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ABSTRACT 
 

In this work a non-linear dynamic model of spur gear transmissions previously 

developed by the authors is extended to include both desired (relief) and undesired 

(manufacture errors) deviations in the tooth profile. The model uses a hybrid method for 

the calculation of meshing forces, which combines FE analysis and analytical 

formulation, so that it enables a very straightforward implementation of the tooth profile 

deviations. The model approach handles well non-linearity due to the variable meshing 

stiffness and the clearances involved in gear dynamics, also including the same 

phenomena linked to bearings. In order to assess the ability of the model to simulate the 

impact of the deviations on the transmission dynamics, an example is presented 

including profile deviations under different values of transmitted torque. Several results 

of this example implementation are presented, showing the model’s effectiveness. 

 
KEYWORDS 
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1. INTRODUCTION 

Today, gear transmissions are under great pressure to improve their performance, in 

terms of levels of power, speed, efficiency and compactness. A significant increase in 

the operating speeds is expected in the medium and long term, and consequently 

dynamic phenomena will become more important in the future, justifying further 

interest in the development of more accurate dynamic models. 

 

In gear dynamics there is a particular feature that governs the vibratory behaviour, 

namely the presence of a parametric excitation as a consequence of the changes in the 

number of teeth pairs contacting simultaneously. This aspect makes the development of 

dynamic models cumbersome, because a balance must be achieved between accuracy 

and computational time [1]. Moreover, due to the non-linearity inherent to contact 

problems, as well as to clearances and deflections of teeth and supports, the amplitude 

of the torque also affects the meshing stiffness. 

 

Bearings and gears present a similar behaviour, in the sense that bearings also undergo a 

parametric excitation, in this case due not only to the changes in the number of rolling 
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elements supporting the transmitted load, but also because of the non-linearity related to 

clearances and surface contacts. 

 

Therefore, gear transmissions should be considered as a whole, including the dynamic 

effects of gear and bearings, particularly if a better understanding of the transmission 

behaviour is required for condition monitoring purposes. With this objective, in 

previous works the authors presented a numerical model which combined gears and 

bearings, with the capability of representing all the features described above. In [2] the 

authors described the model for calculation of meshing and bearing forces, carrying out 

several quasi-static analyses to show the differences in gear centre orbits, transmission 

error and meshing stiffness values for several transmitted torques. Subsequently, in [3] 

the procedure used for gear force calculation, based on a hybrid approach combining 

numerical and analytical tools, was extended including dissipative forces due to friction 

and squeeze damping. The model was assessed in dynamic simulations, speeding up the 

computation time by using a pre-calculated value for the meshing stiffness. Later, in [4] 

the dynamic model was linearized for several torque levels, obtaining the natural 

frequencies and mode shapes which are essential to understand the vibratory behaviour 

of the transmission. Moreover, gear defects such as pitting and cracks were also 

included, carrying out quasi-static analysis to assess the consequences [5]. 

 

Another important kind of deviations should be taken into account when modelling gear 

transmissions. Although the theoretical form of the profile of the flank of a spur gear is 

an involute, in practice it is not possible to make perfect profiles, so the real flanks 

present deviations from the ideal shape. These errors are directly related to the level of 

noise transmission produced, and have been considered by different authors. Kahraman 

[6] classified them as an internal source of excitation which, combined with pitch errors, 

teeth and supports deflections, gives the so-called transmission error. This error is 

defined as the difference between the actual angular position of the driven gear and the 

theoretical position where it would be if the gears were perfectly shaped and infinitely 

rigid. It is well known that the noise level of a transmission is strongly influenced by the 

manufacturing quality of the gears. This aspect has been studied by Bonori et al. [7] 

who developed a procedure for generating random profile errors in a range of tolerances 

established for all pinion and gear teeth. These individual errors were combined for a 

complete transmission cycle and expanded in a Fourier series for its implementation in a 

dynamic model. From the simulation results, the authors concluded that the inclusion of 

these errors leads to a significant increase in the vibration amplitude throughout the 

whole frequency range. They also pointed out that this increase is most apparent at low 

speeds and torque loads, where non linearity related with contact loss can appear more 

easily. This fact has also been addressed specifically by Ottewill et al. [8], who 

concluded that even tiny tooth profile errors can have a major effect on gear rattle. 

 

Sometimes the profile changes are desired and they are introduced in a premeditated 

manner. These consist in modifications of the original profile by certain relief in the 

near–tip area (Tip relief) or at the base of the tooth (Bottom relief) with which a 

significant improvement in the noise and vibration levels is achieved. This is an aspect 

that has also received attention from many authors. The models that can be found in the 

literature addressing this kind of modification, generally consider that changes in the 

profiles are so small that the Line of Action (LOA) of the contact forces does not 
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change, in such a way that there is only a reduction in the magnitude of the geometric 

overlap between the profiles of the teeth in contact, in comparison with the non-

modified case [1], [9]. 

