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Abstract— This paper presents an in−depth analysis of a 

recently proposed frequency divider by two, which is based on 
a parallel connection of varactor−inductor cells, in a 
differential operation at the subharmonic frequency. The 
analytical study of a single−cell divider enables the derivation 
of a real equation governing the circuit at the 
frequency−division threshold. This equation is used for a 
detailed investigation of the impact of the circuit elements on 
the input−amplitude threshold and the frequency bandwidth. 
Insight provided by the analytical formulation enables the 
derivation of a thorough synthesis methodology for 
multiple−cell dividers, usable in harmonic balance with an 
auxiliary generator at the divided frequency. Two different 
applications of this topology are demonstrated: a dual−phase 
divider and a dual−band frequency divider. The former is 
obtained by using Marchand balun to deliver 180º 
phase−shifted signals to the two dividers. On the other hand, 
the dual−band divider is based on a novel configuration which 
combines cells with parallel varactors and cells with series 
varactors. Departing from the optimization procedure of the 
single−band divider, a simple synthesis method is presented to 
center the two division bands at the desired values. The 
techniques have been applied to three prototypes at 2.15 GHz, 
1.85 GHz and 1.75 GHz / 3.95 GHz, respectively. 

 
Index Terms— Frequency dividers, dual−phase generation, 

dual−band frequency division, phase noise.  

I. INTRODUCTION 
HE works [1]−[2] propose a frequency divider 

topology based on the use of two parallel nonlinear 
transmission lines (NLTL) connected through back to back 
diodes [Fig. 1(a)]. The two NLTLs behave like a reflective 
distributed resonator, since the odd−mode subharmonic 
oscillation terminates in a virtual ground at both ends, so the 
output signal is extracted from internal cells by means of a 
buffer [1]−[2]. The subharmonic component is sustained by 
the gain exhibited by the varactors under the pump signal at 

  2inω ω=  and, in this manner, a standing wave [1]−[2] is 
formed through the distributed resonator. This divider 
configuration exhibits zero static−power consumption [2]− 
[3], which is an interesting quality since, in practical 
applications, the frequency divider usually consumes a 
significant portion of the frequency synthesizer power [1]− 
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[3]. Another advantage comes from the absence of a 
free−running oscillation, which in injection−locked dividers 
[4]−[6], gives rise to undesired mixer like regimes [6]−[7] 
outside the division band. In addition, the absence of an 
oscillation enables lower phase−noise spectral density at 
large offset frequency from the carrier [1]−[2], [8]. 

The works [1]−[2] have demonstrated that a synchronous 
propagation of the pump and subharmonic signals is 
beneficial for the energy transfer from the pump to the 
subharmonic signal. This requires a minimization of the 
dispersion effect, which is achieved through the use of an 
additional capacitor cc  connected between the middle node 
of the back−to−back diodes and ground (Fig. 1). The 
capacitor decreases the average capacitance at 2ω , but does 
not directly affect the odd harmonics of the subharmonic 
signal, due to the circuit symmetry. The analysis in [1]−[2] 
departs from a continuous transmission−line model [9], 
which is followed by several corrections accounting for 
dispersion and mismatch at the pump frequency, among 
other effects.  

An alternative investigation is presented in this work. It is 
based on a detailed circuit−level analysis of the new divider 
topology, carried out in two different ways: analytically 
[10], in the case of a single−cell divider, and through 
harmonic balance (HB), complemented with an 
auxiliary−generator technique [6]−[7], in the case of 
multiple cells. Using the analytical formulation, a single 
equation, governing the global behavior of frequency 
divider at the division threshold, is derived, which will 
enable an understanding of the impact of each divider 
element on the input−sensitivity curve. With this insight, an 
optimization procedure, intended for HB simulators and 
applicable to dividers with multiple cells, will be developed.  

Novel applications of the divider based on 
varactor−inductor cells will be investigated. One of them is 
a dual−phase divider, based on the use of two of these 
dividers, together with a Marchand balun [11] for a simple 
generation of in−phase and quadrature signals. Possible 
applications include quadrature modulation and quadrature 
down conversion [12]. The Marchand balun provides two 
signals with 180º phase shift, which are introduced in the 
differential frequency dividers. Then the frequency division 
inherently gives rise to a 90º phase shift [12] between 
equivalent nodes of the two divider circuits.  

A dual−band frequency divider, based on the use of two 
different types of differential inductor−varactor cells, is also 
investigated. One section is composed of cells having the 
varactors in a parallel connection, whereas the other section 
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is composed of cells having the varactors in a series 
connection. Unlike previously presented dual−band 
frequency dividers [13], there is no oscillation in the 
absence of an input signal. This avoids undesired 
self−oscillating mixer regimes below the division threshold 
and between the division bands. The dual band design will 
allow coping with the major limitation of this novel kind of 
frequency dividers, which is the frequency bandwidth. As 
will be shown, the two coexistent division bands can be 
tuned, and even preset, with a simulation procedure that 
relies on the properties revealed by the analytical 
formulation. In this way, the designer can take advantage of 
the two interesting characteristics of this novel kind of 
dividers, which are the zero static power consumption and 
the low phase−noise spectral density [1]−[2].  

The paper is organized as follows. Section II presents the 
analytical study of a single−cell divider, with a detailed 
investigation of the impact of each element of the circuit 
topology. Section III describes a dual−phase divider, based 
on the use of a Marchand balun. Section IV presents the 
synthesis of a dual−band frequency divider.  
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Fig. 1 Multi−cell frequency divider. (a) Schematic of a multi−cell divider, 
enabling an odd−mode subharmonic oscillation. The number n in the 
notation (n) (n)+ −−v v  refers to the order of the back−to−back diode pairs. 
There is a total of N = 5 pairs. (b) Photograph of the prototype built in 
Rogers 4003C substrate ( )3.38,  0.508 mmr Hε = = . In the different 
prototypes, individual signals are extracted with impedance transformers 
(as in the photograph) or with a source−follower buffer based on the 
transistor NE3210S01. (c) Auxiliary generator (AG) used to simulate and 
optimize the divider in HB. It is connected between the nodes (3)+v  and 

(3)−v  in the schematic of (a). 

II. ANALYSIS OF THE DIVISION THRESHOLD 
The dependence of the input−amplitude division 

threshold on the various circuit elements and parameters 
will be studied in the two cases of a single−cell divider and 
a multi−cell divider. 

A. Single−cell divider 
For the analytical formulation of a single−cell divider, the 

varactor diode will be modeled by a nonlinear capacitor in 
series with a loss resistor DR  [Fig. 2(a)]. Limiting the 
analysis to the subharmonic and input frequencies, / 2inω  
and inω , the voltage waveform across the nonlinear 
capacitor will be approximated with the following truncated 
Fourier series: 

 

2 2(2 ) (2 )
2 2( ) j t j tj t j tv t Ve Ve V e V eω φ ω φω ω + − +−= + + +    (1) 

where / 2inω ω=  is the subharmonic frequency and the 
phase origin is taken at ω . Assuming a moderate input 
amplitude, it will be possible to model the varactor 
capacitance with a first−order Taylor series ( ) oc v c bv= +  
[1]−[2]. Replacing the waveform (1) into ( ) oc v c bv= + , one 
obtains the current entering the nonlinear capacitor, in time 
domain. The two−sided Fourier−series expression of this 
current has the component I1 at ω  and the component I2 at 
2ω , which are given by: 
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The ratio between the current 1I  and voltage V provides 
the input admittance function, NY , exhibited by the 
nonlinear capacitor at the subharmonic frequency ω : 

  

            ( )1
2 2 2 2cos sin= = + −N o

IY j c bV bV
V

ω φ ω φ       (3) 

As gathered from (3), under a pump signal at inω , the 
nonlinear capacitance will exhibit negative conductance at 

