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Abstract This paper presents a planar spur gear plan-

etary transmission model, describing in great detail as-

pects such as the geometric definition of geometric over-

laps and the contact forces calculation, thus facilitating

the reproducibility of results by fellow researchers.

The planetary model is based on a mesh model already

used by the authors in the study of external gear or-

dinary transmissions. The model has been improved

and extended to allow for the internal meshing simu-

lation, taking into consideration three possible contact

scenarios: involute-involute contact, and two types of

involute-tip rounding arc contact. The 6 degrees of free-

dom system solved for a single couple of gears has been

expanded to 6+3n degrees of freedom for a planetary

transmission with n planets. Furthermore, the coupling

of deformations through the gear bodies’ flexibility has
been also implemented and assessed. A step-by-step in-

tegration of the planetary is presented, using two typi-

cal configurations, demonstrating the model capability

for transmission simulation of a planetary with distinct

pressure angles on each mesh. The model is also put to

the test with the simulation of the transmission error of

a real transmission system, including the effect of dif-

ferent levels of external torque.

The model is assessed by means of quasi-static analy-
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ses, and the meshing stiffness values are compared with

those provided by the literature.
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ness · Transmission error · Modeling

1 Introduction

Nowadays, there is a growing demand in the develop-

ment of more reliable transmission systems, with higher

requirements of torque, speed and compactness. In the

race to satisfy these demands, engineers and researchers

need to improve their understanding of the underlying

phenomena involved in gear power transmission. One

of the best approaches to accomplish this objective is

the development of models intending to realistically re-

produce the system behavior. Thereby, while research

in this area contributes to improve engineer insight in

gear transmissions, it simultaneously provides the in-

dustry with simulation tools that lead to more efficient

design processes, to better maintenance practices [1]

and to the development of other troubleshooting tech-

niques based on vibration analysis [2].

Due to its spatial configuration, planetary transmis-

sions are complicated to model. Nevertheless, being one

of the most critical components in several aerospace

and energy generation applications, planetary model-

ing research is booming, partly due to these reliability

concerns [3]. One of the main advantages of planetary

transmissions is its compactness. For high torques, in-

stead of enlarging wheels size or using advanced ma-

terials, the simplest solution is to split the load into a

number of paths, so that loadings per unit facewidth

remain below nominal values while the torque is mul-
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tiplied, always maintaining the same wheels size. Plan-

etary transmissions use this approach, being the most

compact and lightest possible drives [4].

Initial works on planetary modeling were focused on the

extraction of natural frequencies and vibration modes

through the use of planar lumped-parameter models [5,

6], with constant meshing stiffness. Despite the sim-

plicity that implies the use of a planar model, for spur

gears where efforts and displacement can be consid-

ered in-plane, a two-dimensional model may be more

than sufficient to efficiently and accurately study the

transmission behavior [7]. Nevertheless, three dimen-

sional analytical models have also been developed for

the study of out-of-plane vibrations, especially when

non-spur gears are used [8,9].

The main feature that characterizes the dynamic be-

havior of gear transmissions is the change in the number

of teeth couples simultaneously in mesh. The meshing

stiffness is therefore variable, and induces a periodic ex-

citation in the system [10]. Thus, the characterization of

this periodic excitation is crucial in order to achieve bet-

ter simulated results [11]. In a first step to increase mod-

eling realism the static transmission error has been used

as excitation to predict dynamic behavior of planetary

transmissions [12,13]. Nevertheless, recent studies point

that this approach, while remaining relatively valid for

ordinary transmissions, may not be applicable to multi-

mesh transmissions such as planetary ones [14]. With

a higher degree of accuracy, at a second step evolution

there are planetary gear models with time-varying stiff-

ness. They give better off-resonance responses, but they

also are used to identify regions of large amplitude vi-

bration near resonances, where damping and other non-

linear phenomena strongly affect the behavior [15,16].

The latest and more advanced planetary transmission

models are those based on computational approaches,

frequently including FEM techniques in combination

with different contact models [17]. In some cases, com-

pletely flexible bodies are considered in real time simu-

lation [18]. Depending on the particular application of

the model, different emphasize is given to each model-

ing aspect [11,19].

In this work, the objective is to construct a planetary

transmission model capable of obtaining a sufficient

degree of accuracy in the simulated meshing stiffness,

without impairing the dynamic modeling capabilities.

With this aim, analytical solutions are hybridized with

finite element models in order to compute the contact

forces, making unnecessary the use of mesh stiffness

waveform approximations or static transmission error

excitation assumptions. The mesh model is based on

previous work by the authors [20,21], extended and im-

proved towards the planetary modeling. Coupling through

gear body deformations is also given a special attention,

due to the multiple meshes per wheel. With respect to

the contact point location and geometric overlap mod-

eling approach used in this work, it has been conceived

to allow for the almost direct inclusion of additional

modeling features, such as tooth profile modifications

(with an approach used in [22]) or the use of shifted

gears.

In this paper, especially key modeling aspects (such as

geometric and contact forces calculation) are described

in great detail, with the aim to allow for easily repro-

ducibility of results and implementation by fellow re-

searchers. For this reason and for the sake of short-

ness, only quasi-static results are presented, although

the model is conceived to be part of a complete dy-

namic planetary transmission model.

A validation of the independent meshing stiffness (sun-

planet and planet-ring) is provided by comparison with

the ISO 6336-1 norm, as experimental results are scarce

and difficult to compare to in the literature. Also com-

parison between modeling hypothesis adopted is pre-

sented, in order to quantify the maximum generated

error.

Finally, a step-by-step integration of the planetary trans-

mission is done, presenting results mainly based on the

transmission error, which is one of the most represen-

tative variables of the planetary transmission behavior,

using two typical configurations of a planetary trans-

mission.

2 Model geometry

The first problem to be addressed in the transmission

modeling is the appropriate description of the gear ge-

ometry. This definition must be consistent enough to

represent with the maximum level of flexibility and ro-

bustness the widest possible range of parametric vari-

ations of the planetary transmission. In this section

two main aspects related to the geometry problem are

presented: gear profile definition and potential contact

points location. For the first, it must be taken into ac-

count that the target is to simulate spur gears with

involute flanks, but the model has to be open for the in-

troduction of profile modifications and the use of shifted

gears. Regarding the contact point location algorithm,

the model must be capable of simulating the behavior

of planetary transmissions with any number of planets,

allowing the displacement of gear centers.
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2.1 Gear profile definition

The profile definition of all gears (both external and in-

ternal) is made in this work by analytically mimicking

the gear cutting process, following a vectorial approach

similar to that described by Litvin and Fuentes [23].

For being this the most realistic possible procedure of

defining the tooth profile, the model nearly matches the

real gear. This analytical definition also implies a great

adaptability of the model, allowing the use of shifted

gears, also taking into account undercutting conditions.