 

In this work, profile deviations such as tip reliefs and undesired profile errors are added 

to the dynamic model previously developed by the authors, with the aim of analysing 

the consequences on the dynamic behaviour under several torque loads. As a 

consequence of the supports flexibility, the amplitude of the transmitted torque modifies 

the distance between centres and the pressure angle, producing an alteration of the 

conditions of contact between gears. In addition, due to teeth deformations, both the 

effective contact ratio and the meshing stiffness are modified. The model presented 

enables the consideration of these phenomena due to the formulation of the local contact 

(which is non-linear). Furthermore, the model also takes into account the consequences 

of teeth deflection as well as the possible changes in the distance between gear centres. 

This aspect becomes particularly interesting to improve the design procedure to 

determine the parameters which define the profile relief. 

 
2. DESCRIPTION OF THE MODEL 

In this section the proposed model is briefly explained, paying greater attention to the 

formulation used to include profile deviations. More details about the model can be 

found in references [2], [3], [4] and [5]. 

 

Gear forces are obtained following the proposal of Vedmar and Andersson [10] in 

which the deformation at each gear contact point is formulated as a combination of a 

global (or structural) term obtained by means of a FE model, and a local term described 

by an analytical approach which derives from Hertzian contact theory. 

 

The tooth profile geometry necessary to build the FE model is generated using a rack-

type tool following Litvin’s vector approach [11]. For the FE model it is assumed that 

the nodes in the inner circle are fixed, that is, where the gears are fitted to the shaft. 

Multiple load cases are considered, each of which is defined by a unit load 

perpendicular to the tooth profile located at different radial positions from the root to the 

tip. Then the FE model built for each gear is solved once, before the integration of 

dynamic equations, obtaining the displacement (flexibility) of the node j due to a unitary 

load applied in the node i of the loaded active flank. These flexibilities are used to solve 

the contact problem imposing the compatibility of geometrical separations (δj) and 

elastic deflections (uTj) submitted to the complementary condition (in order to avoid 

non-realistic negative loads) arriving at the following non-linear system of equations for 

n contacting points 

 
       ( , , , ) ( , , )

0; , 1,...,

j p p w w Tj p p w w

i

r r u r r F

submitted to F i j n

    

 
 (1) 

where {F} is the unknown vector, which contains the contact forces Fi for each active 

contacting point. Subscripts p and w refers to the pinion and wheel respectively, while r 

and θ represent the centre and angular position of the gears. Meshing forces are 

extended including Coulomb friction with a smoothed function to avoid the singularity 
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corresponding to the pitch point contact. Furthermore, meshing damping is formulated 

as a function of the squeeze film (see [3]). 

 

The elastic deflections (uTj) in (1) are obtained by addition of the global and local terms 

for both gears. At the same time, geometrical separations are obtained taking advantage 

of the analytical properties of involute profiles and rounding arcs (which are introduced 

at the tooth tip to handle the possibility of corner contacts). Therefore, two different 

types of contact are considered: Involute – Involute and Involute – Tip rounding 

contact. In the first case, the normal contact force is parallel to the LOA whereas for the 

second scenario the resultant force acts Out of the Line of Action (OLOA). This feature 

provides a smoother transition on the shape of the meshing stiffness. 

 

As it happens with gears, the changing number of bearing rolling elements supporting 

the load implies a parametric excitation, function of the shaft rotational angle. This time, 

bearing clearance interacts with the magnitude of the load to be transmitted, defining the 

angular positions in which the number of rolling elements supporting the load changes. 

To consider these facts, bearing forces have been formulated following the model 

proposed by Fukata et al [12]. 

 

The presented gear and bearing formulations are implemented in a dynamic model of a 

single-stage transmission, which is shown in Figure 1 as a block diagram. Shaft 

torsional and flexural deflections are taken into account by spring-damper elements, 

while non-linear forces of gears and bearings are represented by two-way arrows. A 

reference framework is defined with z-axis along the shaft centre line and the y-axis 

defined by the line between gear centres. Using the subscripts R and b to designate the 

gears and bearings, XiRj means the displacement along the x-axis of gear j of shaft i. The 

degrees of freedom (dof) associated with bearings and gears are grouped in vectors qibj= 

{xibj, yibj, θ ibj}
T
 and qiRj = {xiRj, yiRj, θ iRj}

T
. Furthermore, an additional rotational-only 

inertia connected by an elastic coupling is included at the output and a constant value of 

rotational speed is assumed at the input. 