/ 2inω  provided that the condition 2 2sin 0bVω φ− <  is 
fulfilled. To formulate the divider equations, one should 
take into account the symmetry properties of the circuit 
topology. Assuming an odd mode subharmonic oscillation 
(180º phase shift between the two branches), the middle 
points A and B are virtual short circuits at the subharmonic 
frequency [Fig. 2(a)], which leads to the schematic of 
Fig. 2(b) at the subharmonic frequency. Applying Kirchoff’s 
laws to this equivalent circuit, one obtains:  

              1 1 0
2

 + + = + = 
 

D a
LV R j I V Z Iω  (4) 

where / 2ω= +a DZ R jL . On the other hand, as gathered 
from Fig. 2(a), the point B is a virtual open circuit at the 
input frequency 2ω ω=in . Taking also into account the 
input equivalent network at 2ω , shown in Fig. 2(c), one 
obtains the following equation at the input frequency: 
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where inE  and inφ  are the amplitude and phase of the input 
source (considering a two−sided spectrum), 

[ ]2 / ( )ω ω= + −p p in c inZ R j L c , 2= +p o DR R R  and 

50 oR = Ω . Note that oR  and the capacitor cc  only affect 
the equation (5), at 2inω ω= . Dividing both terms of (4) by 
V and using the definition of NY  in (3), one obtains: 
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The function TY  agrees with the total−admittance 
function at the subharmonic component ω , calculated at 
node 2 of the equivalent circuit in Fig. 2(b). It is the addition 
of NY  and the admittance of the series branch composed by 

DR  and / 2L . Fulfillment of condition (6), 0=TY , implies 
the existence of a self−sustained subharmonic oscillation, 
due to the energy flow from the input pump at inω  to the 
subharmonic signal [1]. The frequency division by 2 is 
enabled by the negative conductance at / 2inω  and the 
resonance effects inherent to the complex equation (6).  

Dividing the two terms in (6) by /( / 2)+N DY R jLω one 
obtains the following relationship:   

1 0
2

+ + =D
N

Lj R
Y

ω                            (7) 

Now, dividing all the terms of (7) by 
1( ) / 2− +N DY R jLω , one obtains an alternative expression 

for the subharmonic−oscillation condition: 

                     1
2 1 2 01+ = + =

+D
N

Y
jL jLR

Y
ω ω

          (8) 

where 1Y  is the total admittance function between the diode 
terminals, given by: 

( )1 1
2

1 1
1 −= =

+ ++ D oD
N

Y
R j c j bVR

Y
ω ω

       (9) 

and 2
2 2

jV V e φ=  is the voltage component at the input 
frequency. The bar stresses the fact that this voltage has a 
phase value 2φ , unlike the subharmonic voltage V , where 
the phase−reference is established. Note that the total 
varactor−admittance function 1Y  includes the effect of the 
loss resistance RD. Equation (8) agrees with the 
total−admittance function at the subharmonic component 
ω , calculated at node 1 of the equivalent circuit in Fig. 2(b). 
The use of a frequency−division condition in terms of the 
varactor admittance (including RD) will facilitate the 
extension of this condition to multiple cells, presented later 
in this section.  

The limit condition for frequency−divider operation 
(division threshold) corresponds to a subharmonic amplitude 
tending to zero 0V → . This agrees with the condition for a 
flip bifurcation [6]−[7], [14]. Splitting (6) [or, equivalently, 
(8)] into real and imaginary parts, one can calculate the 
voltage 2

2 2
φ= jV V e  at ωin  in the presence of a frequency 

division, which will be denoted as 2
2 2

φ= oj
o oV V e . This is 

given by: 
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  (10) 

From inspection of (10), the voltage 2
2 2

oj
o oV V e φ=  does 

not depend on inE . For a fixed varactor model, it depends 
on the inductor L  and the input frequency inω , so it can be 
expressed as 2 ( , )o inV L ω . Next, expression (10) will be 
replaced into (5), imposing also the limit frequency−division 
condition  0V → . Solving for inE , one obtains a single real 
equation governing the circuit behavior at the division 
threshold: 

{ }1/222 2
2 ( , ) 1 ( 2 / ) ( )ω ω ω = − − + ino o in o in o c p o inE V L Lc c c R c

 (11) 

where the subindex “o” indicates that the input voltage is 
calculated at the division threshold. As gathered from (11), 
the expression for the input−amplitude threshold is 
composed by two factors. The middle−point capacitor cc  
only affects the second factor. Provided that the inductor L  
fulfils 21/ ( )o inL c ω> , it will be possible to choose cc  so as 
to minimize the input−amplitude threshold. Indeed, the 
second factor in (11), composed by the addition of two 
squared terms, will achieve a minimum at the capacitor 
value: 

 
     22 / ( 1)cm o o inc c Lc ω= −              (12) 
 

which will lead to the following expression for the 
input−amplitude threshold: 
 

2 ( , )ω ω=ino o in p o inE V L R c           (13) 
 

On the other hand, from inspection of (11), the threshold 
inoE  decreases with the amplitude 2 ( , ),o inV L ω  which has the 

following expression, derived from (10): 
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where / 4L inX Lω= . The magnitude 2 ( , )o inV L ω  will 
exhibit a minimum if the following condition is satisficed: 

                 
2 2

/ 2 0
( / 4)

o

D in

cL
bb R Lω

− =
 + 

                 (15) 

The above condition, fulfilled at the given frequency 
,in cω , agrees with 2 2cos 0o oV φ =  in (10)(a). This condition 

enables an optimum operation of the diodes at the 
subharmonic frequency, as they behave as pure negative 
resistances, without any additional reactive component. The 
frequency ,in cω  agrees with center of the division band. 
Indeed, at constant L , and because of the second squaring 
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operation under the root in (14), the frequency response will 
be nearly symmetrical about ,in cω . 
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Fig. 2 Single−cell frequency divider. (a) Full topology. (b) Equivalent 
circuit at the subharmonic frequency ω . (c) Equivalent circuit at the input 
frequency 2inω ω= .  

 
For illustration, the varactor diode SMV1231 [15] has 

been considered. At the bias voltage   0 VbV = , the 
parameters of the approximate model ( ) oc v c bv= +  are 

121.88 10  (F)oc −= ⋅  and 139.278 10  (F/V)b −= ⋅ . In a first 
design, the desired central frequency is ,   2.15  GHzin cf = . 
The inductor value L  resulting from the condition (15) is 

 23.3 nHmL = . The corresponding input−sensitivity curve 
is obtained with (11). As shown in Fig. 3, the inductor 

 23.3 nHmL =  centers the division band about 

,   2.15  GHzin cf =  for any cc  value. This inductor fulfils 
21/ o inL c ω> , so it is possible to select the capacitor 

22 / ( 1) 0.537 pFcm o o inc c Lc ω= − =  that minimizes the 
input−amplitude threshold at ,   2.15  GHzin cf = . Due to the 
increased sensitivity with respect to the input signal under 
the resonance condition (12), the capacitor cmc  enables a 
broader division bandwidth (Fig. 3). This is studied in detail 
in Section C. As a second example, the same two−stage 
design method has been applied for a different central 
frequency ,  1 .79  GHzin cf = , observing the same 
performance (Fig. 3). 

