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Abstract  

BCL6 is a zinc finger transcriptional repressor, which is highly expressed in germinal 

centre B-cells and is essential for germinal centre formation and T-dependent antibody 

responses. Constitutive BCL6 expression is sufficient to produce lymphomas in mice. 

Deregulated expression of BCL6 due to chromosomal rearrangements, mutations of a 

negative autoregulatory site in the BCL6 promoter region and aberrant post-translational 

modifications, have been detected in a number of human lymphomas. Tight lineage and 

temporal regulation of BCL6 is, therefore, required for normal immunity and abnormal 

regulation occurs in lymphomas. CCCTC-binding factor (CTCF) is a multi-functional 

chromatin regulator, which has recently been shown to bind in a methylation sensitive 

manner to sites within the BCL6 first intron. We demonstrate a novel CTCF binding site in 

BCL6 exon1A within a potential CpG island, which is unmethylated both in cell lines and 

primary lymphoma samples. CTCF binding, which was found in BCL6 expressing cell 

lines, correlated with the presence of histone variant H2A.Z and active histone marks, 

suggesting that CTCF induces chromatin modification at a transcriptionally active BCL6 

locus. CTCF binding to exon1A was required to maintain BCL6 expression in germinal 

centre cells by avoiding BCL6 negative autoregulation. Silencing of CTCF in BCL6 

expressing cells reduced BCL6 mRNA and protein expression, that is sufficient to induce B 

cell terminal differentiation toward plasma cells. Moreover, lack of CTCF binding to exon1A 

shifts the BCL6 local chromatin from an active to a repressive state. This work 

demonstrates that, in contexts in which BCL6 is expressed, CTCF binding to BCL6 

exon1A associates with epigenetic modifications indicative of transcriptionally open 

chromatin. 

Keywords: CTCF, BCL6, lymphoma, germinal centre, epigenetics 
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INTRODUCTION 

BCL6 is a transcriptional repressor, which plays important roles in normal B-cell 

development and in lymphomas. BCL6 is required for germinal centre formation and T-

dependent antibody responses1 (reviewed in ref.2) and must be down-regulated for 

terminal differentiation to plasma cells to occur3,4. BCL6, widely considered as a master 

regulator of the germinal centre reaction, inhibits genes involved in DNA damage (TP53 

and ATR), cell cycle (CCND2, CDKN1B and CDKN1A), B cell activation (NKFB1, CD80, 

CD69) and plasma cell differentiation (BLIMP1)5. BCL6 deregulation due to translocations 

occurs in a variety of B-cell lymphomas (reviewed in ref.6) and BCL6 overexpression 

induces lymphomas, similar to human diffuse large B-cell lymphoma, in mice7. Normal 

BCL6 expression is tightly controlled through well-described transcriptional8-11 and post-

translational12-14 mechanisms. In our previous studies, a short region on the BCL6 first 

non-coding exon1A was associated with high-level transcriptional activity in reporter 

assays15,16. Bioinformatic analysis of that region showed high transcription factor binding 

site density including a putative binding site for the CCCTC-binding factor (CTCF). CTCF 

was recently shown to bind unmethylated CpG islands within BCL6 intron 1 in a plasma 

cell line that does not express BCL617. However, in a BCL6 expressing Burkitt’s lymphoma 

cell line there was less CTCF binding at these intronic sites associated with increased 

methylation17. The aim of the present study was to analyse the novel CTCF binding site 

found in a CpG island in BCL6 exon1A and its possible biologic and mechanistic roles in 

BCL6 regulation in either BCL6 expressing or non-expressing cell lines and in primary 

cells from patients with different lymphoid neoplasms. 

 CTCF is a multifunctional regulator that has key roles in inducing and supporting 

chromatin interactions. CTCF activities include transcriptional repression or activation, 

chromatin insulation, regulation of genomic imprinting and epigenetic regulation of a 

number of target genes (for reviews see18,19). CTCF contains a DNA-binding domain 
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composed of 11 zinc-fingers able to bind many different sequences. Genome-wide 

analysis identifies about 40 000 CTCF binding sites depending on the cell type 

analysed20,21 and additional studies reveal consensus motifs for CTCF binding sites in 

different organisms18. In the ENCODE project, the genome-wide binding location and 

occupancy of CTCF has recently been refined by several groups22,23. The most studied 

CTCF property is its ability to bind insulator sequences24, controlling the boundaries 

between silent heterochromatin and active euchromatin25,26. CTCF has an essential role in 

the global chromatin structure organization through the facilitation of long-range 

interactions and chromatin looping19,24. More than twenty CTCF partners have been 

identified so far, including cohesin proteins27,28, chromatin constituents as the histone 

variant H2A.Z29, transcription factors such as UBF30 and others (reviewed in18). CTCF is 

involved in different aspects of epigenetic regulation31 and regulates genes involved in 

cancer such as MYC32, RB33, p5334, p16 (ref35) or hTERT36, frequently through epigenetic 

mechanisms31. For instance, CTCF binds unmethylated DNA and blocks the spreading of 

the CpG methylation front on the RB promoter33. 

 Here we report a novel CTCF binding site occurring in a CpG island in BCL6 exon1A 

that is neither methylated in BCL6 expressing or non-expressing cell lines or in primary 

cells from patients with different lymphoid neoplasms. In vivo binding of CTCF at BCL6 

exon1A occurs in association with active histone marks and CTCF protects against 

repressive marks in a transcriptionally active locus. Moreover, our results suggest that 

CTCF binding to exon1A is required to maintain BCL6 expression in germinal centre cells 

by avoiding BCL6 negative autoregulation. Indeed, CTCF silencing on those cells leads to 

BCL6 dowregulation that is sufficient to induce markers of plasma cells differentiation. 
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RESULTS 

CTCF binds in vitro and in vivo to BCL6 exon1A 

A relatively short region on the BCL6 first non-coding exon1A, from +1 to +533 (relative to 

the transcription start site37), was associated with high-level transcriptional activity in 

reporter assays15,16. In order to determine potential CTCF binding sites we utilised a 

database that was constructed using genome-wide experimental methods38. A CTCF 

binding site at BCL6 exon1A was predicted with high scores (Figure 1a) and this was 

confirmed by the recently updated database (http://insulatordb.uthsc.edu/)39. 