 

Then, the individual element matrices (mass, damping and stiffness) are assembled into 

the dynamic matrix equation arriving at a system with 19 dof. This equation is 

subsequently arranged for numerical integration in Matlab/Simulink® arriving at 

 
  

 

1

1 1 2 11 1 1 2 2 1 2 2

( ) ( ) ,

, , , , , ,

Ext Rb

T

R R Outb b b b

t



    



q M f Cq Kq f q f q q

q q q q q q q

 (2)  

where M, C and K are constant coefficient matrices, while vectors fb and fR represent 

non-linear bearing and meshing forces. The proposed procedure allows performing 

dynamic simulations. Nevertheless, the need to solve the non-linear equation system (1) 

gives rise to long calculation times. With the aim of improving the computation speed, a 

previous quasi-static analysis for a meshing period was carried out, obtaining the 

stiffness for each contacting teeth pair as a function of the angular position. To do this, 

the dynamic equations in (2) were simplified neglecting the dynamic terms. The pre-

calculated values obtained for the meshing stiffness are then stored in memory and used 

for simulations when the load and rotational speed are stationary and the system 
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operates far from its resonant ranges. As the stiffness is obtained for each individual 

contact between teeth pairs, the model structure remains unchanged and each contact is 

analysed individually providing a good description on the load sharing between tooth 

pairs. 

 

 

 

Figure 1.- Block Diagram 
 

3. PROFILE DEVIATIONS 

In order to model profile deviations, it is firstly assumed that deviations from the 

theoretical profile due to the manufacturing process or wear are not big enough to affect 

the overall flexibility of the tooth or the normal direction of the contact force. Thus, the 

inclusion of this phenomenon does not modify the calculation of the contact forces, and 

it only affects the calculation of the distance between potential contact points. This 

modification can be included in equation (1) obtaining 

 

             ( , , , ) ( , , ) , ,

0; , 1,...,

j p p w w Tj p p w w jp p p jw w w

i

r r u r r F e r e r

submitted to F i j n

        

 
 (3) 

 

where ejp and ejw represent the pinion and wheel profile deviations corresponding to the 

j
th

 contacting point. 

 

3.1. Profile Errors 
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In practice, being the result of the manufacturing process, Profile Errors (PE) errors 

show a similar pattern in the same flank of successive teeth. Thus, in this work PE are 

considered identical for all teeth. The formulation of such errors has been carried out 

following the approach proposed by Mucchi et. al. [13], adopting a sinusoidal shape 

with amplitude ffα and fr cycles as a function of the roll path length s, according to the 

expression (see 

 
Figure 2) 

 0 0

0 0

sin
( ) ( )

( ) (2 )
( ) 2 ( )

f
rPE H

f f

fs s s s
e s f f

s s s s


 
 

 
 

 (4) 

where ffα  is the Profile Form Deviation and fHα the Profile Slope Deviation. Following 

the AGMA definition [14], the Profile Form Deviation is the “distance between two 

facsimiles of the mean profile line, which are each placed with constant separation from 

the mean profile line, so as to enclose the actual profile trace over the functional profile 

length” and the Profile Slope Deviation is “the distance between two design profile lines 

which intersect the mean profile line at the endpoints of the functional profile length”.  

 
Figure 2.- Parameters defining the profile error 
 

The functional profile length (Lαc) goes from the profile control diameter CD (that could 

be the Start of the Active Profile SAP or the True involute Form TIF) to the start of the 

tip break TB. In expression (4) the profile error adopts a sinusoidal shape with 

amplitude ffα and fr cycles along the functional profile length (Lαc = sf - s0) which is the 

result of the subtraction of the higher (sf) and lower (s0) curvature radii. Here, positive 
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errors mean increments of the curvature radii with respect to the nominal one, while 

negative values indicate reductions. This formulation could be modified as a function of 

the profile error shape. Once each profile error of the contacting teeth is defined, it is 

necessary to determine the global combined error, which is calculated by adding the 

errors of each of the profiles. 