For the planet and sun gears the generating tool used

is the rack shown in Fig. 1, defined by four sections.

A coordinate system linked to the tool is placed at the

center of the rack width space. The parameters that de-

fine the reference tool are the gear normal module (m),

the pressure angle (ϕ), the addendum (ad), the ded-

dendum (dd) and the radius of the rounding tip (r). In

the case of the ring shaping, the tool used is a pinion

cutter, and its three section definition is shown on the

right in Fig. 1, with the coordinate system linked to the

tool placed at the center of the gear cutter. Once the

coordinates of every section are defined in the reference

system associated with each tool, the tooth profiles are

obtained, expressing each of the considered sections in

the gear coordinate system, simultaneously imposing

the meshing condition. Following this procedure, the

straight lines defined by u1 and u4 in Fig. 1 of rack

generate the head and root circumferences of the gear,

while points in the straight flank of the tool (section

u2) create the involute profile. The same is valid for

the internal generation, where sections u1 and u3 of

the cutter pinion shape the head and root circumfer-

ences of the inner gear, while the pinion flank (section

u2) define the involute profile of the internal teeth.

The tooth fillet of both external and internal gears are
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Fig. 1: Rack and pinion cutter definition

defined by the positions of section u3 and point M of

the rack and pinion cutter respectively. In addition to

all of this, a tip rounding arc has been added at the

top of the teeth, following Vedmar procedure [24], in

order to handle occasional contact at these points. Al-

though these contacts occur out of the line of action and

should be avoided through appropriate profile modifi-

cation, the possibility must be taken into account, and

the rounding arc is a realistic way of modeling the inter-

section between external arc and involute flank, where

there will always exist some degree of rounding, desired

or not. In this work, the profile modifications are not

included deliberately, in order to show the consequences

of its absence and to show the model performance deal-

ing with contacts out of line of action (OLOA).

2.2 Contact point location

Once the wheels geometry is analytically defined, the

second step in the modeling process is the location of

potential contact points. One common approach to this

end is the use of numerical methods that locate the

points with smaller separation distances between pro-

files, later determining which of those pairs present real

contact. In this model, being the profiles defined in a

purely analytical form, it is possible to define an analyt-

ical procedure that provides the exact potential location

of the contact points, with very little computational ef-

fort.

The meshing between two perfectly shaped and non-

deformable gears always takes place along the straight

line tangent to both base circles of the involved gears.

The contact can be thus defined over this Line Of Ac-

tion (LOA), and the separation distances (or geometric

overlaps) can be calculated using the analytic formu-

lation of the involute profile. Nevertheless, it must be

taken into account that in the actual case of deformable

wheels, a non-desirable contact may appear between in-

volute profiles and rounding arcs during initial and fi-

nal stages of the meshing period. Therefore, the contact

point location algorithm must include this contact pos-

sibility.

Moreover, in order for the model to reproduce as closely

as possible the actual behavior of the planetary trans-

mission, contacts in the counterflank should be consid-

ered simultaneously, in order to model situations such

as losses of contact, rattle or tooth wedging. In this

section the formulation procedure for the location of

contact points and the determination of the geometric

overlaps is limited to the internal mesh between planet

and ring gears, for being more complex than the ex-

ternal mesh case, which can be found thoroughly de-

scribed in [20]. For internal gearing, with the introduc-

tion of tip rounding, the total number of contact pos-

sibilities is three: Involute-involute contact, Involute-
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Fig. 2: Geometric overlap for Involute-involute contacts

external rounding arc and Involute-internal rounding

arc.

Involute-involute contact. The Involute-involute contact

takes place along the LOA defined by the tangent to

both base circles, which coincides with the direction

normal to the profiles, as shown in Fig. 2. As in the

real situation wheels supports are not infinitely rigid,

gears can move relatively to its original mounting posi-

tion, thus changing the center distance and the pressure

angle. In the case of a planetary transmission, the move-

ment of gear centers is not only defined by the support

stiffness: in the planet case the gear center is fixed to the

carrier, describing a circular trajectory. Besides, central

members often float in planetary systems. For all these

reasons the contact point location and geometric over-

lap calculation cannot be simplified with a fixed center

assumption.

In Fig. 2(a) is presented the graphic construction corre-

sponding with the internal pair at the reference position

(contact at the pitch point). The planet gear is defined

with the subscript 1 and the ring with the subscript 2,

and a fixed reference system with origin O is placed at

the system center. The initial position of wheel 2 C20

(ring) coincides with the origin of the reference system,

and the initial planet position C10 corresponds to the

point O1, located at the nominal mounting distance d0.

The problem consists in determining the location of the

contact point and the geometric overlap δ when both

wheels experiment center displacements (xi, yi) and ro-

tations θi, all measured from the reference position, as

shown in Fig. 2(b).

Then, the geometric overlap between potential con-

tact points on the involute profiles can be expressed

as:

δIn−In = P1P2 = Q1Q2 +Q1P1 −Q2P2 (1)

According to this formulation, positive values of the

distance δIn−In correspond to situations in which the

profiles are overlapped (from a purely geometrical point

of view), thereby indicating contact situations. On the

other hand, negative values of the overlap correspond

to real separation distances between profiles. The ob-

taining of each term in (1) is made with base on the

involute properties as

QiPi = Qi0Pi0 + ρi (ϕT − ϕ0 + ψ − θi) ; i = 1, 2

Qi0Pi0 = ρi tan (ϕ0) ; i = 1, 2

Q1Q2 = dT sin (ϕT )

where

ϕ0 = arccos

(
ρ2 − ρ1
d0

)
, ϕT = arccos

(
ρ2 − ρ1
dT

)
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and the rest of parameters are defined attending to Fig.

2(b) as:

dT =

√
(x1 − x2)

2
+ (d0 + y1 − y2)

2

ψ = − arctan

(
x1 − x2

d0 + y1 − y2

)
Thus, the geometric overlap for involute-involute con-

tact :

δIn−In = dT sin (ϕT ) + (2)

+ (ρ1 − ρ2) (tan (ϕ0) + ϕT − ϕ0 + ψ)− (ρ1θ1 + ρ2θ2)

Involute-rounding arc contact. When considering the

Involute-rounding arc contact, the normal to the pro-

files is now a line tangent to the base circle of the in-

volute profile and passing through the center of the tip

rounding arc Cr, as shown in Fig. 3(a). On this account,

and to maintain the formulation as close as possible to

the Involute-involute contact case, a new base circle (re-

ferred to as equivalent base circle) with radius ρrii can

be defined. Because of the internal meshing that takes

place in the planetary transmission, the symmetry of

the formulation is broken, and it is necessary to define

a distinct procedure depending on wether the rounding

arc is located in the planet or in the ring. Thus, the

superscript ri will be used to refer to those parameters

affected by the rounding arc. For differentiation, i = 1

when the rounding arc is in the planet, and i = 2 when

it is in the ring. For the first case, Involute-external

rounding arc (in which the contact takes place between

the ring involute profile and the planet rounding arc),

the equivalent base radius ρr11 can be defined, attending

to Fig. 3(a) as

ρr11 = C1Qr1
1 = ρ2 − dT cos

(
ϕr1
T

)
(3)