 In order to investigate CTCF binding at BCL6 exon1A, electrophoretic mobility shift 

assays (EMSA) were carried out. A 198 bp probe containing the CTCF binding site at 

BCL6 exon1A was generated by PCR amplification and incubated with nuclear extracts 

from HEK293T cells transfected with CTCF expression vectors. Extracts from CTCF 

transfected cells showed stronger binding to the BCL6 probe compared to extracts from 

mock-transfected cells or cells transfected with a CTCF N-terminal domain expression 

vector (Figure 1b lanes 1-3). The binding specificity was demonstrated by incubating the 

nuclear extracts with a specific anti-CTCF antibody. A supershifted band was observed 

(asterisk in Figure 1b lane 4) while no supershift was found with an anti-actin antibody 

(Figure 1b lane 5). The known MYC-N site was used as positive control for CTCF binding 

(Figure 1b left panel). To further delimitate the CTCF binding site, an EMSA using a 

double-stranded oligonucleotide of 80 nt containing the “core” 20 nt sequence predicted by 

the CTCFBS data base was performed, showing specific CTCF binding (supplementary 

Figure S1). Therefore, CTCF interacts in vitro with the predicted binding site at the BCL6 

exon1A.  

 Chromatin immunoprecipitation (ChIP) experiments were employed to investigate in 

vivo occupancy of the BCL6 exon1A site by CTCF. In all the experiments, CTCF binding to 

the H42.1 site in the rDNA repeats30 was used as positive control, while the MYC-H.1 site 
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was used as negative control (Figure 2a). ChIP assays using two different anti-CTCF 

antibodies showed CTCF occupancy of the BCL6 exon1A site in Ramos, a Burkitt’s 

lymphoma derived cell line, extensively used as cell model system for germinal centre (see 

details of the cell lines in supplementary table S1). The variant histone H2A.Z has been 

reported to be a CTCF partner29 and to colocalize with CTCF in genome wide studies25. 

We therefore asked whether H2A.Z was detected in the BCL6 regulatory region. ChIP 

analysis revealed specific accumulation of H2A.Z at the CTCF binding site of BCL6 

exon1A (Figure 2b). The analysis of different regions of the BCL6 gene (amplicons 

indicated in Figure 1a) demonstrated high CTCF enrichment with the primers covering the 

predicted CTCF binding in exon1A in Ramos cells (Figure 2c). 

 We next studied whether CTCF occupancy was modified in lymphoma cell lines with 

different levels of BCL6 expression (see western blot in supplementary Figure S2a). We 

compared CTCF in vivo binding in Ramos (a germinal centre cell line expressing high 

levels of BCL6), MutuIII (also a germinal centre cell line but which does not express BCL6) 

and K562 (a BCL6 negative myeloid cell line). ChIP analysis revealed CTCF occupancy of 

the BCL6 exon1A site in Ramos but not in MutuIII or K562 cells (Figure 2d). High CTCF 

occupancy was observed in myeloid K562 cells at BCL6 intronic CTCF binding sites 

(amplicons 6 and 7) already described by Lai et al17. Interestingly, CTCF binding to 

exon1A was not detected in BCL6 non-expressing cell lines (supplementary Figure S1a 

and S1b), indicating that CTCF is preferentially bound to exon1A when BCL6 is highly 

expressed. This finding suggests that CTCF binding at the exon1A site and not to the 

intronic sites is functionally important in germinal centre cells. 

  

CTCF knock-down reduces BCL6 expression in germinal centre B cells and induces 

markers of plasma cells differentiation 

To determine the CTCF regulatory effect on BCL6 expression, we knocked down CTCF in 



7  

two different BCL6 expressing germinal centre lymphoma cells. Silencing of CTCF mRNA 

in DG75 was achieved 48 hours after transfection with the pRS-CTCF vector and this 

effect was maintained until, at least, 96 hours (Figure 3a). CTCF knockdown caused 

down-regulation of both BCL6 mRNA (Figure 3a) and protein (Figure 3b) expression. 

Similar results were obtained upon viral infection of Ramos cells i.e. CTCF silencing was 

accompanied with reduced BCL6 mRNA and protein expression (Figure 3c and 3d). BCL6 

expression has been induced by silencing of CTCF in BCL6 negative plasma cells17 but no 

induction was observed in BCL6 negative K562 myeloid cells (Figure 3e and 3f).  

 For a B-cell to exit the germinal centre BCL6 expression is downregulated, leading to 

changes in BCL6 target gene expression. In our model, when BCL6 expression was 

dowregulated through CTCF inhibition, expression of two BCL6 target genes CCND2 and 

BLIMP1 was significantly increased (Figure 3g). IRF4, a marker for plasma cell 

differentiation was also upregulated (Figure 3g). Thus, our results indicate that CTCF is 

required to maintain BCL6 expression in germinal centre cells and its downregulation is 

sufficient to induce B cell terminal differentiation toward plasma cells.   

 

CTCF counteracted the negative autoregulation of BCL6 at exon1A  

To determine whether CTCF had any effect on transcriptional activity at the BCL6 

promoter, luciferase assays were carried. A pGL3 reporter construct containing a BCL6 

proximal promoter fragment including the exon1A region was co-transfected with two 

different CTCF expression vectors in DG75 lymphoma cells. Enforced expression of CTCF 

led to a reproducible increase in BCL6 reporter activity (Figure 4a). This effect required the 

full length-CTCF protein, as co-transfections with individual CTCF domains (zinc-finger or 

C-terminal domains) had no significant effect on the reporter gene activity (Figure 4a). 

Altogether our results suggest that, in BCL6 expressing germinal centre cells, CTCF 

binding to the exon1A might be involved in the transcriptional up-regulation of BCL6. 
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 BCL6 bound to high affinity sites in exon1A (see Figure 1a) is known to repress its 

own transcription8,9,40. The location of the exon1A CTCF site suggests that it may be 

important in regulating BCL6, and speculatively CTCF binding might be required to prevent 

BCL6 negative autoregulation. To address this hypothesis we performed luciferase 

reporter assays in the BCL6-non expressing HEK293T cell line, examining a BCL6 

promoter region that contains both the CTCF and the BCL6 autoregulatory sites (Figure 

4b). That region showed a high transcriptional activity in basal conditions, and this activity 

was progressively reduced upon transfection with increasing dosis of a BCL6 expressing 

vector. Notably, the negative effect by BCL6 was significantly counteracted by 

cotransfection with CTCF in a dosis-dependent manner (Figure 4b). Taken together, these 

data suggest that CTCF binding to its exon1A site may be essential for protecting BCL6 

from its own autorepression in germinal centre cells. 