   The impact of the diode parameters oc  and b  has also 
been analyzed. From a simple inspection of (10) the voltage 
amplitude 2 ( , )o inV L ω  at the input frequency inω  is inversely 
proportional to b , so according to (11) the input−amplitude 
threshold will decrease with b . On the other hand, the 
capacitance oc  affects (10)(a) and also the condition for a 
minimum in 2 ( , )o inV L ω  given by (15). For a given  L , a 
variation of oc   will shift the center of the division band, 

,in cω , determined by (15). Provided that (12) is also 
fulfilled, a lower threshold will be obtained for smaller oc , 
as gathered from (13). However, one should take into 

account that both oc  and b  depend on the particular bias 
voltage bV  of the varactor diode. In the case of the diode 
SMV1231 [15], both oc  and b decrease with bV , in the 
whole bV  range, going from 0 V to 15 V. Fig. 4(a), presents 
the analysis of the input−amplitude threshold versus the 
inductor L , for different values of bV . The lowest threshold 
is obtained for   0 VbV = , providing the highest b . The 
impact of bV  on the input−sensitive curves is shown in Fig. 
4(b). As expected, the lowest input−amplitude threshold and 
broadest division bandwidth is obtained for   0 VbV = which 
will be the value considered in this work. 
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Fig. 3 Input−sensitivity curves for two different mL  values, centering the 
division band about two different frequencies. The input−amplitude values 
are referred to a positive−frequency spectrum (2Eino). The sensitivity curves 
resulting for an optimum capacitor cmc  are traced in solid line in the two 
cases. 
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Fig. 4 Influence of the parameters of the diode model. (a) Variation of the 
input−amplitude threshold (in a positive−frequency spectrum) with the 
inductor L  at the constant input frequency 2.15 GHzinf = . (b) 
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Input−sensitivity curve with the bias voltage bV , choosing, in each case, the 
inductor value that provides the minimum input−amplitude threshold at 

2.15 GHzinf = .  

 

B. Multi−cell divider 
A multi−cell divider, such as the one considered in Fig. 1(a), 
will be investigated. Initially, the study will be carried out 
using the model ( ) oc v c bv= +  at the two frequencies / 2inω  
and inω . The frequency−division condition (8) can be 
generalized to a multi−cell divider, which is done by means 
of an equivalent circuit analogous to the one in Fig. 2(b). 
The circuit total admittance is calculated at the node located 
between the first inductor and the rest of the 
varactor−inductor structure, at the subharmonic frequency  
ω . This provides the following recursive equation: 

 
1

1
1

1

1
1(2)1 1(1) 0

1(3)
...

ω

ωω

ω

−
 + 

+ 
+ + = +

 
+ + 

jL
Y

Y jLjL
Y

jL

  

(16) 
where 1( )Y n , with 1 to n N= , are the diode subharmonic 
admittance functions and N is the number of back−to−back 
varactor pairs existing in the multi−cell divider, indexed as 
shown in Fig. 1(a). The admittance functions 1( )Y n  are 
defined as: 

 
( )

1 1
2

1( )
( )D o

Y n
R j c j bV nω ω

−
=

+ +
    (17) 

Note that for  1 N = , one has 1 1(1)Y Y≡  [see (7)−(9)]. In 
the above expression 2 ( )V n  is the voltage component at inω  
across the nonlinear capacitor n . The bar stresses the fact 
that it is a complex magnitude. Equation (16) agrees with 
the flip bifurcation condition of the multi−cell divider. 
Combining (17) with (16), one obtains a complex equation 
of the form: 
 
         2 2 2( (1), , ( ), , ( ), , , , ) 0T oY V V n V N c b L ω = 

       (18) 
 

which depends on the whole set of second harmonic 
voltages 2 ( )V n  at inω , calculated under the limit condition 
for frequency division 0V → . These voltages provide the 
negative resistances that should compensate the passive 
impedances exhibited by the circuit at / 2inω , depending 
only on oc , b  and L . Using the first−order capacitance 
model and the two analysis frequencies / 2inω  and inω  
under the condition 0V → , the phasors 2 ( )V n  will depend 

linearly on the input voltage inj
inE e φ , since the diode 

capacitance at inω  is simply oc . A different expression will 
exist for each phasor, having the general form: 
 

                  2 ( ) ( , , , 2 ) inj
n c o inV n A c c L E e φω=                (19) 

 

The replacement of (19) in (16) provides a complex 
nonlinear equation in inE  and inφ , which can only be 
accurately resolved in a numerical manner. Because the 
flip−bifurcation (18) does not explicitly depend on cc , one 
may expect a behaviour analogous to that of a single cell, 
regarding the two design parameters L  and cc . That is, the 
variation of L  will shift the division band and the variation 
of cc  will modify the sensitivity to the input signal and, 
therefore, the division threshold. However, as gathered from 
(16), the optimum values of L  and cc  for a desired central 
frequency ,in cω  will depend on the number of cells and 
should be optimized for each N . Note that when 
implementing a multi−cell configuration, divisions by 
higher order will not be usually observed, due to the loading 
effects of the L−varactor cells, which are tuned for 
frequency division by 2, instead of higher order divisions  

Initially, a multi−cell divider with   5=N  back−to−back 
varactor pairs will be analyzed [Fig. 1(a) and (b)], as this is 
the same number considered in [1]−[2]. The impact of the 
number of N  will be studied later in this section. For a 
realistic analysis and design, harmonic balance (HB) is used, 
together with an auxiliary generator (AG) [6]−[7]. The AG is 
needed because HB does not enable a direct optimization of 
frequency dividers. Even when setting the fundamental 
frequency to / 2inω , the HB simulation will converge by 
default to a solution with zero value at all the odd harmonics 
of / 2inω , since it contains a homogeneous subsystem at 
these frequency components [7]. The use of an AG at 

/ 2AG inω ω=  prevents this default convergence [6]−[7]. The 
voltage AG is connected in parallel at a sensitive location, 
for instance between the nodes of a varactor diode in one of 
the innermost divider cells [Fig. 1(c)]. It contains an ideal 
bandpass filter centered at / 2inω , to avoid any influence at 
frequencies different from / 2inω . Due to the rational 
relationship with the input frequency, both the AG 
amplitude and its phase [or the phase of the input source] 
must be calculated in order to fulfil a non−perturbation 
condition. This condition is given by the zero value of the 
ratio between the AG current and voltage at / 2inω , 
expressed as ( , ) 0AG AG inY A φ = , where the phase origin is 
taken between the AG terminals. In commercial HB, this 
condition is solved through optimization, with the pure HB 
system, with as many harmonics as desired, as an inner tier. 
After convergence, the voltage component at / 2inω , 
between the AG nodes, will agree with the AG value. Using 
this property, the division boundary will be obtained by 
setting the AG amplitude to a very small value AGA ε= .  

Taking into account the insight provided by the analytical 
study, the optimization procedure will be the one indicated 
in the flowchart of Fig. 5. It will start with the calculation of 
the inductor L  that minimizes the input−amplitude 
threshold at the desired central frequency ,in cω . This is done 
by doing , / 2AG in cω ω=  and solving:  

 
( , , ) 0AG in inY E L φ =    (20) 

 
under the condition: AGA ε= . Note that (20) is equivalent 
to the equation (18) of the simplified formulation. Because 
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equation (20) is complex, it contains two real equations in 
three unknowns, which provides a curve in the plane defined 
by L  and inE . To center the division band, L  is swept, 
solving the complex equation (20) in terms of ,in inE φ   at 
each L  step. The L  value providing the minimum inE  is 
chosen. For illustration, the method will be applied to the 
divider shown in Fig. 1(a). In all the HB analyses presented 
hereafter, full diode models (including parasitics) and 

  20NH =  harmonic terms will be considered. The model 
used for the varactor diode SMV1231 is the one provided by 
the manufacturer [15]. Fig. 6(a) presents the results obtained 
when setting the AG frequency to the desired central value 
of the division band: , / 2AG in cf f= , where , 2.15 GHzin cf = . 
Three different values of cc  have been considered, but the 
inductor 6.15 nHmL =   provides the minimum inE  in the 
three cases, in agreement with the analytical study of the 
single cell. Next, the inductor is kept fixed at 6.15 nHmL = , 
performing a sweep in the capacitor cc  and solving 

( , ) 0AG in inY E φ =   at each sweep step (Fig. 5). The minimum 
is obtained for 6.5 pFcmc =  [Fig. 6(b)]. The effect of 
varying the two parameters L  and cc  on the bandwidth is 
analyzed by tracing the input−sensitivity curve in the plane 
defined by inω  and inE . The frequency inω  is swept, solving 
the complex equation ( , , ) 0AG in in inY E ω φ =  in terms of 

,in inE φ  at each sweep step. Fig. 6(c) shows the sensitivity 
curves obtained for different pairs of values L , cc . For 
each L value, the sensitivity curve gests centered about a 
different frequency inω . Once the divider is centered about 
the desired frequency ,in cω , the capacitor cc  can be used to 
reduce the input−amplitude threshold. In agreement with the 
analytical study, variations of this capacitor do not shift the 
operation band.  
 