Also from Fig. 3(a) it can be concluded that

ϕr1
T = ξ2 + µ2

in which

µ2 = arccos
(
ρ2/C2Cr1

)
and

ξ2 = arctan 2

(
C1Cr1 sin (λ1)(

dT + C1Cr1 cos (λ1)
))

where arctan2 is a variation of the arctangent function,

in which information about the sign is provided, and

λ1 = tan(ϕA)− tan(ϕ0) + ϕ0 −
−arccos

(
ρ1/C1Cr1

)
− (ψ − θ1)

Similarly to Eq. (1) the new geometric overlap can be

formulated as

δEr−In = P1P2 = Qr1
1 Q

r1
2 +Qr1

1 P1 −Qr1
2 P2 (4)

In which Qr1
i P

i segments are now:

Qr1
2 P2 = Q20P20 + ρ2

(
ϕr1
T − ϕ0 + ψ − θ2

)
and

Qr1
1 P1 = C1Cr1 sin

(
r1
T −λ1

)
+ rtip

Finally, substituting these expressions in Eq. (4), the

geometric overlap for Involute-external rounding arc con-

tact is

δEr−In = P1P2 = dT sin
(
ϕr1
T

)
+

+ (RExt − rtip) sin
(
ϕr1
T −λ1

)
+ rtip + (5)

+ρ2
(
ϕr1
T − tan (ϕ0)− ϕ0 + ψ − θ2

)
For the second case, Involute-internal rounding arc, the

contact takes place between the planet involute profile

and the ring rounding arc, for which the equivalent base

radius ρr22 can be defined now as

ρr22 = C2Qr2
2 = ρ1 + dT cos

(
ϕr2
T

)
(6)

The formulation is now slightly changed, according to

the distinct geometry of the problem. Attending to Fig.

3(b) it can be concluded that

ϕr2
T = ξ1 + µ1

where now

µ1 = arccos
(
ρ1/C1Cr2

)
and

ξ1 = arctan 2

(
C2Cr2 sin (λ2)(

C2Cr2 cos (λ2)− dT
))

the auxiliary angle is now

λ2 = −tan(ϕ0) + ϕ0 − arccos
(
ρ/OCcr2

)
+

+ tan(ϕB)− (ψ − θ2)

Correspondingly to Eq. (4), the geometric overlap is

δIr−In = P1P2 = Qr2
1 Q

r2
2 +Qr2

1 P1 −Qr2
2 P2 (7)

In which the new Qr2
i P

i segments are:

Qr2
2 P2 = C2Cr2 sin

(
ϕr2
T −λ2

)
− rtip

and

Qr2
1 P1 = Q10P10 + ρ1

(
ϕr2
T − ϕ0 + ψ − θ1

)
Finally, substituting these expressions in Eq. (9) the ge-

ometric overlap for Involute-internal rounding arc con-

tact is

δIr−In = dT sin
(
ϕr2
T

)
+

ρ1
(
ϕr2
T − ϕ0 + ψ + tan (ϕ0)− θ1

)
(8)

− (Rmin + rtip) sin
(
ϕr2
T −λ2

)
+ rtip
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Fig. 3: Geometric overlap for Involute-rounding arc contacts

Contact type discrimination. In accordance to the above,

there are three possible types of contact between ring

and planet, depending on the presence of a non-involute

part of the gear tooth in the contact. Thus, three dif-

ferent values of separation distance will be provided for

each teeth pair considered during the implementation

of the geometric overlap formulation. Nevertheless, de-

pending on the planetary transmission position, only

one of the possible contacts can be considered as a po-

tential contact point, and the other two must be elimi-

nated from the calculations. A possible solution to this

problem would be to perform the calculation of the

whole set of geometrical overlaps for the three possi-

ble contact cases. Once the distances were determined,

the model could discard the two greatest values, the re-

maining contact being the valid potential contact point.

Despite the simplicity of this approach, it would lead to

the complete calculation of three geometrical overlaps

for each position and teeth pair.

A much more efficient procedure consists in attending

to the pressure angles for each contact, as shown in Fig.

4. In this way, a criterion can be defined for the discrim-

ination of the prevailing contact. The Involute-involute

contact will prevail when its pressure angle ϕT remains

between ϕr1
T and ϕr2

T . When the contact takes place

above the involute limit B, ϕT > ϕr1
T . This inequality

marks the prevailing of the Involute-external rounding

arc contact. Correspondingly, a contact below C is al-

ways characterized by ϕT < ϕr2
T , which indicates an

Involute-internal rounding arc type contact.
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Fig. 4: Pressure angles for contact type selection
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2.3 Multiple and reverse contacts

The procedure for locating the potential contact points

and calculating the separation distance between teeth

pairs has been established. It is now necessary to note

that during the meshing process multiple contacts will

occur simultaneously, and this must be taken into ac-

count. Furthermore, for the planetary model to be com-

plete, it must also be capable of solving reverse contacts.

With respect to multiple contact, the total number N

of potential contact points considered in this work de-

pends on the contact ratio ε, and it is obtained from

N = 2 (ceil (ε) + 1) (9)

Where ceil is the ceiling function, which returns the

smallest integer not less than its argument. From (9)

it can be appreciated that an extra couple of teeth is

added, unnecessary from a purely geometrical point of

view. This is justified by the need to consider extreme

situations in which great deformations may lead to ad-

ditional contacts (due to the use of flexible materials

or contact ratios near the upper integer). In Fig. 5 are

shown the six potential contact points considered for

a ring-planet mesh with a contact ratio below 2, with

each contact point sequentially named, differentiating

between direct (d) and reverse (r) contact. For the sake

of simplicity, in the figure it is assumed that the wheels

are located at the reference position (pitch point direct

contact at 2d). Choosing the contact 2d as the one that

defines the angular position of the wheels, to obtain the

rest of geometric overlaps (contacts 1d and 3d) it is suf-

ficient the addition (clockwise rotation) or subtraction

(counterclockwise rotation) of the angular pitch θip to

the angular positions θi used in Sect. 2.2.

All formulation described in said Sect. 2.2 has been de-

rived in order to obtain the geometrical overlap between

the tooth profiles for direct contact (positive slope of

the LOA). Due to the symmetry of the problem, the

inverse contacts can be converted to direct contacts, in

order to use the same formulation. This conversion can

be made attending to Fig. 6. As an example, reverse

contact 1r can be found as a direct contact by simply

rotating the wheels the angles θt2 and θs1, correspond-

ing with the internal tooth angular thickness and the

external space angular width. To summarize the proce-

dure, in Table 1 are shown the variable and parameter

changes that must be introduced in the formulation to

obtain the geometric overlaps for all possible contacts,

both direct and reverse.