 

 

3.2. Profile Modifications: Tip Relief 

Contrary to the undesired PE described in the previous section, which is a result of the 

manufacturing process, there are other cases in which it is necessary to include profile 

modifications in a deliberate manner. This is done for several purposes, such as 

relieving the stress level on the teeth, avoiding contact at the tip and smoothing the 

transmission error shape as much as possible. The introduction of changes in the profile 

shape at the tip (tip relief) or at the base of the tooth (bottom relief) is a common 

practice in the design of gears. Nevertheless, particularly in spur gears, the form and 

magnitude of these deviations must be carefully chosen depending on the level of torque 

to be transmitted. The deviations can be classified as short or long, depending on their 

extension, and as linear or parabolic, depending on the deviation shape. The short relief 

begins near the point at which the change in the number of pairs of teeth in contact 

occurs and it is usually employed in transmissions where the load level is low. On the 

contrary, if the transmission is to be subjected to high torque levels, the long relief, 

which can be started at the primitive point, should be employed. The short relief only 

affects the double contact zone while the long relief also modifies the single contact 

one.  

Figure 3.- Description of the tip and bottom reliefs  

 

These profile modifications are implemented in a similar way to the PE. In this case, 

positive values of the deviation mean removal of material with respect to the nominal 

shape (smaller curvature radii), and negative values indicate the contrary. The 

formulation of this modification is defined (see 
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Figure 3) by the maximum magnitude of the relief (CRT for the tip and CRB for the 

bottom), the length of the correction (ΔLB or ΔLT) and the shape, which is generally 

linear or parabolic and expressed by 
 

0

0

( )
( ) 1,2; [ , ]

n

T

RT RT T f

T

s s
e s C n s s s

L

 
   

 
 (5) 

0

( )
( ) 1,2; [ , ]

n

Bf

RB RB Bf

B

s s
e s C n s s s

L

 
   

 
 (6)  

 

Where n takes the value 1 if the shape of the deviation is linear and 2 if it is parabolic. 

 
4. APPLICATION EXAMPLE 

Next, a numerical example is presented whose basic gear parameters are listed in Table 

1. The pinion and wheel have the same size and are mounted in shafts which are 

supported by a couple of 209 single-row radial deep-groove ball bearings [15] described 

in Table 2. The gear data corresponding to the pinion have been taken from reference 

[16]. More details can be found in [2], [3] and [4]. 

 

 

Table 1.- Gear data 

Parameter  Value Parameter Value 

Number of teeth 28 Rack tip rounding 0.25 m 

Module (m) [mm] 3.175  Gear tip rounding 0.05 m 

Elasticity Modulus [GPa] 210  Gear face width [mm] 6.35   

Poisson’s ratio 0.3 Gear shaft radius [mm] 20  

Pressure angle [degree] 20  Gear mass [Kg] 0.7999  

Rack addendum 1.25 m Gear inertia[Kgm
2
]   4.0 10

-4
  

Rack dedendum 1 m Oil viscosity [Pas] 0.004  

Output inertia [Kg m
2
] J2J2= 3.56 10

-4
 Shaft flex. Stiff. [N/m] Kib1R1= KiR1b2 = 6.24 10

8
 

Shaft Tor. Stiff. [Nm/rad] KTib1R1=KTiR1b2=4 10
5
 Coupling Stiff. [Nm/rad] KT1J1b1= KT2b2J2=4.0 10

5
 

Shaft Tor. Damp. [Nms/rad] CTib1R1= CTiR1b2 = 0 Coupling Damp. [Nms/rad] CT1J1b1= CT2b2J2=3.5761 

Shaft Flex. Damp. [Ns/m]  Cib1R1= CiR1b2 = 31.6   

 

Table 2.- Bearing data 

Parameter  Value Parameter Value 
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Contact Stiffness [N/m
3/2

] 1.2 10
10

 Ball diameter [mm] 12.7 

Number of balls 9 Mass m1b1= m2b2 [Kg] 0.490 

Radial clearance [μm] 15  Mass m2b1= m1b2 [Kg] 0.245   

Outer race diam. [mm] 77.706  Inertia J1b1=J2b2 [Kgm
2
] 9.8 10

-5
   

Inner race diam. [mm] 52.291  Inertia J2b1=J1b2 [Kgm
2
] 4.9 10

-5
   

Inner groove rad. [mm] 6.6  Bearing damping  

5% [Ns/m] 
334.27  

Outer groove rad. [mm] 6.6  

 

The PE defined in sub-section 3.1 has been included into the transmission example 

according to the values contained in Table 3. The profile error amplitude values have 

been considered taking into account some data available in the literature, particularly 

the K chart provided by Bonori et al. in [17], while frequency fr has been extracted from 

the work of Mucchi et al. in reference [13]. 

 

Table 3.- Parameters for each flank profile error. 