1.  Choice of diode varactor
      − Full diode model biased at Vb that maximixes b   

2. Centering the frequency-division band at fin,c

Ein 

L Lm 

− Introduce an AG in the HB simulation
− Set AG frequency to fAG = fin/2 
− Sweep L solving YAG (Ein, φin, L) = 0  at each step 
− Trace Ein versus L
− Take the L value (Lm) that provides the minimum Ein

3. Reduction of input-amplitude threshold Eino at fin,c

− Keep L fixed at Lm

− Sweep cc solving YAG (Ein, φin, cc) = 0  at each step 
− Trace Ein versus cc

− Take the cc value (ccm) that provides the minimum Ein

Ein 

cc ccm 

4. Evaluate the input-sensitivity curve

− Keep L and cc fixed at Lm and ccm

− Sweep ωin solving YAG (Ein, φin, ωin) = 0  at each step 
− Trace Ein versus ωin

Ein 

fin fin,c  
 
Fig. 5 Flowchart indicating the steps to be taken for the optimized design of 
the frequency divider.  

 

The sketch and picture of the measurement set−up are 
shown in Fig. 7. It is based on the use of the Agilent 90804A 
Digital Storage Oscilloscope and the E4446A PSA spectrum 
analyzer (with phase noise measurement personality). The 
circuit is injected using the Rhode & Schwarz SMT06 signal 
generator. In this particular case, the divided solutions have 
been measured with two Agilent 1134A differential probes, 
which enable flexibility to test the differential waveforms at 
various circuit nodes. Measurement points have been 
superimposed in Fig. 6(a) to Fig. 6(b) with good agreement.  
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Fig. 6 Optimization of the multi−cell divider based on the diode SMV1231 
in Fig. 1(a) by means of HB−AG simulations with   20NH =   harmonic 
terms. (a) Selection of the inductor value that minimizes the input− 

amplitude threshold at the desired central frequency   2.15  GHzinf = . (b) 
Further minimization through a proper selection of the additional capacitor 

cc . (c) Input−sensitivity curves for the optimum inductor   6.15 nHmL =  

at   2.15  GHzinf =  and for a different inductor value, which centers the 

band about   2.027  GHzinf = . In each case, the input−amplitude threshold 
is minimized through an independent analysis versus cc . 

 
Now the impact of the inductor−varactor cells will be 

investigated. Initially, the first−order model ( ) oc v c bv= +  
has been considered. The central frequency is set to 

, 2.15 GHzin cf = . Then the inductor L  that minimizes the 
input−amplitude threshold at , 2.15 GHzin cf =  is calculated 
numerically using the flip−bifurcation condition (18) for 
different N  values. Fig. 8(a) presents the resulting 
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input−sensitive curves. A different L is obtained for each N, 
but the division band is centered about ,in cf  in all cases. For 
each N , the division threshold is further reduced through a 
proper selection of the capacitor cc , as shown in Fig. 8(a). 
Fig. 8(b) presents the same analysis, using the HB−AG 
method with full diode models and   20NH =  harmonic 
terms. Each sensitivity curve corresponds to the L  and cc  
obtained following the flowchart of Fig. 5. As expected, for 
moderate input−amplitude levels, there is very good 
agreement between the results obtained with (16) and with 
HB.  

 

(a)

(b)

DUT
OUT1

OUT2

Digital Storage Oscilloscope

Spectrum Analyzer

50 Ω

IN

DC

Signal generator

DC power supply

Differential 
probes

Fig. 7 Measurement test−bench. (a) Sketch. (b) Photograph. 
 
As shown in Fig. 8(a) and Fig. 8(b), there is a reduction 

of the division bandwidth when increasing N . To 
investigate this effect, the variation of inφ  through the 
flip−bifurcation loci obtained for different N has been 
analyzed in Fig. 8(c). The phase−shift interval with high 
sensitivity to inω  decreases with N, which is due to an 
earlier saturation effect in the nonlinear function in inω  that 
governs the phase shift dependence: ( )in inφ ω . Therefore, for 
given input amplitude, the fulfillment of the resonance 
condition at / 2inω , required for the frequency division, is 
limited to a smaller inω  interval. Despite this reduction of 
the frequency band, the increase in N  can be interesting for 
certain applications, since it enables higher subharmonic 
amplitude through the divider circuit, as was demonstrated 
in [9]. Indeed, for a higher N , the subharmonic gain 
increases [1]−[2] due to the cooperative effect of more 
varactor diodes. This is demonstrated in Fig. 9, which 
compares the resonance near the subharmonic frequency, 
responsible for the frequency division by 2, for different N  
values. As can be seen, a more negative conductance 
(responsible for the subharmonic amplification) is obtained 
for higher N . The higher frequency selectivity is also 
noted, in consistency with Fig. 8(c). 
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Fig. 8 Influence of the number N of back−to−back diode pairs on the 
frequency−division band. (a) Through the numerical solution of (16), based 
on a first−order model of the diode. (b) Using the HB−AG method with full 
diode models and 20NH =  harmonic terms. (c) Variation of the phase 
shift between the input source and the subharmonic voltage through the 
flip−bifurcation loci in (b).  
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Fig. 9 Resonance near the subharmonic frequency, responsible for the 
frequency division by 2, for different N values. A more negative 
conductance (responsible for the subharmonic amplification) is obtained for 
higher N.  
 

C. Frequency bandwidth 
The analysis of the frequency bandwidth will initially be 

carried out using the analytical expression (11), valid for 
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one cell. Then the multi−cell divider with    5=N  diode pairs 
will be studied with the HB−AG method. The impact of the 
additional capacitor cc  is analyzed solving (11) for cc , in 
terms of inE , inω  and L , which provides: 

( )22 2 2 2
2

2

1 / ( , )ω ω ω
=

− ± −

o
c

o in in o in p o in

c
c

Lc E V L R c
  (21) 

Sweeping inω  at constant inE  and L , two different 
curves are obtained, respectively corresponding to the 
positive and negative sign before the root operation. In 
Fig. 10(a), the two curves have been traced (in solid and 
dashed lines) for different inE  values and the inductor mL  
resulting from the minimization of the input−amplitude 
threshold at , 2.15 GHzin cf = . Division by two is obtained 
inside the region delimited by the two curves. For each inE , 
the edges of the maximum frequency bandwidth are given 
by the condition 2 2 2 2

2[ / ( , )] 0ω ω− =in o in p o inE V L R c  in (21), 
which is satisfied for a different inω  at each side, due to the 
frequency dependence of 2 ( , )o inV L ω . The curve cc  vs. inω  
exhibits an infinite slope at each of the two points fulfilling 
that condition.  

When setting the input amplitude to the global minimum 
( )inoMin E  at , 2.15 GHzin cf = , the two infinite slope points 

merge into a single one and solution curve degenerates into 
a point, obtained for the optimum capacitor value cmc  
[see (7)]. As inE  increases from this value, the two sections 
in (21) form a closed curve that later becomes an open 
curve. This is because for large inE , the minus sign before 
the denominator root gives rise to a (discarded) negative 
capacitor. As shown in Fig. 10(a), below certain cc  value 
division is no longer possible, due to insufficient 
subharmonic gain of the nonlinear capacitances. On the 
other hand, for too large cc , this capacitor no longer has an 
impact on the divider operation, which justifies the open 
curves in the representation of Fig. 10(a). 