 

1d  

2d  

3d
 

1r

 

2r

 

3r

 

Fig. 5: Multiple contacts in the ring-planet mesh

 

 

θ
2
= 0  

θ
1
= 0

 

 

1r 

2r 

θ
2
= θ

2  

θ
1
= θ 1   

  θ
2
 

 

 θ
1

 

 
1r

2r

s
 

s

t
 

t

Fig. 6: Rotation values for the conversion of reverse

contacts into direct ones

Table 1: Rotations θ∗i and ψ for the calculation of mul-
tiple and reverse contacts

θ∗1 θ∗2 ψ∗

1d θ1 + θ1P θ2 + θ2P ψ
2d θ1 θ2 ψ
3d θ1 − θ1P θ2 − θ2P ψ
1r −θ1 + θs1 −θ2 + θt2 −ψ
2r −θ1 + θs1 − θ1P −θ2 + θt2 − θ2P −ψ
3r −θ1 + θs1 − 2θ1P −θ2 + θt2 − 2θ2P −ψ

3 Contact forces calculation

To determine the contact forces in the planetary trans-

mission for a given position, a relationship that links

those forces and the deformations produced must be

found. Subsequently, a non-linear system of equations

subjected to certain conditions can be proposed, from

which the contact forces are solved. It is therefore neces-

sary to first obtain the relationship between forces and

deformations. For this, a method derived from Ander-
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sson work [25] is used. This approach applies a similar

procedure as that described by Vijayakar [26] for the

formulation of the contact forces. Following previous

work by Vedmar [24] for the static case, deformations

at the contact point can be obtained as the composition

of two different terms; the global deflection (hereinafter

refer to as structural) and the local deformation as it

can be seen in Fig. 7. The first term (structural) re-

lates to the linear deflections in the gears far from the

contact area, resulting from the bending and shear in

the teeth and body torsion of the wheel. The second

term (local) describes the nonlinear deformation of the

contact area.

 

 

Fig. 7: Superposition of problems for the contact forces

calculation

The calculation of the structural deformation is solved

by applying FEM techniques, introducing an individual

force at the contact point (Fig. 7 a). As the results ob-

tained by the complete finite element model under these

loading conditions will only be valid for areas far away

from the force application point, it is necessary to in-

troduce a correction for nearby points. This is achieved

by superimposing these results to those obtained from

a partial finite element model loaded in the opposite

direction (Fig. 7 b). Finally, the local deformation is

found by applying a non-linear closed-form analytical

expression derived from the Hertz theory (Fig. 7 c). As a

summary, the method consists in the application of the

superposition principle to the three independent prob-

lems shown in Fig. 7, taking into account Saint-Venant’s

principle for the determination of the boundary depth

h, which must be large enough to provide negligible dif-

ferences at the boundary between subproblems (a) and

(b).

3.1 Local deformation

Local deformations are formulated using a Weber-

Banashek proposal for two-dimensional problems, de-

rived from the Hertz theory. Opposite to Vijayakar model,

this proposal avoids the obtaining of the load distribu-

tion on the contact area. In order to achieve this, the

contact area discretization and the integration of the

Boussinesq solution is substituted by a closed form an-

alytical expression, thus assuming that both the contact

area and pressure distribution adopt a predetermined

shape. According to Weber-Banashek, the deformation

between a point on the surface of a tooth and a point

located at a depth h, for a plane strain hypothesis, is

given by the expression :

ulocal (F ) =
2
(
1− υ2

)
πE

F

b

[
ln

h

L
+

√
1 +

(
h

L

)2
−

− υ

1− υ

(
h

L

)2
√1 +

(
L

h

)2

− 1

 ]
(10)

Where F is the contact force, b is the width of the wheel

and 2L is the length of the pressure distribution. In the

case of plane stress, the above formulation is modified,

resulting in:

ulocal (F ) =
2

πE

F

b

[
ln

h

L
+

√
1 +

(
h

L

)2
−

−υ
(
h

L

)2
√1 +

(
L

h

)2

− 1

 ]
(11)

Regarding the length of the pressure distribution, it is

obtained as a function of the load, depending also on

geometric characteristics and material properties of the

bodies in contact as:

L =

√
4

π

(
1− υ21
E1

+
1− υ22
E2

)
χ1χ2

χ1 + χ2

F

b

Where Ei, υi and χi are respectively the elastic module,

Poisson’s ratio and the curvature radius of the body i.

Regarding the curvature radii, they are derived from the

expressions obtained in Sect. 2.2, taking into account

the contact type. The formula presented for the pres-

sure distribution length estimation is correct for any

pair of external gears, being the contacting surfaces

always convex-to-convex. However, in the planet-ring

mesh (Fig. 8), this is only true for the Involute-internal

rounding arc contacts, whereas the Involute-involute

and Involute-external rounding arc contacts present a

greater level of surface conforming, with concave-to-

convex surfaces, resulting in the modification of the
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pressure distribution length as follows:

Lconc =

√
4

π

(
1− υ21
E1

+
1− υ22
E2

)
χ1χ2

abs (χ1 − χ2)

F

b

Therefore, it is necessary during the planetary model-

 

  Concave-convex

Convex-convex

Fig. 8: Different curvature relationships for the inner

mesh

ing to consider this aspect, applying the adequate for-

mulation for each case in the sun-planet and planet-ring

meshes. Attending to the formulation, a sudden drop or

rise in the L value is expected when the contact changes

from Involute-involute to Involute-tip rounding arc and

vice-versa. As this step variation is due to the discrete

modeling approach and not due to real changes in the

size of the contact zone, a linear transition of the cur-

vature radii has been implemented.

3.2 Planetary mesh structural deformation coupling

As the structural deformation calculation approach is

thoroughly described in [20] for the external gears case,

being completely analogous to the one applied for the

planetary transmission ring, only a brief description

of the same will be given here. Attention will be fo-

cused on the main differences arisen from the intro-

duction of internal gears and planetary arrangement. A

two-dimensional FE model is constructed from the ge-

ometry obtained following the procedure described in

Sect. 2.2, and developed in the MATLAB environment

using the Partial Differential Equation toolbox. The

model presents a number of teeth which is a function

of the contact ratio, and for both internal and external

gears, nodes located at the outer and inner circumfer-

ences respectively are considered fixed to the frame and

gear shaft. For the cancelation of the deformation val-

ues near the contact, a superposition of the results is

applied as described before, according to the scheme in

Fig. 7. To this end, a partial finite element model of

depth h is developed with a mesh which is consistent

and compatible with the complete FE model, in order

to allow for the superposition of results. The analysis

method involves the use of a single loading flank (ac-

tive flank, number 7 in Fig. 9), on which nodes a unitary

force Fi is successively applied in the direction normal

to the surface. Thus, for each load case, all β displace-

ments for each k flank are obtained, from k = 1, . . . ,K.