 

Parameter Pinion Wheel 

fHα[mm] 0.002 0.001 

ffα [mm] 0.003 0.003 

fr 1.8 1.3 

sf [mm] 22.8793 22.8793 

s0 [mm] 5.1260 5.1260 

 

PE of a teeth couple in contact must be combined as the addition of the individual 

contributions of each tooth, obtaining the result shown in Figure 4 when the mounting 

distance corresponds to the nominal distance. Abscissas in Figure 4 numerically 

corresponds to the roll path length of gear 1, while the PE assigned to gear 2 is shown 

from right to left. The PE for the entire functional profile length of each tooth is 

represented by a dotted line, using solid lines for the portion of actual contact. 

Therefore, with this procedure the real shape of the combined PE depends on the 

working distance. 
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Figure 4.- Profile errors for the pinion (e1 blue), wheel (e2 red) and combined error (e12 

cyan) 

 

In order to assess the impact that the extent and magnitude of reliefs has on the 

behaviour of a transmission, a quasi-static analysis of the example has been carried out 

incorporating the linear tip reliefs described in Table 4 for both gears. Moreover, 

dynamic analyses were done using the case TRL4C015 with different torque levels. 

 

Table 4.- Tip relief parameters (see 

Figure 3) 

 

 

 

 

 

 

 

 

 

∆LT \ CT CRT =0.015 mm 

∆LT = 3 mm TRL3C015 

∆LT = 4 mm TRL4C015 

∆LT = 5 mm TRL5C015 

∆LT = 6 mm TRL6C015 

∆LT = 7 mm TRL7C015 

∆LT = 8 mm TRL8C015 
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From the kinematic point of view the transition between single and double contact, for 

the gear pair analyzed, takes place at a position of 5.9800 mm measured along the LOA 

from the start of the active profile (SAP) while the contact at the pitch point takes place 

for a position of 7.6765 mm.  According to these data, reliefs with lengths of 3, 4 and 5 

mm can be considered short, while lengths of 6, 7 and 8 mm can be considered long.  
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QUASI-STATIC ANALYSIS 

As a preliminary assessment of the proposed model, a quasi-static analysis was 

conducted by neglecting the dynamic terms in the equation (2). Then, for several 

angular positions of gear 1 throughout a meshing period, a torque was applied to the 

gear 2 and by a Newton’s based numerical procedure the location of both gears centres 

as well as the angular position of the gear 2 (for more details about the numerical 

procedure see ref [18]) were calculated. From the quasi-static analysis several quantities 

have been obtained, such as the Loaded Transmission Error (LTE), the equivalent 

translational Meshing Stiffness, the Load Sharing Ratio (LSR) or the gear orbits. Special 

interest has been focused in the shape of the gear centre orbits which are presented in 

Figure 5. There, it is clear how the gear orbit is displaced along the LOA (around 20 deg 

in the example) as the torque is increased. That means changes in the centre distance as 

a consequence of shafts and bearing flexibility, and therefore changes in the effective 

pressure angle. An interesting aspect related to the orbit shape is that it is larger in the 

OLOA direction. The displacement in this direction is caused by the non-symmetric 

bearing stiffness with respect to the supporting direction of the load. Thus, for a 

constant load applied in the LOA the quasi-static equilibrium require OLOA 

displacements. This fact is even more evident when bearing clearance is considered. 

Moreover, as stated in section 2, tip rounding contacts also give place to OLOA forces. 

The OLOA orbit amplitude is then determined by the number of the rolling elements 

supporting the load as well as by how the load is shared among them (see ref. [2]). That 

is the reason for the load related non-linear behaviour observed in Figure 6. 

 

 

Figure 5.- Gear pair orbit for several transmitted torques. Dashed line represents the 

bearing clearance 

 

During the quasi-static analysis the force and the corresponding geometrical overlap for 

each contact pair is obtained. As it was explained in the description of the model, this 

contact stiffness for each contact is stored to carry out faster dynamic simulations. As an 

example to show the sensitivity of this procedure to the applied torque in Figure 6 is 

presented the meshing stiffness for successive contact pairs thorough a meshing period 

considering two load cases of 10 and 100 Nm. At 0 rad the contact takes place at the 
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primitive point, involving only one teeth pair. That situation remains in the central 

region of the diagram which corresponds to the lower value of the total meshing 

stiffness. Then, when the torque is shared by two teeth pairs the total stiffness is 

increased. As the applied torque grows (up to 10 times in Figure 6 b)), the total meshing 

stiffness is increased only slightly. This small increment is due to the nonlinearity 

related with the Hertzian contact. On the other hand, due to the teeth and gear body 

deflection, the single contact region is narrowed and the effective contact ratio is 

increased even though the theoretical contact ratio should be reduced as the centre 

distance is increased. The combination of both phenomena gives as result an increment 

on the average value of the meshing stiffness which has consequences on the dynamic 

behaviour as the resonant frequencies are shifted to higher frequencies [4]. 