For a particular capacitor value cxc , there is a 
constant−Ein curve such that its upper section is tangent to 
the straight line c cxc c=  [Fig. 10(a)]. The particular inE  value 
of this curve corresponds to the minimum threshold inoE  in 
the plane ( , )in inEω . On the other hand, the capacitor values 
providing the maximum frequency excursion for each inE  
do not differ too much [Fig. 10(a)]. The maximum 
bandwidth is obtained for a cc  value that approximates the 
one resulting from the threshold−minimization procedure in 
Section A, for which a single point is obtained in the 
representation of Fig. 10(a), indicated as ( )inoMin E . 
Therefore, the minimization of the division threshold at a 
particular frequency ,in cω  should also enable a near 
maximum frequency bandwidth.  
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Fig. 10 Variation of the frequency bandwidth with the additional capacitor 

cc  for different values of the input amplitude inE . (a) Analytical 
calculation. Frequency division is obtained inside each curve or pair of 
curves resulting from (21). (b) HB−AG analysis of the multi−cell divider 
with    5=N  diode pairs cell divider in Fig. 1. Measurements have been 
superimposed.  
 

The above analytical results have been validated in the 
multi−cell divider with    5=N  diode pairs [Fig. 1(a)], using 
a HB simulation with NH = 20 harmonic terms. The 
frequency division loci have been traced in the plane defined 
by ,in ccω  for several inE  values [Fig. 10(a)]. Each locus is 
obtained by solving the equation ( , , ) 0AG in c inY cφ ω = . The 
analysis have been carried out for the optimum inductor 
value 6.15 nHmL = , resulting from the simulation in Fig. 
6(a). In good qualitative agreement with the analytical 
formulation, the division band degenerates to a point when 

inE  is fixed to the global minimum input−amplitude 
threshold [Fig. 10(b)]. The corresponding cc value agrees 
with the one providing the minimum inE  when sweeping cc  
at constant 6.15 nHmL = . Measurements are superimposed.  

D. Phase noise 
Phase noise is a relevant characteristic of the 

frequency−divided solution. To calculate this solution at 
given input amplitude inE  and frequency inω , one should 
solve the non−perturbation condition in terms of the AG 
amplitude and input phase, ( , ) 0AG in AGY Aφ = , as done in 
[10]. Once the non−perturbation condition is fulfilled, the 
voltage at the subharmonic frequency / 2inω  agrees with the 
AG voltage at the connection nodes, so one can write 
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1 AGV A= . For an understanding of the phase−noise 
behavior, the outer−tier function ( , )AG in AGY Aφ  will be 
linearized about the divided steady−state solution in the 
presence of noise sources. The AG, which uses the pure HB 
system as an inner tier, enables control of the subharmonic 
voltage, so the partial derivatives with respect to V ,  inφ  
and ω , denoted as VY , Yφ  and Yω , can be calculated 
through finite differences [8], [16]. The partial derivative 

VY  is obtained through increments in AGA , while keeping 
the frequency and phase constant at their original values, 

,   ino inoω φ , the ones fulfilling ( , ) 0AG AGo inoY A φ = . In turn, 
the partial derivative Yφ  is obtained through increments in 

inφ , while keeping the frequency and amplitude constant at 
their original values, ,ino AGoAω . An analogous procedure is 
carried out to calculate Yω . 

In the phase−noise analysis, amplitude noise from the 
input source will be neglected, considering only the input 
phase noise ( )tψ . The phase noise of a divider by M  is 

expected to follow ( ) /t Mψ  up to a certain offset 
frequency, usually beyond the region of influence of the 
circuit flicker noise. Thus, only white−noise sources will be 
considered. The circuit contains several white noise sources 
but they will all be modeled with a single equivalent current 
noise source. An example of the derivation of this kind of 
model is presented in [8]. The complex equivalent noise 
source, denoted as ( )NI t , is connected in parallel with the 
AG [8].  

Taking into account the effect of the circuit noise sources, 
the total phase perturbation the observation node can be 
expressed as ( ) / 2 ( )T t tφ ψ φ∆ = + ∆  [8], [17]. In turn, the 
subharmonic amplitude undergoes an increment ( )V t∆  with 
respect to the steady−state value 1V . The time−varying 
phase and amplitude gives rise to an instantaneous complex 
frequency that can be expressed [8], [17]: 

 

                      / 2
1

( )
2in

Vt j
V

ψϕ ω φ ∆ = + + ∆ − 
 







   (22) 

Then the phase−noise spectral density can be estimated 
with the following expression, derived in [7]−[8]: 
 

     

( ) 2 2
2 2

V 2
2 1

2 2 2

 2
4

( )
 

N
V

T

V V

I
Y Y Y

V

Y Y Y Y

φ

φ ω

ψ

φ

Ω
× +

∆ Ω =
× + × Ω

        (23) 

where ×  indicates the cross product between real and 
imaginary parts. The varactor based divider will usually 
exhibit low frequency sensitivity, so it will be possible to 
approach the above equation with: 
 

   
( ) 2

2 2
2 2 2

1

2( )
4 sin ( )

T N

V

I
Y Vφ φ

ψ
φ

α α

Ω
∆ Ω = +

−
    (24) 

where φα  is the angle of Yφ  and Vα is the angle of VY . 
  For low frequency sensitivity, the divider will follow the 

divided phase noise of the input source up to certain offset 
frequency, from which the circuit white noise sources will 
dominate. This will give rise to a transition from a spectrum 
closely following that of the input source to a flat spectrum. 
The transition will occur at the offset frequency 0Ω  for 
which the two terms in (24) have an identical magnitude. 
Assuming a low noise input source, the frequency 0Ω  will 

be larger for a higher magnitude Yφ , since this means a 

higher sensitivity to the phase of the input source. It will 
also decrease with the subharmonic amplitude 1V  and for 
angles Vφα α−  close to an odd multiple of / 2π .   

The above conclusions have been validated with a 
detailed phase−noise analysis based on the 
conversion−matrix approach [18]−[19] and with 
measurements. For the analysis with the conversion−matrix 
approach, the circuit is linearized about the periodic regime 
obtained with the AG, which is provided as an initial guess 
to the large−signal small−signal analysis of the commercial 
software. The analyses have been performed for several 
input frequencies, comparing the offset frequencies 0Ω  and 
the denominator of the second term of (14) in Table I. In 
Fig. 11, the phase−noise spectrum of the subharmonic 
component, extracted with an impedance transformer, is 
compared with the spectrum of the input source.  
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Fig. 11 Phase−noise analysis of the multi−cell divider with    5=N  diode 
pairs. Comparison between the phase noise spectra obtained with the 
approximate expression (24) and with the conversion−matrix approach. 
Measurements have been superimposed.  
 

TABLE I – PHASE NOISE CORNER FREQUENCY 
 

Input frequency 
fin (GHz) ( )2 2 2

1 sin − VY Vφ φα α  
Frequency corner 

Ω0 (kHz) 
fin1 = 2.20 4.182·10−10 450 
fin2 = 2.15 5.71410−10 520 
fin3 = 2.10 1.371·10−9 700 

 

III. DUAL−PHASE DIVIDER 
The use of two frequency dividers based on differential 

varactor−inductor cells, together with a balun, should enable 
the implementation of a dual−phase divider, with 
application in the generation of in−phase and quadrature 
signals [12], [20]. A planar Marchand balun [11] will be 
used here, which is based on two sections of coupled 
transmission lines, having an electrical length of 180º at the 
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central operation frequency incω , as shown in Fig. 12. 
Initially, an analytical study of the configuration will be 
performed, using single−cell dividers [Fig. 12(a)]. Next, the 
practical case of a multi−cell divider with    5=N  diode pairs 
will be studied [Fig. 12(b)−(c)], by means of numerical 
simulations and measurements. 

In the simpler case of ideal transmission lines, the 
admittance matrix describing the Marchand balun at ,in cω is 
the following: 

 

              

0
0 0
0 0

in in

a a

b b

I j j V
I j V
I j V

γ γ
γ

γ

   − 
    = −    
        

  (25) 

where the currents and voltages at the three ports are defined 
as shown in Fig. 12(a). For generality, we will consider 
different voltage and current values at the inputs of the two 
dividers. This will be the case if one of the dividers is 
detuned with respect to the other. The analysis as a phase 
shifter requires full consideration of the nonlinear behavior 
with respect to the subharmonic components, so the 
components of the diode current will be given by (2), with 

0V ≠ . 

