning points in the 
curves corresponding to 1,2 and 2,3, marked as T1 to T4. For 
c values in the intervals [c(T1), c(T2)] and [c(T3), c(T4)] 
there are two co–existing solutions and outside this interval 
there are four.  
 

1

2

C( 0.215V)

C( 0.215V)

 
 

 
Fig. 11. Graphical determination of the steady–state solutions 
coexisting with the one with constant inter-stage phase shift  = 0º for 
the optimal coupling-line electrical length  = 345º. The constant–
parameter contours 1o 2oC( ),  C( )  are traced on the plane defined 

by the two inter-stage phase shifts 1,2 2,3,  . The coexisting solutions 

correspond to the four contour intersections S1 to S4. 
 
The turning point is a usual class of D–type bifurcation, in 

which the real pole of zero value gives rise to an infinite slope 
of the solution curve versus the parameter. This geometrical 
condition is directly related to the singularity of the Jacobian 
matrix in (8). Due to this singularity, each turning point 
bifurcation will give rise to an infinite slope of the steady-state 
variables 1 2 3 1,2 2,3V , V , V , ,  ,      versus the tuning 
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parameter 1  and also versus the parameter 2 . Using 

equation (1), it would be possible to obtain a continuous 
function c 1 2( , )   . This is why, as shown in Fig. 9(b), the 

solution curves exhibit infinite slope versus c  at each turning 

point bifurcation. 
In Fig. 13, the optimum electrical length  = 363.5º, 

fulfilling the two conditions v,nbsin 0   and v,nbcos 0  , has 

been considered. In this case, the diagram in Fig. 12(b) 
degenerates into the one in Fig. 13. The curves formerly 
exhibiting turning points become overlapped with the unit-
slope straight line. 

 

 
(a) 

 
(b) 

Fig. 12. Electrical length  = 345º. Solution curves coexisting with 
the constant phase-shift one c 1,2 2,3     , represented by tracing 

their corresponding phase values 1,2 2,3,    versus the intended 

constant phase shift c. (a) Phase-shift interval −360º ≤ c ≤ 360º . (b) 
Zoom to the interval −180º ≤ c ≤ 180º. Turning points are shown 
with black squares.  
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Fig. 13. Solution curves coexisting with the constant phase-shift one 

c 1,2 2,3     for the optimum electrical length  = 363.5º, 

represented in the interval  −180º ≤ c ≤ 180º. 
 

B. Stage 2: Stability analysis 

The stability of the different sections of all the solutions 
curves coexisting with the constant-phase-shift one 
( c 1,2 2,3     ) can be graphically determined by plotting 

these curves on the bifurcation loci. This has been done for the 
solution curves obtained in the analyses of Fig. 12 and Fig. 13, 
and corresponding to the electrical lengths  = 345º and 
 = 363.5º (optimal), respectively.  

In Fig. 14(a), corresponding to  = 345º, all the solution 
curves 1,2 2,3    coexisting with c 1,2 2,3      are 

superimposed with dotted lines on the loci of Fig. 4(b). As 
already known, the constant phase-shift solution (unit-slope 
straight line) lies on the stable region in the phase interval 
[−90º, 90º]. As shown in Fig. 14(a), the additional solution 
curves traced in Fig. 12 enter the stable region in the section 
comprised between the turning points T2 and T3. However, 
this section is obtained for tuning voltages 1 2,   different 

from those required to vary the constant inter-stage phase 
shift. The curves obtained by composing the tuning voltages 

1 2,   through the stable constant phase-shift progression 

(-90º, 90º) and through the section T2–T3 are shown in Fig. 
14(b). As can be seen, they do not intersect. Therefore, there is 
no coexistence of the stable constant phase-shift solution with 
other stable solutions having different values of inter-stage 
phase shifts 1,2 2,3   . The representation carried out in Fig. 

14 provides the full stability properties (number and nature of 
the possible unstable poles) of each particular solution. At the 
turning points T1 to T4 of the curves of Fig. 12, the associated 
curves on the plane 1,2 2,3,   in Fig. 14 cross the D–type 

bifurcation loci. This is in full agreement with the turning 
points of the solution curves obtained in Fig. 12 and 
constitutes an independent validation of the new method.  
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Fig. 14. Electrical length  = 345º. Stability analysis of all the 
solution curves coexisting with the constant phase–shift one 

c 1,2 2,3     . (a) The stability is analyzed by superimposing these 

solution curves (dotted line) on the bifurcation loci, traced in the 
plane defined by the two inter–stage phase shifts 1,2 2,3,  , as in Fig. 

4(b). At the turning points T1 to T4 the solution curves cross the D–
type bifurcation loci. (b) Curves obtained by composing the tuning 
voltages 1 2,   through the stable constant phase–shift progression 

(-90º, 90º) and through the section T2–T3. They do not intersect. 
 
 

In Fig. 15, corresponding to the optimal electrical length 
 = 363.5º, the solution curves coexisting with 

c 1,2 2,3      (previously obtained in Fig. 13) are 

superimposed (with dotted line) on the bifurcation loci 
corresponding to this electrical length value [Fig. 7(b)]. Also 
in this case, the additional solution curves remain in the 
unstable regions for all the parameter values. Therefore, there 
is no coexistence of the stable constant phase–shift solutions 
with other stable solutions. 

 

 
 
Fig. 15. Electrical length  = 363.5º (optimal). Stability analysis of all 
the solution curves coexisting with the constant phase shift one 

c 1,2 2,3     . The stability is analyzed by superimposing these 

solution curves (dotted line) on the bifurcation loci, traced in the 
plane defined by the two inter-stage phase shifts 1,2 2,3,  , as in Fig. 

7(b). Operation near the co-dimension two bifurcations is marked as 
CD1 and CD2.  

VI. CONCLUSION 

A new methodology for the stability analysis of coupled–
oscillator systems, considering all possible values of inter–
stage phase shift, has been presented. It is based on the 
determination of the bifurcation loci in the space defined by 
the inter–stage phase shifts, where these solutions are 
univocally defined. The method is computationally very 
efficient, as it does not require an initial evaluation of the 
steady–state solution. It enables an efficient detection of both 
ordinary and co–dimension two bifurcations and provides a 
detailed description of the system global stability properties, 
presented in this work for the first time to our knowledge. This 
thorough bifurcation analysis allows the comprehension of 
stability changes commonly observed during the system 
tuning. The bifurcation loci facilitate the evaluation and 
increase of the stability margins. The new methodology has 
been applied to a practical coupled-oscillator system at 
3.85 GHz, investigating the impact of the length of the 
transmission line in the coupling networks on the bifurcation 
loci. The analysis results have been validated with 
independent simulations and with experimental measurements. 
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