 

 
 

 

Figure 6.- Meshing Stiffness for each contact pair a) Torque 10 Nm; b) Torque 100 Nm 

 

a) 

b) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 14 

In order to analyze the consequences of PE and profile reliefs, a simple quasi-static 

analysis has been done taking into account only the rotational dof for each gear, fixing 

the translational displacements. In the following some results are presented. 

The inclusion of PE completely changes the LTE with respect to the analysis performed 

with the ideal profile. In Figure 7 the results corresponding to the minimum (10 Nm) 

and maximum (100 Nm) applied torque are presented. When the torque level is low, the 

effect of the PE is more noticeable, while the load increments reduce the differences. In 

more details, the absolute contribution of the PE is comparable for the two applied 

torques, but it is relatively more important in the case of low torque.  In both cases the 

transmission error is smaller because the profile error considered is basically positive so 

that there is a reduction of the separation distance between profiles, and thus the contact 

between teeth takes place earlier (even causing negative LTE values for low torque 

levels as shown in Figure 7 a). 

  

Figure 7.- LTE including PE a) 10 Nm; b) 100 Nm 

 

Regarding tip reliefs, Figure 8 shows the resulting meshing stiffness for different 

lengths of tip reliefs. Except when the relief length is 3 mm, all other cases show that in 

the double contact area (around the central position of the figures) the meshing stiffness 

changes its shape from a valley to a peak when the transmitted torque increases. The 

value of torque which provides the smoothest transmission error (no valley or peak are 

presented) is called the design load. It can also be appreciated how the magnitude of the 

design load increases with the relief length. 

 

It should be noticed that the meshing stiffness values for the double contact falls even 

below the meshing stiffness values corresponding to the single contact. This is due to 

the formulation of the equivalent translational meshing stiffness (Km) used, which is 

derived from the LTE for a certain angular position of gear 1 (θ1) under a given external 

torque load (TExt ) by means of the equation 

1 2

2 1

( , )
( , )

Ext

m Ext

Ext

T
K T

LTE T


 
  (7) 

where ρ2 is the base radio of gear 2. When tip relief is included the double contact 

meshing period is reduced. This relief introduces a gap between the involute profiles 

which should be in contact from a kinematic point of view. This gap must be recovered 

by a rigid body rotation in order to achieve effective contact. Thus, the LTE is increased 

and therefore the resulting meshing stiffness (which by definition is not a real stiffness, 

a) b) 
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but an equivalent magnitude) obtained from (7) is even lower than the single contact 

value. The same behaviour can be observed on the results obtained by other researchers 

as in the work of He et al. [16]. This fact is more evident when the relief length goes 

below the pitch point (ΔLT >7.6765 mm, Figure 8 case f)), where even the single contact 

stiffness is strongly affected and the overall stiffness is clearly lower than for the other 

tip relief cases, particularly for low loads. 

     

     
     

 

Figure 8.- Meshing Stiffness with tip relief amplitude of CRT =0.015 mm and several 

lengths; a) ΔLT = 3; b) ΔLT = 4; c) ΔLT = 5; d) ΔLT = 6; e) ΔLT = 7; f) ΔLT = 8 (mm) 

 

The selection of the parameters that define the tip relief must be done carefully, 

studying not only the LTE characteristics for the design load but also the sensitivity to 

c) d) 

a) b) 

e) f) 
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load variation and working distance. In order to assess these aspects and taking 

advantage of the features of the model developed, the case denominated TRL4C015 in 

Table  was analysed considering a load variation of about 5% around the design load, 

which is estimated at 32 Nm. The resulting meshing stiffness is very similar for all cases 

(see  

Figure 9). Torque values below the design load provide a valley in the double contact 

zone, while the higher values lead to a peak. Nevertheless, the shape in all cases appears 

very smooth and with low variations between the area for single and double contact. 

However, the spectral decomposition provides significant differences. Increments in the 

transmitted torque lead to a reduction in the amplitude of the first four harmonics, while 

higher order harmonics tend to induce a minimum value for the design load at 32 Nm. 

Variations in the first 3 harmonics with respect to the design load values lead to 

differences close to 10%, as shown in Figure 10. Therefore, when tip reliefs are 

included in a gear transmission, relatively small variations of the transmitted torque 

(around 5%) will lead to a completely different dynamic response. 
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Figure 9.- Meshing stiffness variation (case TRL4C015) with several applied torques 

around the design load (32 Nm) 

 

Figure 10.- Amplitude of the first 8 harmonics of Meshing Stiffness (case TRL4C015) 

when the transmitted torque varies around the design load (32 Nm) 
 

As a result of shaft and support flexibility as well as bearing clearances, the amount of 

torque to be transmitted affects the effective gear centre distance. Thus, the variation of 

this parameter also affects the meshing stiffness, as shown in Figure 11. An increment 

of the working distance gives rise to a valley of increasing depths in the double contact 

zone. The spectral decomposition shows substantial differences again. In this case, the 

increased working distance brings an increase in the amplitude of almost all harmonics. 