These values are then stored in K flexibility matrices

(one for each flank, including the active one), indexing

columns and rows by its corresponding displacement

radius Ri and load radius Rj . Therefore, the flexibil-

ity values can be designated as βk
RiRj

, i.e., deflection

of node j located at the flank k when the force is ap-

plied at point i of the active load flank. The procedure

Fig. 9: Complete FE model for the determination of

structural deformations

for obtaining the flexibilities in this model is general-

ized, so that not only is acknowledged the stiffness of

the gear due to the flexibility of an individual tooth,

but it is also taken into account the deformation of the

wheel body. This approach has the effect of coupling

the contact forces problem, introducing a cross effect
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10 M. Iglesias et al.

between adjacent pair contacts. Thus, the dimension

of the problem presents a dimension n, with the maxi-

mum in N , which is the total number of potential points

of contact considered for each mesh. Nevertheless, the

method used, which is completely valid for ordinary

transmissions, present some new aspects when imple-

menting a planetary transmission. The coupling of de-

formations between teeth pairs must now be extended

to the rest of the gear meshes, given that all planets in

the transmission mesh with sun and ring, and the latter

two present as much meshes as the system has plan-

ets. Therefore, in order to calculate the contact forces,

the deformation of the wheel bodies will produce not

only coupling between the N potential contact points

of each gear mesh, but also there will be a coupling be-

tween each gear mesh. This coupling is graphically rep-

resented in Fig. 10 for the three planet system. There

will be a βPi(R−S) for the coupling through each planet

body deformation, as well as a βR(i−j) and βS(i−j) for

the coupling via deformation of the ring and sun bodies

respectively.

 

βP1(R-S) 

βP2(R-S) 

βP3(R-S) 
βR(1-2) 

βR(1-3) 

βR(2-3) 

βS(1-2) 

βS(1-3) 

βS(2-3) 

Fig. 10: Mesh coupling through gear body deformation

in the planetary transmission model

The FE model shown in Fig. 9 for the structural defor-

mations obtaining is therefore insufficient for the mod-

eling of planetary transmissions. It is necessary in this

case to extend the model to be able to obtain the cross-

flexibilities between meshes, as shown in Fig. 11. The

new flexibilities are stored in the same fashion, and the

only change is the dimension of the problem, now en-

Fig. 11: FE models for sun, planet and ring for the con-

sideration of coupling through gear body deformations

larged. Thus, for a transmission with a number of plan-

ets P and N potential contact points for each mesh,

instead of solving 2P systems of N equations, the new

coupling transforms the problem into a single system

of dimension 2PN . Of course the existence of negative

forces is not possible (complementarity condition), so

from the above it is concluded that although the size

of the problem will have a maximum number of 2PN

equations (36 for the case of 3 planets with 6 points of

potential contact), the actual number of active contacts

and therefore the final dimension n of the problem will

be significantly smaller.

3.3 Deformation composition and numerical resolution

The total deformation uTj in a contact point j can then

be formulated as the sum of the local and structural

contributions of each wheel:

uTj (F1:N ) = uW1
Local (Fj) + uW2

Local (Fj) +

+uW1
Struct,j (F1:N ) + uW2

Struct,j (F1:N ) (12)

Both local and structural deformations also depend on

position and orientation variables, that can be grouped

in vector qi:

qi = {xi, yi, θi} (13)

For the sake of simplicity, this dependency has been re-

moved from the equations. Besides, the local terms only

depend on the force applied at the point of contact j,
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Advanced model for the calculation of meshing forces in spur gear planetary transmissions 11

whereas the structural terms are also dependent on all

contact forces acting on adjacent teeth pairs as follows

(for wheel W1):

uW1
Struct,j (F1:N ) =

N∑
i=1

Fi λj,i (14)

Where N is the number of potential contact points

considered, Fi is the force acting on the contact point i

and λj,i is the deformation of the contact point j when

a unitary force is applied at the contact point i. This

linear relationship is implemented in the model simply

by properly assigning the values of flexibility λj,i saved

in the flexibility matrices βk, knowing that these values

are stored in a sorted manner according to their Ri and

Rj . The problem consists in determining the values of

the contact forces F that verify the system:

δ = uW1
Local (F) + uW2

Local (F) + λF (15)

which can be reformulated for a certain position as:

f (F) = uW1
Local (F) + uW2

Local (F) + λF− δ = 0 (16)

The non-linearity associated with the local deformation

raises the need to apply an iterative method to obtain

the forces F. The use of a fixed point iteration method

is proposed, in which the resolution of f(F) = 0 is re-

placed by the obtaining of a fixed point of the function

g(F), problem defined as:

f (F) = F− g (F) = 0
z iterations−→ Fz+1 = g (Fz) (17)

with

g (F) = λ−1
[
δ −

{
uW1
Local (F)

}
−
{
uW2
Local (F)

}]
The first stage of the contact problem resolution is

shown in the diagram of Fig. 12. All the flexibilities are

computed and stored, as well as the values of the geo-

metrical overlaps δ for all the potential contact points

at the current position of the system. The necessary

data λ are extracted from the flexibility matrices, also

depending on the wheels position. A priori, the dimen-

sion n of the problem is unknown, so it is assumed to

match the number of active contacts from a purely geo-

metric point of view. Thus, among all potential contact

points N , only those n contacts in which δi > 0 are ini-

tially considered. As shown in the resolution algorithm

presented in Fig. 13, the dimension of the matrix λ is

consistently reduced from NxN to nxn. Subsequently,

the system of nonlinear equations (15) is solved through

the fixed point iteration method previously introduced.

When the difference between the forces value for two

consecutive iterations is below a tolerance value Tol,

the algorithm continues.

During this iterative process, the deformations coupling

between different points of potential contact may result

Fig. 12: Preparation stage of the contact force problem

resolution

in the cancelation of contacts initially considered, or the

appearance of new ones. This possibility is taken into

account in the algorithm by means of two control loops,

as shown in the block diagram of Fig. 13.

In the first loop it is checked the complementary con-

dition, assuring that there are no negative forces which

would correspond to a loss of contact among the ini-

tial contacts considered. On the other hand, the second

loop evaluates the possibility of new forces emerging

due to system deformation. To perform this check is

therefore necessary to assess the effect of forces on the

whole set of potential contacts N . Thus, the total defor-

mations uT (Fk
Nx1) are obtained, and these values are

subtracted to the geometric overlaps δNx1. The result-

ing differences are stored in the vector ∆δk, whose pos-

itive components will then mark the potential points

with actual contact. If these component indexes does

not match for two consecutive iterations, it is necessary

to consider the new set of contacts and begin the pro-

cedure again. On the contrary, if the indexes coincide

for two iterations, the problem is considered solved and

the contact forces are provided.