 

CTCF binding to BCL6 exon1A is methylation-insensitive 

CTCF regulation of its target genes frequently involves epigenetic mechanisms, including 

DNA methylation31. To address whether CTCF binding to BCL6 exon1A was methylation-

sensitive, EMSAs were performed using probes that were unmethylated or fully methylated 

(Figure 5a). Band-shift results using either control or methylated probes were very similar, 

indicating that probe methylation does not alter CTCF binding (Figure 5b lanes 2 and 8). 

Therefore, CTCF showed in vitro methylation insensitive binding to the BCL6 exon1A site. 

 We speculated that CTCF might be regulating methylation at the BCL6 locus by 

controlling and impeding methylation progression, as it has been previously shown for 

other genes33,34,36. We therefore determined possible CpG islands in 20 kb of the BCL6 

regulatory region using Methyl Primer Express software. The BCL6 exon1A region 

containing the CTCF binding site was located within a predicted CpG island (see 

sequence in Figure 1a). In order to find out if there was variation in methylation of this CpG 
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island correlating with BCL6 expression in different cell lines and primary cells, we used 

bisulfite genomic sequencing to investigate the methylation status of the CpG 

dinucleotides located near the “core” CTCF binding site (see scheme in Figure 5c). Control 

for the bisulfite transformation assay and the ability to detect methylated DNA was 

performed (supplementary Figure S4). In all the cell lines evaluated, the CpG dinucleotides 

were unmethylated (Figure 5c). To further investigate the methylation status of that region, 

bisulfite treated genomic DNA from seven patients with a variety of B neoplasms were 

PCR amplified, cloned and sequenced. Neither of them showed methylation of any of the 

CpG dinucleotides (Figure 5c). Finally, no cytosine methylation was observed around the 

CTCF binding site after effectively silencing CTCF in DG75 cells (data not shown). 

Collectively these results indicate that differential methylation of the BCL6 exon1 

regulatory region including the CTCF binding site, is not associated with the BCL6 

expression regulation.  

 

CTCF binding associates with active histone marks and protects BCL6 exon1A 

against repressive marks  

Post-translational modifications of histones modifies the accessibility of chromatin, 

contributing to the recruitment of different protein complexes regulating transcription41,42. 

Given that CTCF may regulate the local epigenetic state of chromatin through 

mechanisms involving histone modifications30,34, we analyzed the presence of modified 

histones at exon1A in the BCL6 positive cell line, Ramos, and in the BCL6 non-expressing 

cell line, MutuIII (Figure 6a). Ramos cells showed a high enrichment of active chromatin 

marks, including histone H3 acetylation (H3Ac) and histone H3 lysine 4 dimethylation 

(H3K4me2). On the contrary, MutuIII cells showed less enrichment of active histone 

marks. ChIP experiments for repressive histone marks revealed lower H3K27me3 and 

especially H3K9me3 relative enrichment in Ramos compared to MutuIII cells (Figure 6a) 
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(histone marks normalization are shown in supplementary Figure S5). CTCF binding, 

therefore, appears to associate with active marks in BCL6 expressing cells.  

 Finally, we investigated the effect of CTCF silencing on the local chromatin structure 

at the BCL6 exon1A. Ramos cells were infected with retrovirus prepared from pRS 

(control) and pRS-CTCF and ChIP assays for CTCF and modified histones were 

performed. As expected, a strong decrease of CTCF binding to BCL6 exon1A was found 

upon CTCF silencing (Figure 6b left panel). A modest reduction in active marks (not 

shown) together with a strong enrichment of H3K9me3 and H3K27me3 repressive 

histones (Figure 6b middle and right panels) was observed at BCL6 exon1A regulatory 

region in Ramos cells lacking CTCF. Altogether these results indicate that CTCF binding 

at BCL6 exon1A is associated with a transcriptionally active locus and protects the BCL6 

regulatory region against repressive histone marks. 

 

DISCUSSION  

BCL6 is highly regulated during B cell differentiation such that naïve B-cells and terminally 

differentiated plasma cells do not express the protein whilst germinal centre B-cells 

express large amounts43. Repression of BCL6 is required for germinal centre exit once a 

high affinity antibody has been created and is essential for normal immunity. However, the 

mechanism by which the BCL6 locus is opened for transcription is not known but, by 

analogy with other loci, it may be that epigenetic marks are required prior to the 

recruitment of transcription factor complexes44,45.  

 In this report we analyse the BCL6 regulation by CTCF. We describe four novel 

findings: (i) CTCF binds to a previously undescribed site in BCL6 exon1A, associated with 

high level of BCL6 expression, (ii) silencing of CTCF is correlated with reduction of BCL6 

expression in germinal centre B-cells and induction of BLIMP1 and other plasma cell 

markers, (iii) CTCF counteracted the negative autoregulation of BCL6 at exon1A, (iv) 
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CTCF binding to BCL6 exon1A is not DNA methylation sensitive, but is associated with 

presence of active histone marks and protection against repressive marks. 

The “CTCF binding sites database” constructed from CTCF binding sites identified 

by genome-wide screens, has been widely used to estimate the probability of CTCF 

binding to putative sites38,39. Using this tool we identified a new CTCF binding site in BCL6 

exon1A. ENCODE ChIP-seq data confirmed CTCF binding site within BCL6 exon1A, 

together with H2A.Z and the cohesin subunit Rad21, in lymphoblastoid cells but not in 

myeloid K562 cells (supplementary Figure S6).  

The BCL6 exon1A CTCF site is close (250 bp) downstream of the major 

transcription start site in a region that contains a BCL6 negative autoregulatory region. 

CTCF binding to BCL6 exon1A was demonstrated in vitro and in vivo. CTCF binding to 

sequences within BCL6 intron 1 have been recently described in plasma cells17 and the 

same was found in myeloid cells (this work). In contrast with the CTCF binding to intronic 

sites in non-germinal centre cells, CTCF is preferentially bound to exon1A in germinal 

centre cells when BCL6 is highly expressed. This suggests that CTCF might be involved in 

the transcriptional up-regulation of BCL6 by preventing BCL6 negative autoregulation. 