Particularly significant is the increase in the magnitude of the first two harmonics, 

which show variations of up to 25% compared to the values corresponding to the 

reference mounting distance (0 mm) (see Figure 12). 
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Figure 11.- Meshing Stiffness for several working distances with a transmitted torque of 

32 Nm (case TRL4C015) 

 

Figure 12.- Amplitude of the first 8 harmonics of Meshing Stiffness (case TRL4C015) 

with several increments on the mounting distance (32 Nm) 

 

 
5. DYNAMIC ANALYSIS 

In the following, some of the most noteworthy results obtained from dynamic 

simulations of the transmission example for a rotational speed of 1000 r.p.m. with 

several torque levels between 10 and 100 Nm will be presented, in order to demonstrate 

the model’s capability. Simulations were carried out using a fixed sample frequency of 

75 kHz and data output removing the transient period were recorded in a file. To reduce 

the transient period until the arrival of stationary conditions, the deflected position of 
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the bearings and gears obtained from the previous quasi-static analysis were used as 

initial conditions for integration. In the same way, initial rotational velocity was 

imposed only in the rotational DOF’s. 

 

5.1. Dynamic analysis without profile deviations 

Figure 13 shows the resultant LTE for several torque levels without profile deviations. 

There, the cyclic nature due to the meshing period can be clearly identified. Moreover, 

for lower torque levels, it also possible to discern a certain low frequency modulation at 

the Ball Pass Frequency (BPF) due to the bearing variable compliance. In practice the 

presence of this modulation will be difficult to identify, in part due to the use preloads 

to remove the bearing clearance but also because of the sliding of rolling elements 

instead of pure rolling assumed in the formulation. When torque is increased, the 

average LTE is shifted to the lower part of the figure increasing their absolute 

amplitude. This is because bearing and shaft deflections lead to increments in the 

effective gear centre distance. Thus, the starting and ending time of contact between 

successive pairs of teeth becomes modified and therefore the shape of the LTE time 

record. 

 

Figure 13.- Dynamic LTE without profile deviation at 1000 rpm for several torques 

 

The increment on the centre distances can be seen in Figure 14 where the orbits for each 

gear centre are presented. There, the dashed line represents the bearing clearance. In 

contrast with the quasi-static results in Figure 5, dynamic terms in the equation system 

(2) increase the amplitude of displacements along the LOA. Meanwhile, the amplitude 

of the orbit in the OLOA as a function of the applied torque follows a similar pattern to 

that obtained in quasi-static analysis with narrower amplitudes for minimum and 

maximum torque values (see Figure 7). 
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Figure 14.- Gear center orbits without profile deviations at 1000 rpm for several 

torques. Dashed line represents bearing clearance. 

 

Gear transmissions are usually monitored by accelerometers disposed in the case, near 

to the bearing supports, with their main axis parallel to the LOA. Thus, the forces 

transmitted by the bearings are of main interest. With this aim, the changes on the 

pressure angle due to the variation in the gear center distance were neglected and the 

bearing forces on the LOA are derived from their x and y components.  The spectrum 

corresponding to the force obtained at bearing 1b1 (see Figure 1) is presented in Figure 

15. As expected, the spectrum is dominated by the harmonics of the Gear Mesh 

Frequency (GMF). Moreover, it could be appreciated GMF sidebands corresponding to 

the modulation due to the ball pass frequency. The latter is also present in the zone of 

low frequencies where it can be seen up to three BPF harmonics. Again, in practice, 

noise and the sliding of rolling elements instead of the pure roll assumption made in the 

bearing model attenuate this phenomenon, so that the spectra usually do not exhibit 

these frequencies. Furthermore the GMF modulation in real cases is even more 

complex, being basically determined by the eccentricities and pitch errors which are not 

considered in this work, so that the side bands appear at distances matched to integer 

multiples of the frequency of shaft.  

The relationship between the value of the transmitted torque and the amplitude of the 

GMF harmonics is not clear although in general it seems that the latter increases when 

torque is higher. Nevertheless, the rising of the GMF amplitude with the torque is not 

linear and each harmonic follows a different path. The most important change lies on 

the amplitude of the 5
th

 GMF harmonic that undergoes a clear growth becoming 

dominant when the loads are higher, whereas for low torques it is the 2
th

 one. 
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Figure 15.- Spectrum of the transmitted force in the LOA on the so-called bearing b11 

without profile deviations at 1000 rpm for several torques. 