After obtaining the magnitudes of the contact forces it

is necessary to define their directions, which are illus-

trated for the planet-ring pair in Fig. 14. The normal to

the profile at the contact point is calculated as follows

for direct contact:

n1i dir =

{
cos (ϕ+ ψi)

sin (ϕ+ ψi)

}
(18)

n2i dir = −n1i dir ; i = 1, · · · , N
2

Whereas for the reverse contact:

n1i inv =

{
−cos (ϕ+ ψi)

sin (ϕ+ ψi)

}
(19)

n2i rev = −n1i rev ; i = 1, · · · , N
2

Finally, the set of contact forces acting on each wheel is
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Fig. 13: Algorithm for the contact force resolution
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X 

n1i 

n2i

 

φT 

Pi 
ψ 

Y 

Fig. 14: Construction for the direction of the contact

forces

transferred to their geometric center, yielding the vector



FW1
x

FW1
y

TW1

FW2
x

FW2
y

TW2


=



N∑
i=1

Fi n1i

N
2∑

i=1

Fi ρ1i −
N∑

i=N
2 +1

Fi ρ1i

N∑
i=1

Fi n2i

N
2∑

i=1

Fi ρ2i −
N∑

i=N
2 +1

Fi ρ2i



(20)

On which the torque is obtained through multiplication

by the base circle radii.

4 Planetary transmission integration

It is true that the resolution of the presented non-linear

system may imply excessively long calculation times, so

that the model may not be practical. Of course, a lin-

earization of the model could be performed when the

interest is directed towards the behavior of the trans-

mission in stationary conditions. Thus, an estimation of

Table 2: Modeled transmission parameters (mm)

Sun Planet Ring

Tooth number 16 24 65
Module (md) 4.23 4.23 4.23
Width 25 25 85.9
Pressure angle (tool) 25◦ 25◦ 25◦

Tooth thickness 6.40 8.30 -
Space width - - 8.25
Tip rounding radius 0.05md 0.05md 0.05md
Shaft radius 20 20 156.4

Number of planets 3
Planets angular phase 120◦

Centre’s distance 86.4
Elastic modulus 207GPa
Poisson’s ratio 0.3

the evolution of the meshing stiffness along a meshing

period could be obtained from a quasi-static analysis for

its use in the dynamic simulations. There are a great

number of models available in the literature that, us-

ing a similar approach, obtain the parametric excitation

characteristic of gear transmissions by time-varying val-

ues of mesh stiffness and/or loaded transmission error.

Nevertheless, this procedure is valid only when the ap-

plied torque could be assumed to be time invariant and

the transmission is working far from the resonant fre-

quencies. As in a planetary transmission part of the

interest lays on the study of the different load levels for

each path, the linear approach must be used carefully

and only under certain conditions, justifying the elec-

tion of the proposed approach.

The integration of the complete planetary transmis-

sion is next presented step by step. First the mesh-

ing stiffness is validated for the planet-ring and sun-

planet pairs. A transmission with only one planet is

then studied, and finally the full system is implemented.

As example, a real gear planetary reducer from agricul-

tural machinery is modeled, whose main parameters are

shown in Table 2. The real application consists of two

stages with a common ring, reason for which the ring

width is larger than the rest of the wheels. It is also to

be noted that the gears in question are non-standard.

4.1 Pair transmission error and stiffness assessment

Transmission error (TE). The most basic problem that

can be formulated is the obtaining of the angular po-

sition of a pair of wheels for which the static equilib-

rium presented in Eq. (21) is fulfilled. The TE prob-

lem is graphically shown in Fig. 15 for the planet-ring

pair. The problem definition remains the same for the

sun-planet pair. Similarly, a generalization of the TE is

made for the planetary transmission.
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Fig. 15: Quasi-static problem for the planet-ring pair

N
2∑

i=1

Fi ρ1i −
N∑

i=N
2 +1

Fi ρ1i = Text (21)

Initially, the pair of wheels in contact is positioned at

O1 and O2. Wheel 2 is completely fixed at angular po-

sition θ2. Thus, the one single degree of freedom of the

problem is the planet rotation θ1, to which is applied

the external torque Text. The solution to the problem

consists in finding the rotation θ1 for which the geomet-

ric overlap generates forces such as the external torque

is balanced. The equilibrium position θ1 will then be

composed of two terms indicated in the following equa-

tion

θ1 = θ2
z2
z1

+∆θ1 (22)

where the first term corresponds to the value of a strictly

kinematic rotation, due to the ring angular position,

and the second term represents the extra rotation (which

implies deformation) generating contact forces. The dif-

ference ∆θ1 between the theoretical (or kinematic) an-

gular wheel position and the actual position is called

transmission error:

(TE) = ∆θ1 = θ1 − θ2
z2
z1

(23)

The resolution of the problem posed in (21) is made by

applying a variation of Newton’s method with trust re-

gions, directly implemented in the modeling platform.

For the external torque applied the model tries to find

the position of the wheels for which the meshing forces

satisfy the equation, also considering the DOF fixed in

the particular case.

As a first application of the model, the TE for both gear

pairs has been obtained, and it is presented in Figs. 16

and 17. It is easy to observe the parametric excitation

due to the variation in the number of teeth pairs in

contact, and how the error amplitude increases as the

load does likewise. Another effect of the load increase

is the reduction of the single contact area, thus altering

the contact ratio. This is because greater torque im-

plies greater deformations, which bring the mating pro-

files closer, advancing the contact start and retarding

its end. Considering the formulation of local deforma-

tions described in previous sections, the appearance of

a singularity in the transmission error figure can be ex-

pected in the form of a sharp step when the linear tran-

sition between involute-involute and involute-rounding

arc contacts is suppressed. This phenomenon is notice-

able in the data shown in dashed lines for the greatest

torque in Fig. 17.
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Fig. 16: Transmission error for the sun-planet pair

Meshing stiffness (Km). An additional magnitude which

can be defined on the basis of the transmission error is

the meshing stiffness. It is usually assumed as one lineal

spring, acting on the line of action. Thus, the possibility

of considering one stiffness for each contact as well as

one equivalent single stiffness for the whole mesh can

be adopted. The equivalent stiffness is defined in this

work as:

Km =
Text

ρ2 ∆θ1 elast
(24)

It should be noted that while this magnitude is a useful

parameter facing the linearization of transmission mod-

els, it must be used carefully. Including the transmis-

sion error in its definition, it is possible that the stiffness
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Fig. 17: Transmission error for the planet-ring pair

values obtained are underestimated, some of the TE be-

ing attributable to non-elastic deflections such as kine-

matic or mounting errors. If so, the dynamic behavior

of a linearized model using that false meshing stiffness

would not correspond to the reality. For this reason,

the subindex elast at ∆θ1 elast points that only elastic

components of the TE can be included in the stiffness

calculation. As in this work the TE only includes de-

viations due to deformation (the gear centres are fixed

and there are not any kind of error implementation),

this formulation is direct. In a different case scenario,

the meshing stiffness must be defined not based on the

rotational TE, but on the real overlap between mating

profiles.