The matrix (25) provides the following relationships at the 
input frequency inω : 

                   2

2

      ( )
        ( )

'          ( )

in a b

a in

b in

I j V j V a
I j V I b
I j V I c

γ γ
γ

γ

= − +
= − = −
= = −

  (26) 

where the prima indicates variables referring to Divider B in 
Fig. 12.  At the subharmonic frequency, each divider is 
terminated in virtual short circuits, so their individual 
subharmonic components fulfill: 

                    1 1

1 1

0        ( )
' ' 0       ( )

a

a

V Z I a
V Z I b

+ =

+ =
  (27) 

where aZ  corresponds to the same impedance already 
defined in (4). Note that the phase origin is taken at the 
subharmonic component of the voltage across the varactor 
diode in the Divider A, so 1 'V  is a phasor of the form: 

1
1 1' ' jV V e φ= . Applying Kirchoff’s laws at the input 

frequency inω , under consideration of (26)(b) and (26)(c), 
one obtains:  
 

                      

2
0

2
0

      ( )

'
      ( )

in in

in in

IE R I a
j
IE R I b
j

γ

γ

− =

+ =
  (28) 

Replacing alternatively (28)(a) and (28)(b) into (26)(a), 
the following equations are derived: 

( )

( )

0
0 2 1 2 2 2

0
0 2 1 2 2 2

2
2 ( , ) '

2 '( ', ') '

in

in

G
G E j Z I V V j V V

G
G E j Z I V V j V V

γ γ
γ

γ γ
γ

 
= + + − 

 
 

= − + + − 
 

  (29) 

where 1/o oG R=  and 2 ( )in c inZ jL j cω ω= − . The 
difference between the voltage and current values at the two 
diodes is due to their different bias voltages. In the 
approximate model (29) each divider is coupled to the other 
only at the input frequency inω . 
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Fig. 12 Dual−phase signal generator based on two varactor−based 
frequency dividers, connected through a Marchand balun. (a) Currents and 
voltages at the three ports of the Marchand balun.  (b) Schematic. (c) 
Photograph of the prototype built in Rogers 4003C substrate 
( )3.38,  0.508 mmr Hε = = . 

 
To analyze the phase shifting capabilities, one should 

determine the phase of the subharmonic voltage 1
1 1' ' jV V e φ=  

since the phase of 1V  is zero. The two nonlinear equations in 
(29) can only be resolved numerically, but they can provide 
an intuition on the impact of  2V  on the phase shift. With 
this aim, the diode in Divider A is modeled with ,oc b . In 
turn the diode in Divider B, undergoing the biasing 
variations, is modeled with ', 'oc b . For a rough analysis of 
the impact of the coupling effects, one can define an 
equivalent current source:  

                               0 2
T

in inI G E j Vγ= +   (30) 

And solving (29)(b) for 2 'V one obtains: 
 

                             
2

1
2

0

' '
'

'

T
inI b V

V
c j

α
β γ

−
=

+
  (31) 

where the following parameters with frequency dimension 
have been introduced 4 / 8oG Zα ω γ γω= +  and 
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2 / 4oG Zβ ω γ γω= + . Expression (31) will be replaced into 
(27)(b) considering the capacitance model ( ) ' 'oc v c b v= +  to 
obtain the current component 1 'I . This leads to:  
 

12 2
1

0
0

' '
1 ' ' 0

'

jT
in

a
I e b V

j Z c b
c j

φ α
ω

β γ

− −
+ + = + 

  (32) 

At a constant 2inω ω= , all the impedance terms will be 
constant too, so varying the parameters ', 'oc b  will 
necessary give rise to a variation in 1 'V  and 1φ . From (26)
(b) and (26)(c), one has 2 2 'I I= − , so it is possible to obtain 
the following relationship: 
 

               2 2
2 1 2 12 2 ' ' ' 'o oc V bV c V b V+ = − −   (33) 

Because the biasing is varied in Divider B, one can expect 
the subharmonic amplitude to experience larger variations in 
this divider. Equation (33) indicates that the subharmonic 
oscillation may be extinguished in Divider B but not in the 
other, since, even when 1 ' 0V = , this equation can provide 

1 0V ≠ . Of course, this condition will delimit the operation 
interval. For same bias voltage in the two dividers, one will 
have 0 0 'c c=  and 'b b= , and due to the circuit symmetry, 
equation (33) will provide the solution: 

                       90
1 1 2 2' ,        'jV e V V V= = −   (34) 

Then, the two dividers are ruled by a same equation: 
 

      0
0 2 1 2 2

2
2 ( , ) 2in

G
G E j Z I V V j Vγ γ

γ
 

= − + + 
 

  (35) 

Due to the relationship (34), equivalent nodes of each 
divider will exhibit a 90° phase shift. This is indicated in 
Fig. 12(b). For instance, signals at the upper node of cell n 
in Divider B and at the upper node of the same cell n in 
divider A will exhibit a 90° phase shift. Signals at the lower 
node of cell n in Divider B and at the lower node of the 
same cell n in Divider A will also exhibit a 90° phase shift. 
On the other hand, upper and lower nodes of any cell in any 
of the two dividers will exhibit a 180° phase shift. 

Fig. 13 presents the numerical analysis of a dual−phase 
signal generator based on the use of two one−cell dividers. It 
shows the variation of the subharmonic amplitudes in the 
two dividers when changing the bias voltage of Divider B. 
The analysis demonstrates the coupling between the two 
dividers since the amplitude in Divider A varies with this 
bias voltage. A practical dual−phase generator based on two 
multi−cell dividers with    5=N  diode pairs has also been 
analyzed by means of two AGs, connected in a differential 
manner, at the central cell of each divider [Fig. 12(b)]. The 
amplitude variations are superimposed in Fig. 13 and exhibit 
the same qualitative behavior. In the two cases, the 
amplitude of Divider B undergoes the most significant 
variation, as this bias voltage directly affects the 
performance of the diodes in Divider B, whereas those in 
Divider A are affected by this bias voltage only through 
coupling effects. This gives rise to the amplitude imbalance 
observed in Fig. 13. With this hyperabrupt diode the 

amplitude is quite sensitive to the varactor bias voltage, 
even in the case of a single (uncoupled) divider. The aim 
here is to present a proof of concept, though a more careful 
consideration of this aspect might be needed for some 
applications. In the case of the one−cell divider, the section 
comprised between the flip bifurcation F2 and the turning 
point T of the divided solution curve is unstable, as has been 
verified with pole−zero identification [21]. In the Vb range 
(2.27 V − 2.48 V), both the non−divided solution and the 
divided one located in the upper section of the curve are 
stable. Therefore, the divider will exhibit a small hysteresis 
interval, which is a common phenomenon in frequency 
dividers [7].  
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Fig. 13 Variation of the subharmonic amplitudes versus the reverse bias 
voltage applied to the varactors of Divider B. The cases of a single−cell 
divider and a multi−cell divider with 5=N  diode pairs are compared. 
  

Fig. 14 presents the experimental waveforms between 
equivalent terminals of the two 5=N  dividers for two 
different values of the varactor bias voltage. Fig. 14(a) 
shows a phase shift of 90º, for equal bias voltages, and 
Fig. 14(b) shows a phase shift of 54º, under detuning. The 
measured variation of the phase shift with the varactor bias 
voltage is presented in Fig. 15. When increasing the reverse 
bias voltage in one of the dividers, the phase shift decreases, 
though there is a near flat region in the middle. This 
detuning could only be performed in one sense, since the 
original (equilibrium) operation point corresponds to near 
zero varactor−bias voltage.  
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Fig. 14 Measured differential waveform for two different varactor bias 
voltages. (a) Phase shift 90º (b) Phase shift 54º. 
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Fig. 15 Measured variation of the phase−shift between the two divider 
circuits with the reverse bias voltage applied to the varactors of Divider B. 