Supporting this concept, CTCF silencing in two germinal centre BCL6 expressing cell lines 

led to a reproducible reduction in BCL6 mRNA and protein expression. In addition, reporter 

assays performed in BCL6 expressing cells and using the CTCF binding site in exon1A 

showed a consistent increase in transcriptional activity upon transfection with CTCF 

expression vectors and counteracted the negative autoregulation of BCL6. Lai et al17 found 

that silencing of CTCF in the BCL6 non-expressing plasma cell line NCI-H929 induced 

BCL6 expression together with specific markers of germinal centre cells. However, this 

was not the case in myeloid K562 cells where BCL6 expression was not detected upon 

CTCF silencing (this work). Moreover, a significant enrichment of CTCF at the BCL6 first 

intron was observed in K562 cells while MutuIII, a BCL6 non-expressing germinal centre 
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cell line showed no enrichment of CTCF at that region. Collectively our results and those 

of Lai et al.17 suggest that CTCF binding to BCL6 intron 1 is associated with repressed 

chromatin in non-BCL6 expressing plasma cells whereas at the CTCF exon1A binding site 

that we describe here there is association with open chromatin in BCL6 expressing 

germinal centre derived cell lines (Figure 7).  

 CTCF has been shown to be essential for the epigenetic regulation of several 

genes31. In many cases, CTCF binding to the DNA was methylation sensitive17,30,46-48. 

However, insensitivity from DNA methylation has also been demonstrated47,49,50. Recent 

genome-wide occupancy studies indicate that 41% of variable CTCF binding was 

correlated with differential DNA methylation22. Our EMSA analysis using in vitro methylated 

probes clearly showed that CTCF binding to the BCL6 exon1A is not sensitive to 

methylation, despite being at a CpG island. Moreover, no methylation was observed at that 

region in lymphoma cell lines from different origin and in patient samples having different 

levels of BCL6 expression, in agreement with previous studies in other cells and tissues 

[see51 and references therein]. This result was not completely unexpected since islands 

found in the control regions of tissue specific genes, are not usually regulated through 

DNA methylation but by covalent histone modifications52.  

We analysed the presence of active and repressive histone marks at the BCL6 

exon1A region in different lymphoma cells. Our ChIP assays showed that the enrichment 

of H3K4me2 and of H3Ac observed in the BCL6 expressing germinal centre cell lines was 

higher than in cells which do not express BCL6. Along with these active chromatin marks 

we found a notable enrichment of CTCF in Ramos, together with the variant histone 

H2A.Z. We therefore hypothesized that CTCF might be responsible for protecting the 

BCL6 exon1A regulatory region against repressive histone modifications. Such a 

mechanism has been recently described for the CTCF regulation of the p53 promoter34. In 

addition, a similar mechanism related to the loss of repressive histone modifications has 
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also been proposed for the activation of the cancer-promoting gene CLDN3 in ovarian 

cancer53. Indeed, ChIP assays performed in a germinal centre BCL6 expressing cell line 

after silencing CTCF, showed a reduction of active histone marks together with strong 

increase of repressive histone marks. Speculatively, dismissal of CTCF from its exon1A 

binding site may be one of the early events switching off the BCL6 locus and allowing 

assembly of the repressive complex. Our data are in agreement with the model proposed 

by Ramachandrareddy et al51, which have shown a significant enrichment of H3K4me2 

and of H3Ac in germinal centre B-cells at the BCL6 promoter region but not in non-

germinal centre B-cells and have suggested that regulation of BCL6 might depend on long 

distance interactions of the promoter with upstream regions, and that these interactions 

might depend on CTCF binding51. 

Our results suggest that the BCL6 exon1A CTCF site regulates BCL6 expression 

through a mechanism that is different from that mediated by the intronic sites. It is 

therefore tempting to speculate that BCL6 expression might depend on the stage-specific 

CTCF recruitment to the different BCL6 binding sites during B lymphocyte development 

(Figure 7). CTCF binding to exon1A appears to be required to maintain BCL6 expression 

by protecting BCL6 exon1A from BCL6 auto-repression in germinal centre cells. On the 

contrary, CTCF binding to the intronic region is more likely to be necessary to prevent 

BCL6 expression in non-germinal centre cells. Future research will be directed to clarify 

such mechanisms, given the essential role of BCL6 regulation in lymphomagenesis. 

 

MATERIALS AND METHODS 

Cell culture, transfections and viral infections  

Ramos, DG75, MutuIII and Raji cells (from Burkitt’s lymphoma), Toledo and Ly03 cells 

(from diffuse large B cell lymphoma), Bjab (B-cell lymphoma) and K562 cells (from chronic 

myeloid leukemia) were grown under standard conditions (see supplementary table S1). 
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FISH analysis ruled out BCL6 rearrangements in the studied cell lines (supplementary 

Figure S3). 

DG75 and K562 cells were transfected using a nucleofector (Amaxa, Germany) with 2 µg 

to 10 µg of expression vectors and 0.5 µg of a green fluorescent protein vector (pmaxGFP, 

Amaxa) to assess transfection efficiency. HEK293T cells were transfected with 5µg of 

pEGFP-CTCF-full length, pEGFP-CTCF-Nt or pCDNA-CTCF expression vectors using 

jetPEI (Genycell Biotech). Cells were harvested 48 h after transfection and nuclear 

extracts were used for EMSA analysis. For CTCF silencing, pRS-CTCF retroviral vector 

was constructed by inserting the siRNA sequence described in ref.54, into the pRetroSuper 

vector (pRS)55. Viral stocks were generated essentially as described55. Lymphoma derived 

cells were either nucleofected or transduced with pRS and pRS-CTCF and harvested 48 to 

96 hours after infection. CTCF expression was analyzed by RT-qPCR and western-blot.  

 

Purification of primary lymphoma cells  

Lymph nodes biopsies of patients with lymphomas were provided by the Haematology 

Department of the Hospital Universitario Marqués de Valdecilla with informed consent and 

approval from the local ethics committee (CEIC, ref. 13/2011) granted by the Ethics 

Committee on Clinical Research of Cantabria, Spain. Single cell suspensions from the 

lymph node were separated by the FACSAria (BD Biosciences) using the FCS/SSC 

parameters and one to three specific monoclonal antibodies against surface markers 

specific of each type of lymphoid neoplasm using standard protocols.  

 

RNA analysis by reverse transcription and PCR (RTqPCR)  

Total RNA was isolated by using the RNeasy kit (Qiagen). For reverse transcription first-

strand cDNA was synthesized from 2 µg of total RNA by using SuperScript II RNase 

reverse transcriptase (Invitrogen) with random primers. Quantitative PCR was performed 
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with a QuantiTect Sybr green PCR kit (Qiagen). The data of BCL6 and CTCF mRNA 

expression were normalized to ribosomal protein S14 mRNA levels (primers shown in 

supplementary table S2). Results were analyzed by comparative ΔΔCt method and 

expressed as mean ± SEM of duplicate PCRs from at least two independent experiments. 