In order to assess a partial verification of the plane-

tary model in terms of meshing stiffness, the values

obtained from the model have been compared to those

provided by the ISO 6336-1 Calculation of load capacity

of spur and helical gears in its clause 9, using method

B. This method is based on studies of the elastic be-

havior of solid disc spur gears, with its accuracy being

thoroughly verified by measurement results. As shown

in Fig. 18 and 19 the average value of stiffness obtained

from ISO 6336-1 fits the stiffness values for both gear

pairs provided by the model.

Besides the mean value, the shape and peak to peak

variation of the meshing stiffness are factors which greatly

affect the dynamic performance of the transmission model.

Thus, a comparison between the proposed model mesh-

ing stiffness shape and several other formulations has

been performed and it is presented next.

For the usual spur gear transmissions with a contact

ratio between 1 and 2, the theoretical meshing stiffness

expected shape should resemble a square wave, with
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Fig. 18: Meshing stiffness for the sun-planet pair
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Fig. 19: Meshing stiffness for the planet-ring pair

the double contact period more or less longer than the

single contact period, according to said contact ratio.

Regarding the maximum and minimum level of stiff-

ness, the minimum level corresponds to the single con-

tact period, while for the double contact the stiffness

reaches its maximum. During the double contact pe-

riod two pairs of teeth share the load, and thus the

stiffness can be represented as the parallel combination

of the two individual pair stiffnesses. From this it can be

concluded that the maximum value of the meshing stiff-

ness for the double contact period cannot exceed twice

the value of the individual pair stiffness (single contact

period). Nevertheless, several factors cause the maxi-

mum value to be significantly less than this theoretical

limit. More importantly, the load is shared among two

pairs, thus the individual contact force is reduced, and
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the individual stiffnesses decreases accordingly, due to

the non-linearity of the contact problem. As additional

factor, the contacts during the double contact period

take place far from the primitive point (center of the

flank teeth), where the combination of teeth stiffneses

is greatest. As result of this, the theoretical limit for the

peak-to-peak amplitude of the meshing stiffness should

be 2/3 with respect to the mean value of the maximum

and minimum stiffneses. In Fig. 20 the meshing stiff-

nesses of different external pairs extracted from sev-

eral works in the literature are shown. All stiffnesses

have been normalized with respect to their mean value,

and all plots are centered at the 0 y-axis for easy com-

parison. Although the transmission parameters used as

example by the different authors vary widely (see pa-

rameter summary table 3), all of them consist in spur

gear transmissions, for which the shape and limits of

the normalized stiffness values can be compared.
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Fig. 20: Meshing stiffness comparison for external gears

From Fig. 20 the different approaches can be as-

sessed in terms of the shape and amplitude variation of

the meshing stiffness. Pedersen [27] employs a hybrid

approach with planar FE models and analytical formu-

lations similar to the presented model, but with a num-

ber of simplifications. The coupling of deformations is

not considered, and the body deformation is underesti-

mated. The non-linear effect coming from the load level

is also neglected. Hui-Ma approach [28] is based on elas-

tic mechanics and beam theory, modeling the teeth as

a nonuniform cantilever beam on the root circle. Al-

though using a completely different methodology than

Pedersen, again the deformation coupling is not con-

sidered. This fact account for the greater peak-to-peak

amplitude shown in both meshing stiffness plots, com-

pared to the proposed model results.

Two of the compared models provide similar results in

terms of meshing stiffness variation to the ones in the

present work. Song He [29] uses a finite element/contact

mechanics (FE/CM) analysis code which in essence is

based on the same principles that the model presented

here. Song-He peak-to-peak variation is almost coin-

ciding with Iglesias results, and the main differences in

shape are due to dynamic fluctuations in the simulation

(the stiffness is not extracted from a pure quasi-static

analysis as in this work) and differences in the trans-

mission data. Ambarisha’s approach [30], is very simi-

lar to the previous one. In this case, the peak-to-peak

variation is again similar to the one described in this

work, but the differences in shape are due to changes

in the load applied to the gear pair. The simulation is

quasi-static, but the effect of load sharing variation be-

tween paths affect the torque applied, introducing cer-

tain waviness.

The two models with smaller peak-to-peak amplitudes

are those of Kiekbusch [30] and Howard [30]. Both are

based on pure FE analysis, with line-to-line general con-

tact elements. Although both works are remarkably well

done, the fact that the meshing stiffness provided is ob-

tained through the relationship between the transmis-

sion error and the applied torque could lead to some

degree of stiffness corruption (for example with the ex-

istence of counterflank contacts due to small backlash

width), even if the rest of the data are correct.

Regarding the meshing stiffness for internal pairs, the

scarcity of results in the literature makes very difficult

to compare. In Fig. 21 the normalized meshing stiffness

values for Pedersen [27], Ambarisha [30] and Iglesias are

shown. The peak-to-peak variation differences are con-

sistent with the causes described for external pairs. In

this case, the coupling deformation for the ring gear in

Iglesias’ model is lesser than in Ambarisha’s work due

to the boundary conditions used, which may contribute

to the greater differences. Regarding the shape, it is also

clear that Pedersen approach (as well as Hui-Ma for the

external case) provide an unrealistic meshing stiffness,

with a purely kinematic transition between single and

double contact periods.

In view of the results, the proposed model seems to fit

well the contrasted meshing stiffness results found in

the literature in terms of mean value, shape and peak-

to-peak variation. Nevertheless, an experimental valida-

tion is yet necessary to assure the model performance.