IV. DUAL−BAND FREQUENCY DIVIDER 
The possibility to implement a dual−band frequency 

divider using an extension of the reflective topology will be 
investigated in this section. This will rely on the 
combination of the original cell, based on the parallel 
connection of the varactor diode, with a series−varactor cell, 
in which the diodes are in a series connection (Fig. 16).  

A. Series−varactor cell 
Initially, an analytical study of the series−varactor cell 

(Fig. 16) will be carried out. Taking into account the 
symmetry properties of the structure, the nodes A  and B  
will be virtual short circuits at the subharmonic frequency, 
in analogous manner to the case of the original cell. Thus, at 

/ 2inω ω=  the circuit will be governed by the equation: 
 
             1 1( 2 ) 0D bV R j L I V Z Iω+ + = + =   (36) 

where 2 ω= +b DZ R j L  and 1I  has the same expression as 
in (2). As gathered from the above equation, the dual cell 
exhibits an inductive effect which is four times that in the 
original cell (5). One obtains the same formal expression 
(14) for 2 ( , )o inV L ω , though the definition of LX  is different 
and given by 'L inX Lω= . The different amplitude function 
will be emphasized with the notation '

2 ( , )o inV L ω . For a 
same L  value the minimum of '

2 ( , )o inV L ω  will be obtained 
for a lower frequency than in the case of the original cell.  

ωin 

Ro

Lp

c(v)= co+bv

+ -v(t)

Lp

Eine jφin

BA

RD RD

RD RD

cc or Lc

 
Fig. 16 Schematic of the series−varactor cell for frequency division at the 
lower band.  

 
To reduce the division threshold at a particular input 

frequency ,in cω , one may choose an additional capacitive 

element cc , as in the case of the parallel cell, or an 
additional inductive element cL . In both cases, this 

additional element will be connected between the middle 
node of the parallel inductors and ground. In the case of a 
capacitive element cc , the equation governing the divider at 

the division threshold ( )0V =  is the formally identical to 

(11), but replacing 2 ( , )o inV L ω  with '
2 ( , )o inV L ω . In the case 

of an additional inductor cL , the equation at the 
subharmonic component agrees with (36). However, the 
equation at the input frequency is different from (11). This 
equation, and the inductor  cL  that minimizes the 
input−amplitude threshold for 21/ ( )o inL c ω<  are given by: 

{ }1/22' 2 2
2

2

( , ) 1 ( 2 ) ( )

1/ (2 ) / 2

ω ω ω

ω

 = − + + 

= −

in o in c o in p o in

cm o in

E V L L L c R c

L c L
  (37) 

For 21/ ( )o inL c ω> , one should use an additional capacitor 

cc .  

B. Dual−band divider 
The basic configuration of the dual−band divider consists 

of a series−varactor cell embedded between two parallel 
varactor cells, as shown in Fig. 18. In view of expressions 
(4) and (36), for given values of RD, co and L , one can 
expect the parallel−varactor divider to operate at higher 
frequencies than the series−varactor one, due to the lower 
inductive effect. At these higher frequencies, the effect of 
the series−varactor cell will be initially neglected, since the 
impedances exhibited by its associated varactors and 
inductors will be low and high, respectively. Thus, in the 
higher frequency band, the configuration in Fig. 17 can be 
simplified as two parallel−varactor cells, responsible for the 
division at the higher frequency band. Their inductor L  and 
additional capacitor cc  have been optimized according to 
the procedure described in Section II, imposing the central 
frequency 3.97 GHzinf = . The optimum values resulting 
from a HB−AG simulation with full diode models and 
NH = 20 harmonic terms are  4.7 nHmL =  and 

 0.43 pFcmc = . 
Next, the lower frequency division band will be 

considered. It is initially assumed that the components of 
two outermost cells can be neglected at this low frequency, 
so the circuit in Fig. 17 simplifies to a single series−varactor 
cell. For this single cell, the inductor is kept at 

 4.7 nHmL = , which centers the lower division band at 
1.72 GHzinf = . Then the analytical expression (12) for the 

capacitor cc  is used as an initial guess for the HB−AG 
optimization with 20 harmonic terms. The final capacitor 
value is   10 pFcmc = .  
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Fig. 17 Dual−band frequency divider. (a) Schematic. (b) Photograph of the 
prototype built in Rogers 4003C substrate ( )3.38,  0.508 mmr Hε = = . 
Output signals are extracted with a source−follower buffer based on the 
transistor NE3210S01. 

 
Fig. 18 presents the result of the individual analyses of the 

parallel−varactor divider (neglecting the series−varactor 
cell) and the series−varactor divider (neglecting the two 
parallel varactor cells). This result can be compared with the 
one obtained when performing a HB−AG simulation of the 
full divider in Fig. 17, taking into account the coupling 
between the two types of cells. The number of harmonic 
terms is 20NH =  in the three cases. To analyze the lower 
frequency band of the dual divider, the AG ( lAG ) is 
connected in differential manner between the nodes (3)+v  
and (3)−v , corresponding to the series−varactor cell. To 
analyze the upper frequency band, the AG ( uAG ) is 
connected in differential manner between the nodes (4)+v  
and (4)−v , of the parallel−varactor sub−circuit [Fig. 17(a)]. 
The coupling tends to separate the bands but gives rise to a 
reduction of the division thresholds, attributed to the 
presence of a higher number of varactor diodes in the two 
cases.     
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Fig. 18 Input−sensitivity curves of the two dividers based on a 
series−varactor cell and two parallel−varactor cells optimized in HB in a 
separate manner, with 20NH =  harmonic components. The results are 
compared with those obtained when simulating the full divider 
configuration in Fig. 17 with 20NH =  harmonic components.  
 

As shown in Fig. 18, under coupled conditions the two 

division bands are centered about 1.72 GHzinf =  and 
3.97 GHzinf = , respectively. Then the additional capacitors 

l
cc  and u

cc  of the two types of cells can be separately 
calculated to maximize the division bandwidth about each 
frequency. The resulting values are 10 pFl

cc =  for the lower 
division band and 0.43 pFu

cc =  for the upper division band. 
The corresponding input−sensitivity curves are shown in 
Fig. 19(a) and Fig. 19(b), where they can be compared with 
the ones obtained with a common cc , having an 
intermediate magnitude: 4.4 pFcc = . Measurements have 
been superimposed for both the original and optimized 
values. The output signal is extracted with a 
source−follower buffer based on the transistor NE3210S01.  
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Fig. 19 Influence of capacitor cc  on the division bandwidth for fixed 

4.7 nHL = . (a)  Sensitivity curves at the lower frequency band for 
intermediate and optimized values of cc . (b) Sensitivity curves at the upper 
frequency band. Measurements are superimposed. 
 

The solution curves in terms of the subharmonic 
amplitude have been calculated for the element values 

4.7 nHL =  and , 10 pFl
c mc = in the series−varactor cell, 

and 4.7 nHL =  and , 0.43 pFu
c mc = , in the parallel−varactor 

cells. Results are shown in Fig. 20, where they can be 
compared with the measurement points. At 2 VinE = , the 
two division bandwidths are 259 MHzLBW =  and 

251 MHzUBW =  at the low and high frequency band 
respectively. Fig. 21(a) and Fig. 21(b) show the measured 
divided−solution waveforms obtained with the dual−band 
divider at 1.78 GHzinf =  and at 3.92 GHzinf = , 
respectively, both exhibiting a pronounced frequency 
division.    
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Fig. 20 Variation of the subharmonic amplitude versus the input frequency 
in each of the two division bands, obtained for constant 2 VinE = . 
Measurements have been superimposed. 
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Fig. 21 Measured divided−solution waveforms obtained with the dual−band 
divider. (a) 1.78 GHzinf = . (b)  3.92 GHzinf = . 