 

5.2. Dynamics simulations with PE 

The PE described in previous section has been added to the dynamic simulations 

obtaining the LTE shown in Figure 16. In contrast with the results obtained in absence 

of PE, the peak to peak amplitude is clearly higher and this fact is more noticeable for 

low torque values. That is consistent with the results obtained in the quasi-static 

analysis, where torque increments imply a reduction of differences with respect to the 

model without PE (see Figure 7).  

 

Figure 16.- Dynamic LTE with PE at 1000 rpm for several torques. 
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Regarding gear centre orbits, PE induce a slight enlargement in the LOA direction with 

respect to the model without profile error, particularly with low torques, as can be seen 

in Figure 17. 

 

Figure 17.- Gear center orbits with PE at 1000 rpm for several torques. Dashed line 

represents bearing clearance. 

 

In Figure 18 the spectrum corresponding to the transmitted force on bearing b11 parallel 

to the LOA is presented. Some differences can be appreciated for the amplitude of the 

4
th

 GMF harmonic which is clearly higher for all the torque values analysed when PE 

are included in the simulation. On the other side, PE increases the 3th GMF amplitude 

for low torque values whereas reduce it for higher transmitted torque. However the 

spectrum obtained with and without PE for a certain torque presents a similar pattern 

with little differences in certain harmonics more noticeable for low torque. 

Nevertheless, in general, PE tends to increase the amplitude of GMF harmonics, fact 

consistent with experimental observations which report lower noise levels when more 

accurate gears are used. 
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Figure 18.- Spectrum of the transmitted force in the LOA on the so-called bearing b11 

with PE at 1000 rpm for several torques. 

 

5.3. Dynamics simulations with Tip Relief 

Regarding profile relief, only the case TRL4C015 was considered (see Table ). This 

relief was included in both gears providing a design load close to 30 Nm (see Figure 8) 

and showing notable changes as a function of the transmitted torque. Figure 19 presents 

the LTE obtained in dynamic simulations. As expected, the inclusion of tip relief results 

in a clear reduction when the transmission works close to the design load although this 

time this seems to be located near 40 Nm. The difference perhaps lies on the changes in 

the gear centre distance included in the dynamic simulations and not considered in the 

quasi-static analysis presented in section 5.  
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Figure 19.- Dynamic LTE with Tip Relief (TRL4C015) at 1000 rpm for several torques 

This reduced LTE leads to more contained orbits in the LOA direction with respect the 

orbits obtained without profile deviations except for low torque values (10 and 20 Nm) 

as can be observed in Figure 20. 

 

 

Figure 20.- Gear center orbits with Tip Relief (TRL4C015) at 1000 rpm for several 

torques. Dashed line represents bearing clearance. 
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Moreover, tip relief provides lower amplitude for the harmonics of the forces 

transmitted to the supports (see Figure 21), regardless of the level of load applied, 

although this reduction is more significant in the vicinity of the design load. Thus, as 

expected, the dynamic behaviour of the gear transmission is greatly improved for torque 

loads close to the design load, but also produces a significant reduction in amplitude of 

the harmonics of the GMF when the torque levels are higher.  

It is particularly remarkable the reduction of the magnitude of the 5th GMF harmonic, 

even though it remains the dominant one when the torque is high. By contrast, the tip 

relief analysed highlights the magnitude of the 2
nd

 GMF harmonic when low torques are 

considered (10 to 20 Nm). 

 

 

 

Figure 21.- Spectrum of the transmitted force in the LOA on the so-called bearing b11 

with Tip Relief (TRL4C015) at 1000 rpm for several torques. 

5 Conclusions 

A non-linear model for the dynamic analysis of a gear transmission supported by ball 

bearings which includes tooth profile deviations has been presented. The model 

approach used for the calculation of meshing forces, which combines FE analysis and 

analytical formulation, enables a very straightforward implementation of the tooth 

profile deviations. The model’s effectiveness is shown by means of an application 

example which assesses the consequences when deviations are introduced, with 

particular attention to the role played by the torque level. The tip relief cases analysed 

show a generalized enhancement of the LTE values and gear centre orbit amplitudes, 

with much less improvement for low values of torque. Regarding PE, the model is also 
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capable of predicting the increase of the LTE amplitude and orbits along the LOA, 

showing a much greater effect for low torques. In addition, the model is also able to 

explain the bearing clearance and variable stiffness effect on the LTE results widening 

the orbits OLOA. 
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