 

Western blot analysis.  

Cells were lysed in RIPA lysis buffer and immunoblots were performed as previously 

described16. Antibodies used were: anti-CTCF monoclonal antibody (612149) from BD 

Biosciences, anti-BCL6 polyclonal antibody (N-3; sc-858) and anti-actin (I-19; sc-1616) 

both from Santa Cruz Biotech. Blots were developed with secondary antibodies 

conjugated to IRDye680 or IRDye800 (Li-Cor Biosciences) and visualized with an Odyssey 

infrared-imaging system (Li-Cor Biosciences).  

 

Luciferase Reporter Assays  

The BCL6(-4.9/+0.5)-pGL3 construct was generated by inserting a BCL6 regulatory region 

including the CTCF site into pGL3 basic as previously described15. The pCDNA-BCL6 

expression vector was generated by subcloning the full-length BCL6 cDNA into the 

pcDNA3.1+ vector (Invitrogen). Appropriate sequences and expression were verified by 

sequencing and western-blot. CTCF expression vectors used were: pCDNA-CTCF56 and 

three different pEGFP-CTCF constructs (pEGFP-CTCF-full length, pEGFP-CTCF-Zinc 

finger, pEGFP-CTCF-C terminal)57.  

For luciferase assays in DG75 lymphoma cells, 4 µg of the pGL3 basic vector (Promega) 

or equimolar concentrations of the BCL6(-4.9/+0.5)-pGL3 reporter vector, were 

cotransfected together with 7 µg of the CTCF expression vectors and 0.6µg of the pRL null 

vector (Promega) into ten million DG75 cells by nucleofection. Luciferase assays in 

HEK293T were performed essentially as described8. Cells were transfected with jetPEI 
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using 0.1 pmol of reporter vectors (pGL3 basic or BCL6(-4.9/+0.5)-pGL3) and 0.1 pmol of 

pRL null, together with increasing amounts (0.01, 0.05, 0.1, 0.5 pmol) of the pCDNA-BCL6 

vector or were cotransfected with 0.05 pmol of pCDNA-BCL6 and increasing amounts 

(0.12, 0.24, 0.48, 0.96 pmol) of the pCDNA-CTCF vector. The total amount of transfected 

DNA was kept constant in each experiment by adding pCDNA vector. Luciferase activities 

were measured 48 hours after transfection using the Dual-Glo Luciferase Reporter System 

(Promega) in a Luminometer TD 20/20 Turner Designs. For each determination, luciferase 

activity was calculated as the Firefly activity normalized by the Renilla activity. Luciferase 

activity in arbitrary units (a.u.) was shown as the increase in activation relative to the 

activity of the pGL3 vector alone (value one).  

 

Electrophoretic mobility shift assay (EMSA)  

A 198 bp radioactive labelled probe, including the CTCF binding site at BCL6 exon1A, was 

obtained by PCR from genomic DNA (primers shown in supplementary table S2). In 

addition, a IRDye labelled double-stranded oligonucleotide of 80 nt (sequence shown in 

supplementary Figure S1) was used as a probe. Nuclear extracts were obtained from 

transfected HEK293T cells and EMSAs were performed essentially as previously 

described30. For supershift experiments, 1 μl of anti-CTCF mouse monoclonal (BD 

Biosciences) or anti-actin (used as non-specific antibody) was added to the binding 

reaction before the labeled probe. For EMSA with methylated probes, purified BCL6 

fragments were methylated in vitro using SssI CpG methyltransferase (New England 

Biolabs) and S-adenosyl-L-methionine30. Control and methylated probes were digested 

with CpG methylation sensitive enzymes to assess the level of methylation.  
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Bisulfite Genomic Sequencing 

DNA was obtained from lymphoma cell lines and samples from lymphoma patients using 

the DNeasy Blood & Tissue Kit (Qiagen). Bisulfite conversion was performed using the 

commercial kit EZ DNA Methylation-Gold Kit Zymo Research. BSP primers were designed 

using the Methyl Primer Express software (Applied Biosystems) (supplementary table S2). 

Five µl of the bisulfite modified DNA was amplified using the Expand High Fidelity PCR 

System (Roche). The PCR products were cloned into the pGEM-T easy vector (Promega) 

and independent clones for each sample were sequenced. For control of DNA methylation, 

Universal Methylated Human DNA Standard was used (ZYMO research corp). 

 

Chromatin ImmunoPrecipitation (ChIP) 

ChIP assays were performed using a modified version of the Upstate Biotechnology 

protocol as described previously58. Cells were fixed in formaldehyde, lysed and sonicated 

using a Bioruptor UCD-200TM (Diagenode). ChIP was performed using Dynabeads-

protein G (Invitrogen) coupled to different antibodies: polyclonal anti-CTCF-Ab-1 (07-729) 

from Millipore; anti-CTCF-Ab2, a mixture of 9 different monoclonal antibodies59; anti-

H3K9me3 (ab8898), anti-H3K4me2 (ab32356) and anti-H2A.Z (ab4174) from Abcam; anti-

H3acetylated (06-599) and H3K27me3 (07-449) from Millipore. Real-time PCR of 

immunoprecipitated DNA was performed in duplicate with equal amounts of specific 

antibody immunoprecipitated sample, control (beads) and input. Primers used for ChIP 

assays are shown in supplementary table S2. The comparative cycle threshold approach 

was used for the data analysis as described48. The signals were normalized to the inputs 

and the fold enrichment was calculated relative to the control sample (no-antibody). The 

values are the mean ± S.E.M. of two to six independent experiments. Normalization of 

histone marks was based on the ChIP-IT qPCR analysis kit (Active motif North America).  
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FIGURE LEGENDS 

 

Figure 1. CTCF binds in vitro to a predicted site at the BCL6 exon1A regulatory 

region. (a) Scheme of a BCL6 gene region spanning from the -2960 to + 4970 bp. The 

transcription start site is indicted as +1 (ref. 37). Seven amplicons used for ChIP analysis 

are indicated. Amplicons (6) and (7) correspond to the intronic CTCF binding sites 

previously identified17. Amplicon (5) corresponds to a novel CTCF binding site on BCL6 

exon1A predicted by the four motifs of the “CTCF binding site database”38 with high score 

(average: 12.75). The BCL6 exon1A sequence shows the CTCF binding site, BCL6 

autoregulatory binding sites (BCL6-BSE1A and BCL6-BSE1B) (ref 8) and the primers used 

for the EMSA (underlined). CpG di-nucleotides are indicated in bold. (b) EMSA to analyze 

in vitro binding of CTCF to BCL6 exon1A. Probes were 32P labelled PCR fragments of 

MYC-N, a known CTCF binding site used as positive control (left panel), and of BCL6 

exon1A (right panel) (primer sequences shown in supplementary table S2). Nuclear 

extracts were obtained from mock transfected 293T cells or from 293T transfected either 

with pEGFP-CTCF full length (293T-CTCF) or pEGFP-CTCF-N-terminal (293T-CTCF-Nt) 

expression vectors. CTCF was overexpressed to increase the levels of the protein in the 

extracts to better distinguish between the CTCF-DNA complexes and the unspecific 

bands. The CTCF shifted bands are shown by an arrow. For supershift experiments, an 

anti-CTCF monoclonal antibody was added (asterisk, supershifted band). The specificity of 

the supershift was assessed with an anti-actin antibody. 