 
Finally, the phase−noise spectrum at each of the two 

coexistent frequency−division bands, with respective input 
frequencies 1.78 GHzinf =  and 3.92 GHzinf = , has been 
calculated and compared with the spectrum of the input 
source at each of the two frequencies. The results are shown 
in Fig. 22. The measured spectra are superimposed with 
good agreement. The respective corner frequencies 0Ω  are 
different, which can be attributed to differences in the three 

main magnitudes affecting the corner: Yφ , 1V  and Vφα α− .    
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Fig. 22 Phase−noise spectrum at the central frequencies of the two 
coexistent division bands. Each spectrum is compared with that of the input 
source. Measurements are superimposed in the two cases. 
(a) 1.78 GHzinf = , in the lower division band. (b) 3.92 GHzinf = , in the 

higher division band. 
 

C. Pre−setting of the two division bands 
The possibility to center the two division bands at 

specified frequency inlf  and inuf  has been investigated. Due 
to the coupling effect, one cannot center one band without 
affecting the other. This is shown in the analysis of Fig. 23, 
with measurement superimposed. Variations in lL ( uL ) 
enable a large shift of the lower (upper) division band, with 
a smaller undesired shift in the upper (lower) band. To 
circumvent this problem, an optimization procedure has 
been developed, based on the simultaneous optimization of 
two identical copies of the circuit, with identical element 
values lL , lc , uL  and uc  (Fig. 24). The first circuit copy 
operates at the desired central frequency of the lower 
division band, inlf , and is analyzed with an AG ( lAG ) at 

/ 2AGl inlf f= , with an input−source phase ,in lφ . This AG is 
connected between the nodes of the series−varactor cell 
[Fig. 24(a)]. The second circuit copy operates at the desired 
central frequency of the upper division band, inuf , and is 
analyzed with an AG ( uAG ) at / 2=AGu inuf f , with an 
input−source phase ,in uφ . This AG is connected at one of 
the two parallel−varactor cells [Fig. 24(b)].   
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Fig. 23 Global operation of the dual−band frequency divider, analyzed in 
the plane defined by inω  and inE . (a) Effect of the variation of the lL  to 

tune the lower frequency band. (b) Effect of the variation of uL  to tune the 
upper frequency band. 

 
The two copies of the circuit are simultaneously analyzed 

with two−tone HB, at the two fundamental frequencies 
/ 2AGl inlf f=  and / 2AGu inuf f= , with 0 intermodulation 

order, since each circuit operates at a different frequency. 
Because the intermodulation order is 0, the analysis 
frequencies are the NH=20 harmonics of AGlf  and the 
NH=20 harmonics of AGuf , so the computational cost is 
bearable. Because the aim is to preset the division threshold, 
the amplitude of the two AGs is set to very small value ε . 
Then the two circuits (with common design values) are 
simultaneously optimized to fulfil: 
 

 
( )
( )

, ,

, ,

, , , , , 0

, , , , , 0

AGl l l u u in l in u

AGu l l u u in l in u

Y L c L c

Y L c L c

φ φ

φ φ

= =

= =
    (38) 

 
with the pure two tone HB system as an inner tier. The 
initial values of the elements lL , lc , uL  and uc  are those 
resulting from the separate optimizations of the 
series−varactor cell ( , )o o

l lL c  and the parallel−varactor cell 

( , )o o
u uL c . On the other hand, the input sensitivity will be 

slightly different in each division band, so the input source 
should have different amplitude in each of the two copies of 
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the circuit. The first (second) copy, operating at inlf ( inuf ) 
will have input amplitude inlE ( inuE ). The initial values of 

inlE  and inuE  will correspond to those resulting from the 
initial separate optimization of the series−varactor divider 
and parallel−varactor divider, given by o

inlE   and o
inuE , 

respectively.  
The complex system (38) is over−dimensioned, as it 

composed by two complex equations in six optimization 
variables, which should facilitate the convergence. The 
system forces the divider to operate at the two specified 
frequencies inlf  and inuf . To actually center the two 
division curves about these values, one should reduce the 
division threshold inlE  and inuE  as much as possible. This 
can be done by sweeping down the higher of the two 
magnitudes from the one obtained with the separate 
optimization (either o

inlE  or o
inuE ). System (38) is 

optimized at each sweep step. The different stages of the 
design procedure are indicated in the flowchart of Fig. 25. 
As an example, this procedure has been applied to center the 
two division bands at 2 GHzinlf =  and 3.5 GHzinuf = . 
Fig. 26(a) shows the variation of the optimization elements 
that exhibit the largest variation when decreasing inlE . The 
actual centering of the two division bands about inlf  and 

inuf  is demonstrated with an independent simulation of the 
divider, when operating at each of the two division bands 
[Fig. 26(b)]. As can be seen, with the simultaneous 
optimization it has been possibly to accurately center the 
“merged” dual−band divider at the specified frequencies 

inlf  and inuf .  
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Fig. 24 Duplicated circuit for the optimization procedure. (a) Copy of the 
circuit operating at the central frequency of the lower division band inlf . (b) 
Copy of the circuit operating at the central frequency of the upper division 
band inuf . The two copies are simultaneously optimized with two AGs at 

/ 2AGl inlf f=  and / 2AGu inuf f= , in order to fulfill (38). 

 

1. Optimize the values of the (isolated) series-varactor cell at finl

− Introduce one AG in the HB simulation
− Set AG frequency to fAG = finl /2 
− Select optimum L solving YAG (Ein, φin, L) = 0  

− Final values Ll
o and cl

o

Ll
cl

Ll− Select optimum cc solving YAG (Ein, φin, cc) = 0  

2. Optimize the values of the (isolated) parallel-varactor divider 
    (with 2 cells) at finu

− Set AG frequency to fAG = finu /2 
− Select optimum L solving YAG (Ein, φin, L) = 0  

− Final values Lu
o and cu

o
− Select optimum cc solving YAG (Ein, φin, cc) = 0  

3. Optimization of two circuit copies of the complete dual-band divider

− Copy 1 (Copy 2) operates at  finl /2 ( finu /2) with Einl, φin,l  (Einu, φin,u).
− Introduce one AG at finl /2 in Copy 1 
− Introduce one AG at finu /2 in Copy 2 at one of the parallel-varactor cells
− Use two-tone HB (0 intermodulation order) to optimize the copies (35) 
− Initial values for the optimization (Ll
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− Final values: (Ll , cl
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− Analyze the final circuit in each of the two frequency bands
− Keep element values at:  Ll , cl

 , Lu , cu   

− Sweep ωin solving YAG (Ein, φin, ωin) = 0  at each step 
− Trace Ein versus ωin
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Fig. 25 Flowchart indicating the steps to be taken for the optimized design 
of the dual−band frequency divider. 
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Fig. 26 Use of conditions (38) to center the two division bands at the 
specified frequencies 2 GHzinlf =  and 3.5 GHzinuf = . (a) Variation of two 

of the optimization variables, ,l lL c , when decreasing inlE . (b) Validation 
with an independent analysis of the two division bands. 
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V. CONCLUSION 
A design methodology for a recently proposed 

frequency−divider configuration based on varactor−inductor 
cell has been proposed. The method derives from an initial 
analytical study of a single−cell divider, which provides 
insight into the impact of the various circuit elements on the 
input−amplitude threshold and the frequency bandwidth. 
The inductors of the divider topology enable the shift of the 
frequency−division band and an additional capacitor enables 
the reduction of the input−amplitude threshold. With a 
higher number of cells, the two element types still enable 
these two separate actions, as has been verified with a full 
harmonic balance analysis, using an auxiliary generator at 
the divided frequency. Two different applications have been 
demonstrated: a dual−phase divider, based on the use of a 
Marchand balun, and a dual−band frequency divider, based 
on a novel configuration in which a series−varactor cell is 
embedded between two parallel−varactor cells. A simple 
synthesis method is presented to center the two division 
bands at the desired values. The techniques have been 
applied to three prototypes at 2.15 GHz, 1.85 GHz and 1.75 
GHz / 3.95 GHz, respectively. 
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