 

Figure 2. CTCF interacts in vivo with BCL6 exon1A regulatory region. (a) ChIP 

assays to analyze CTCF in vivo binding to BCL6 exon1A. Chromatin from Ramos 

lymphoma cells was immunoprecipitated with two different anti-CTCF antibodies, a rabbit 

polyclonal antibody (αCTCF-Ab1) and a mixture of 9 monoclonal antibodies (αCTCF-
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Ab2)59, and subjected to quantitative PCR for the CTCF binding site within BCL6 exon1A. 

The H42.1 rDNA CTCF binding site and the MYC-H.1 were used as positive and negative 

controls, respectively30. The fold enrichment for a particular target sequence was 

determined by calculating the ratio of the amount of the target sequence in the 

immunoprecipitation over the amount of the target sequence in the input DNA, using the 

following formula: 2(CT Input- CT immunoprecipitated sample) where CT is the number of cycles needed 

to raise the threshold. Each value was normalized with respect to the control (no-

antibody). Right panels show typical PCR products after the ChIP analysis. (b) ChIP to 

analyse enrichment of histone variant H2A.Z at BCL6 exon1A in Ramos cells. (c) ChIP 

assays performed in Ramos cells as indicated in (a), to analyze in vivo binding of CTCF to 

the BCL6 regulatory region spanning from the -2960 to + 4970 bp. The location of 

amplicons (1) to (7) is shown in the scheme of Figure 1a. (d) ChIP examining the relative 

CTCF fold enrichment at the indicated amplicons. Chromatin from Ramos (high BCL6 

expression), MutuIII and K562 cells (undetectable BCL6 expression) was 

immunoprecipitated with anti CTCF-Ab1 polyclonal antibody. 

 

Figure 3. Silencing of CTCF decreased BCL6 expression and induced plasma cell 

markers. (a) RT-qPCR showing silencing of CTCF and decreased BCL6 mRNA 

expression. DG75 cells were nucleofected with a short hairpin RNA vector for CTCF (pRS-

CTCF) or the empty vector (pRS). CTCF (left panel) and BCL6 (right panel) relative mRNA 

expression were analyzed at the indicated times after transfection. (b) Western blot 

showing CTCF and BCL6 protein expression in DG75 cells nucleofected as above. Actin 

was used as loading control. (c-d) Similar results were obtained in Ramos cells infected 

with pRS or pRS-CTCF retroviruses. CTCF and BCL6 expression were analysed by RT-

qPCR (c) and western blot (d). (e) RT-qPCR showing silencing of CTCF and undetectable 

BCL6 mRNA expression in myeloid K562 cells. Positive control, Ramos cells. (f) Western 
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blot showing CTCF and BCL6 protein expression on K562 cells nucleofected as in (a). 

Arrow indicates BCL6 protein as shown by the BCL6 positive control (Ramos cell lysate). 

The upper band (asterisk) in the K562 panel is a non-specific band. Actin was used as 

loading control. (g) RT-qPCR showing silencing of CTCF and upregulation of CCND2 (left 

panel), BLIMP1 (middle panel) and IRF4 (right panel) mRNA expression. DG75 cells were 

nucleofected with a short hairpin RNA vector for CTCF (pRS-CTCF) or the empty vector 

(pRS) and relative mRNA expression was analyzed as in (a). 

 

Figure 4. Luciferase assays showing the effects of CTCF ectopic expression on 

BCL6 promoter activity. (a) DG75 cells were transiently co-transfected with either pGL3 

vector or with the BCL6(-4.9/+0.5)-pGL3 reporter vector, together with the indicated CTCF 

expression vectors. pRL-null vector was used to normalize for transfection efficiency. The 

data show the means ± S.D. of three measurements in two independent experiments.  

(b) HEK293T cells were transiently co-transfected with either pGL3 vector or with the 

BCL6(-4.9/+0.5)-pGL3 reporter vector together with the indicated amounts of BCL6 and 

CTCF expression vectors. pRL-null vector was used to normalize for transfection 

efficiency. The data show the means ± S.D. of three measurements in two independent 

experiments. a.u., arbitrary units 

 

Figure 5. CTCF binds BCL6 exon1A in a methylation insensitive manner. (a) 

Assessment of complete methylation of the SssI treated probe. Probes were 32P labelled 

PCR fragments of BCL6 exon1A. Control and SssI treated methylated probes were uncut 

or digested with the indicated restriction enzymes and run on an 8% polyacrilamide gel. (b) 

EMSA experiment using control and methylated BCL6 exon1A probes as indicated. 

Nuclear extracts were obtained from 293T cells mock transfected or transfected with the 

expression vector pEGFP-CTCF (293T-CTCF). The CTCF shifted bands are shown by an 
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arrow. Unlabelled (cold) probe was used as a competitor. For supershift experiments 

(asterisk, supershifted band) an anti-CTCF monoclonal antibody was added. The 

specificity of the supershift was assessed with an anti-actin antibody. (c) Methylation 

status of BCL6 exon1A regulatory region. A scheme of BCL6 gene including the CTCF 

binding site on the exon1A is shown. DNA methylation status was investigated by 

sequencing of bisulfite-modified genomic DNA of three cell lines with undetectable 

expression of BCL6 protein (K562, MutuIII and Toledo), of three BCL6 expressing cell 

lines (Ly03, Ramos and DG75) and of several patients with different types of lymphomas: 

two diffuse large B cell lymphoma patient (DLBCL), two follicular lymphoma (FL), one 

mantle lymphoma (ML), one Burkitt lymphoma (BL) and one acute lymphoblastic leukemia 

(ALL). Unmethylated CpG dinucleotides are indicated as open circles. Between five to ten 

independent clones were sequenced. Positive control for the bisulfite transformation assay 

and the ability to detect methylation was carried out (supplementary Figure S4). 

 

Figure 6. Presence of histone marks at BCL6 exon1A and effects of CTCF silencing 

on the local chromatin structure. (a) ChIP assay to analyse the relative enrichment of 

active (H3Ac, H3K4me2) and repressive (H3K9me3 and H3K27me3) histone marks at the 

BCL6 exon1A. Chromatin was prepared from Ramos and MutuIII lymphoma cells. Bottom 

panel shows typical PCR products after the ChIP analysis. Histone open chromatin marks 

were normalized against genomic sites enriched in repressive histone marks and vice 

versa (see supplementary Figure S5) (b) CTCF knockdown induced incorporation of 

repressive histone marks within BCL6 exon1A region. ChIP assays were performed in 

Ramos cells infected with pRS or pRS-CTCF retrovirus. Chromatin was 

immunoprecipitated with the indicated antibodies. Bottom panel shows typical PCR 

products after the ChIP analysis. 
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Figure 7. Model for BCL6 regulation by CTCF. BCL6 is required to differentiate follicular 

B cells into germinal centre B cells and to maintain these cells in this state. In order to 

allow sustained BCL6 expression in those cells, inhibition of BCL6 exon 1 negative 

autoregulatory circuit is accomplish by CTCF binding to exon1A (this work). In contrast, 

methylation of BCL6 intron 1 avoids CTCF occupancy at that region in germinal centre 

cells, allowing BCL6 transcription (Lai et al17). Once B cells have completed the high 

affinity maturation process can differentiate into plasmatic cells. For this to happen, CTCF 

is released from exon1A site allowing BCL6 negative autoregulatory circuit to function. 

Also, demethylation of BCL6 intron 1 leads to CTCF binding to intron 1 which has been 

shown to represses BCL6 transcription. Binding of BCL6 to its negative autoregulatory 

sites and absence of CTCF occupancy at exon1A leads to the recruitment of repressive 

histone marks like H3K9me3 or H3K27me3 (this work), given rise to chromatin 

condensation and inhibition of BCL6 expression. BCL6 downregulation induces 

upregulation of BLIMP1 and IRF4, which are both required for plasma cell differentiation. 
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CGGAGCAGGCCATACCATCGTCTTGGGCCCGGGGAGGGAGAGCCACCTTCAGGCCCCTCGAGCCTCGAACCGGAACCTCCAAATC 

 Supplementary Figure S1. EMSA to delimitate the CTCF binding site at to BCL6 exon 1A.  

A 80 nt double-stranded oligonucleotide (sequence indicated above) containing the predicted 

“core” 20 nt CTCF binding site (sequence in red) was used as a probe. Probe was labelled 5’ with 

IRDye700 and  image was  visualized with an Odyssey infrared-imaging system (Li-Cor 

Biosciences)  a) Nuclear extracts were obtained from mock transfected 293T cells or from 293T 

transfected with pEGFP-CTCF full length or with pCDNA-CTCF expression vectors as indicated. 

The CTCF shifted bands are shown by arrows (note a more retarded complex corresponding to 

the fusion protein EGFP-CTCF in comparison with the pCDNA-CTCF). b) Nuclear extracts were 

obtained as in a). For supershift experiments, an anti-CTCF antibody was added (asterisk, 

supershifted bands).  
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 Supplementary Figure S2. BCL6 expression and CTCF occupancy in lymphoma cell lines. 

 (a) Western blot showing BCL6 and CTCF protein expression in several lymphoma cell lines. 

Actin was used as loading control. (b) ChIP performed in the indicated cell lines to analyse CTCF 

relative enrichment at the BCL6 exon1A. A representative experiment is shown. 
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 Supplementary Figure S3. BCL6 locus status in lymphoma cell lines. 

BCL6 is a frequent target of chromosomal translocations with many different partners. These 

translocations often cluster in a 4 kb region on the BCL6 gene known as the major breakpoint region 

(MBR) or major translocation cluster (MTC) spanning the promoter, the first non-coding exon and the 5’ 

part of the first intron. As a result of these rearrangements transcription of the unaltered BCL6 coding 

region is controlled by the regulatory sequences of the partner gene (promoter substitution), leading to 

deregulated BCL6 expression. Thus, in order to find a possible correlation between BCL6 protein 

expression profile and CTCF occupancy at the BCL6 locus, BCL6 gene rearrangements were investigated 

in cell lines and also in patients included in this study by fluorescence in situ hybridization (FISH),following 

standards procedures. Briefly, metaphase/interphase preparations from the methanol/acetic acid–fixed cell 

suspensions were hybridized using a LSI BCL6 (3q27) Dual color Break apart probe (Vysis-Abbott, 

Downers Grove, IL, ref 32-191016). Nuclei were scored as rearranged if at least one split orange-green 

signal was observed. Gains were reported when three or more fusion signals were observed. Control 

values were previously established based on samples of 10 controls X±3D.S. = mean plus three standard 

deviations. None of the cell lines utilized on this study showed rearrangement of the BCL6 gene. However, 

a number of cell lines, including those with undetectable protein expression such as Mutu III cells, showed 

gains of the BCL6 locus, suggesting that additional mechanisms on the regulation of BCL6 expression 

must be operative.  
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 Supplementary Figure S4. Positive control for the bisulfite transformation assay  and the 

ability to detect methylated DNA. Enzymatically methylated genomic DNA was purchased (Cat 

D5511; Zymo research), bisulfite converted  and PCR  amplified using the primer set provided 

with the control kit set.  The PCR product was purified and cloned on the pGMT vector. Four 

clones were sent for sequencing. 
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Supplementary Information 

Supplementary Figure S5.ChIP controls for specific chromatin states. Primers for open and closed 

chromatin states were obtained from the ChIP-IT qPCR analysis kit (Active motif North America; ref 53029). 

Relative fold enrichment of positive histone marks (H3Ac and H3K4me2) were divided by the relative fold 

enrichment on a close chromatin locus.  On the contrary, relative fold enrichment of repressive histone 

marks (H3K9 and H3K27) on exon1A were divided by the relative fold enrichment of those marks on an 

open chromatin locus (GAPDH). 
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a) GM12878 lymphoblastoid cell line 

Exon1A Intron 1 

Exon1A Intron 1 

CTCF 

H2A.Z 

Rad21 

CTCF 

H2A.Z 

Rad21 

b) K562 myeloid cell line 

Supplementary Figure S6. ENCODE ChIP-seq data confirmed CTCF binding site within BCL6 exon1A in 

GM12878 but not in K562 cell line. Shown are the ChIP-seq profiles of CTCF, H2A.Z and Rad21 for BCL6 

gene on chromosome 3 from GM12878 and K562 cell lines. a) No data of CTCF ChIP-seq in the lymphoma cell 

lines used in our study were found using ENCODE. However, CTCF binding to exon 1A was found in 

lymphoblastoid cells such as the GM12878 line. Binding of H2A.Z and the cohesin subunit Rad21 were also 

found in BCL6 exon1A, confirming our data in lymphoma cell lines (Red square). b) In agreement with our data, 

no enrichment of CTCF in exon1A was found in the K562 myeloid cell line (Red square). CTCF binding sites in 

BCL6 intron 1, described by Lai et al and Ramachandrareddy et al. are also shown (Black squares). 
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Supplementary Table S1. Cell lines used 

  

CELL LINE 

NAME 

  

PHENOTYPE 
BCL6 expression 

(Supp FigS2) 

CULTURE 

MEDIUM 

  

SOURCE 

  

RAMOS 

  
Human   Burkitt´s   
Lymphoma   EBV 

negative 

+++ 
  

RPMI-10F 
* 

  

DG75 

  
Human   Burkitt´s   
Lymphoma   EBV 

negative 

+++ 
  

RPMI-10F 
* 

  

BJAB 

  
Human   Burkitt´s   
Lymphoma   EBV 

negative 
  

++ 
  

RPMI-10F 
* 

  

RAJI 

  

Human   Burkitt´s   

Lymphoma   EBV 

positive 

  

++ 
  

RPMI-10F 

  

* 

  

MUTU III 

  

Human   Burkitt´s   

Lymphoma   EBV 

negative 

  

- 
  

RPMI-10F 

  

Dr.     Noémi     Nagy     

(MTC; Karolinska Institute. 

  

TOLEDO 

  

Human DLBCL 
- 

  

RPMI-20F 

  

Dr. A Piris( CNIO; Madrid) 

  

LYO3 

  

Human DLBCL 
+ 

  

RPMI-20F 

  

Dr. A Piris (CNIO ;Madrid) 

  

K562 

  
Human CML -BC   
(p210 BCR-ABL) 

  

- 
  

RPMI-10F 

  
ATCC 

  

HEK293T 

  

Human Embryonic 

Kidney 

- 
  

DMEM-10F 

  

* 

*These cell lines were already in the laboratory.  

Abbreviatures: 

F: Fetal Calf serum 

EBV: Epstein Barr Virus 

Burkitt´s: Lymphoma:B cell Lymphoma 

DLBCL: Diffuse Large B Cell Lymphoma 

CML BC: Blast Crisis of Chronic Myeloid Leukaemia 
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Name Sequence Use 

BCL6  
5’-AGAGCCCATAAAACGGTCCT-3’ 

5’-AGTGTCCACAACATGCTCCA-3’ 
RT-qPCR 

CTCF 
5’-TTACACGTGTCCACGGCGTTC-3’ 

5’-GCTTGTATGTGTCCCTGCTGGCA-3’; 
RT-qPCR 

RPS14 
5’-GGGGTGACATCCTCAATCC-3’ 

5’-TATCACCGCCCTACACATCA-3’. 
RT-qPCR 

CCND2 (cycD2) 
5’-TGAGCTGCTGGCTAAGATCA-3’ 

5’-ATATCCCGCACGTCTGTAGG-3’ 
RT-qPCR 

BLIMP1/PRMD1 
5’-CTGAGAGTGCACAGTGGAGA-3’ 

5’-TGGGTCTTGAGATTGCTGGT-3’ 
RT-qPCR 

IRF4/MUM1 
5’-GTGTGGGAGAACGAGGAGAA-3’ 

5’-TTGTACGGGTCTGAGATGTCC-3’ 
RT-qPCR 

BCL6-exon 1A 
5’-GCACTCCCCCTCTTATGTCA-3’  

5’-GATTTGGAGGTTCCGGTTC-3’. 
EMSA 

MYC-N 
5’-ACAAGGAGGTGGCTGGAAAC-3’ 

5’-TTCCCCTCCTGGCTTTTAGT-3’ 
EMSA 

BSP 
5’GGAGGGAGAGTTATTTTTAGGT-3’ 

5’-ACAACAACAACAATAATCACCT-3’. 

Bisulfite 

Sequencing 

hMLH1 
5´ - GGAGTGAAGGAGGTTACGGGTAAGT - 3´ 

5´ - AAAAACGATAAAACCCTATACCTAATCTATC- 3´ 

Bisulfite 

Sequencing 

-2398 (1) BCL6 
5’-CCCACTCTGGCTGGTTCTAC-3’  

5’-TGTCAAAACTGCCATTCAGC -3’ 
ChIP 

-1216 (2) BCL6 
5’-GCTGCTTCTGGTCCAAACAT-3’ 

5’-AAGTCCCTACTCATCCTCCC-3’; 
ChIP 

-476 (3) BCL6 
5’-CTGCACTGCAATTGCCTTTA-3’  

5’-CTGACACGACGCACATCACG-3’ 
ChIP 

+80 (4) BCL6 
5’-CACTTCAGCAAAAGTCCAAGG-3’ 

5’-CTATCCCTTTCTTTTCCGTGC-3’ 
ChIP 

+257 (5) BCL6 
5’-GCACTCCCCCTCTTATGTCA-3’  

5’-GATTTGGAGGTTCCGGTTC-3’ 
ChIP 

+4542 (6) BCL6 
5’- CCAGCAGTCTTGGAGGATTT-3’  

5’- ACAGACCAGCCTACCATTGC -3’; 
ChIP 

+4970 (7) BCL6 
5’- CCAGCAGTCTTGGAGGATTT-3´  

5’- GAAGGGGAAGAGAGCGATTT-3´; 
ChIP 

H42.1 rDNA 
5’- GCTTCTCGACTCACGGTTTC-3´  

5´-CCGAGAGCACGATCTCAAA-3 
ChIP 

MYC-H.1 
5´-CAACGCAACACAGGATATGG-3´  

5´-TTCCCCTCCTGGCTTTTAGT-3 
ChIP 

Supplementary Information 

Supplementary Table S2. List of primers used.  
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