Deformation coupling. Among the advantages of the

presented model for the contact forces calculation it is

included the consideration of coupled deformation be-
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Table 3: Compared transmission parameters (mm)

Ambarisha Kiekbusch Howard

Tooth number (1) 27 23 23
Tooth number (2) 35 23 23
Tooth number (inn) 99 - -
Module (md) 2.8 6 6
Width - - 15
Elastic modulus(GPa) - 210 69
Poisson’s ratio - - 0.33

Pedersen Hui Ma Song He

Tooth number (1) 21 55 25
Tooth number (2) 36 75 31
Tooth number (inn) 93 - -
Module (md) 10 2 3.17
Width 210 20 32
Elastic modulus(GPa) 210 212 207
Poisson’s ratio 0.3 0.29 0.3
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Fig. 21: Meshing stiffness comparison for inner gears

tween adjacent teeth pairs. When a tooth is loaded,

the entire body of the wheel is deformed accordingly,

including the profiles on adjacent teeth, thereby affect-

ing the contact ratio and meshing stiffness. The effect of

coupling between tooth deformations can be observed

in terms of TE in Figs. 22 and 23 for the external and

internal pairs respectively for an external torque of 100

Nm. Thus, during double contact the meshing stiffness

drops due to the deformation coupling, important as-

pect overlooked with the use of other approaches. The

reason for which the coupling of deformations can not

be considered in the majority of the simplest models is

the consideration of a single equivalent meshing stiff-

ness. In this paper the meshing stiffness is one of many

results of the simulation, and at every moment the con-

tact forces are known for each teeth pair, which repre-

sent a valuable piece of information in terms of me-
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Fig. 22: TE for the sun-planet pair, coupling compari-
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Fig. 23: TE for the planet-ring pair, coupling compari-

son

chanical design. In Fig. 24 the complete evolution of

the load carried by a teeth couple is shown. The load

is normalized by the theoretical maximum force trans-

mitted by a single teeth pair. The data thus obtained is

called tooth load factor, and provides information about

the variation of the load transmitted by one teeth pair.

The model is capable of provide valuable insight on how

the transmitted torque affects the load factor. Although

the differences may seem little with respect to other

models, the tooth load factor or tooth load sharing is

determinant in efficiency calculations for gear transmis-

sions, and the accuracy with which this magnitude is

provided is crucial. It is also important to take into

account that the proposed model has been constructed
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having in mind the introduction of shift factors and pro-

file modifications, cases for which the tooth load factor

would differ greatly.
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Fig. 24: Tooth load factor for the planet-ring pair

Plane elasticity. In order to justify the plane elasticity

assumption made in the contact forces model, the lim-

its of the error were quantified and assessed. In many of

the works on spur gears the general rule is to simplify

the problem, leading to the use of a plane hypothesis.

Wang and Howard [33] conducted an extensive study

based on finite element models, in order to quantify

the error made with the assumption of a plane elastic-

ity hypothesis. In Fig. 25 the results of the relative error

found by Wang is particularized for the external wheels

(S for sun and P for planet) used in this work. The

x-axis in Fig. 25 corresponds to the gear axial width to

pitch radius ratio R, and on the y-axis the meshing stiff-

ness relative error is presented for each hypothesis. The

reference for the error percentage is the value found in a

fully complex three dimensional FE analysis. Attending

to Wang results for the example planetary transmission

used in this work, the relative difference between hy-

potheses will be approximately 6%, and the difference

with the actual stiffness of only 3%. For real hypothe-

sis validation in this work the maximum error has been

estimated through model comparison. The percentage

differences between the two scenarios for an external

torque of 100 Nm are consistent with Wang study, with

a 7.6% difference for the planet-ring pair and 7.3% for

the sun-planet. These findings point to an error in the

estimation of the meshing stiffness for the studied gear

couples of less than ±4%.
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Fig. 25: Relative error for the plane hypothesis

4.2 Sun-planet-ring assembly

As a second step towards the complete integration of

the proposed planetary transmission model, the assem-

bly formed by the sun, ring and a single planet is stud-

ied, as shown in Fig. 26. Only rotational degrees of free-

dom are considered, and an external torque is applied.

The equilibrium is found for the fixed ring and different

positions of the planet carrier.

When the assembly is formed, and attending to the
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Fig. 26: Sun-planet-ring assembly

example transmission characteristics, there is one as-

pect that demands special consideration. The operating

pressure angles of the sun-planet and planet-ring pairs

are significantly different. In a planetary transmission,

for all wheels to work at nominal pressure angle condi-
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tions, it must be met the following relationship between

nominal primitive radii:

Rsun + 2Rplanet = Rring (25)

In Fig. 27 this relationship is graphically represented.

Sun, planet and ring base circles are presented in blue.

Equation (25) could be rewritten in terms of teeth, ob-

taining the theoretical number of ring teeth for a given

sun-planet pair. In this case 16 + 2 ∗ 24 = 64. Since the

actual number of teeth in the ring is 65, it is thus not

possible to locate the gears observing the nominal pres-

sure angles. The new theoretical position of the base

circles of ring and planet are represented in red. In Fig.

28 is shown the configuration for the actual case, where

the planet can be placed in a certain range between

the nominal position with respect to the sun (blue dot)

or with respect to the ring (red dot). The actual po-

sition is located in this case at the 86.4 mm from the

system center, and marked with a green dot. Disregard-

ing the actual position and attending to the figure, it

is apparent that the operating pressure angles will al-

ways be greater than nominal for the sun-planet pair

and less than nominal for the planet-ring pair. Two

different operating pitch circles will appear (orange for

the planet-ring contact and pale blue for the planet-sun

contact).

From the modeling point of view, this is an aspect of
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Fig. 27: Sun-planet-ring assembly graphic construction

for nominal pressure angles

great importance if the planetary model is supposed to

flexibly deal with this kind of non-standard transmis-

sions. All the formulae for geometrical overlap calcula-

tion are based on a reference angular position, defined
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Fig. 28: Sun-planet-ring assembly graphic construction

with actual pressure angles

by the contact at the pitch point. Having now two dif-

ferent pitch circles, an extra difficulty is consequently

added. From the operating standpoint, a direct conse-

quence of this particular configuration is the appear-

ance of a radial force component on the planet. The

new operating pressure angles for each gear pair are

calculated for the planetary transmission as ϕP−R =

24.45◦, ϕS−P = 27.37◦, and in Fig. 29 the radial com-

ponent of the meshing forces on the planet for an ex-

ternal torque of 300Nm is presented. In this figure it

can be observed the effect of the contacts out of the

LOA, when the tips of the teeth come into contact. For

the sun-planet-ring assembly the period fraction with

rounding contacts reaches up to 45% of the total mesh-

ing period. This tip rounding contact duration length

may seem very high, but it is due to the absence of pro-

file reliefs and due to the fact that two different meshes

(sun-planet and planet-ring) are considered together.

For a single pair of gears, this period fraction would be

significantly smaller. Of course, the load level also plays

an important role in this aspect. The contacts OLOA

take place during the change in the number of pairs

in contact, when the tip of the teeth engage or disen-

gage. They occur because of the extra rotation of the

tooth profiles due to the gear body deformation, allow-

ing points beyond the imaginary involute curve (e.g.

rounding tip section) to come into contact. To avoid

these undesirable contacts, reliefs at the tip or root of

the mating profiles must be included.

As to the value of the TE of the sun-planet-ring

assembly, it is easy to appreciate the combination of

the two gear pairs stiffness. The formulation of the TE
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Fig. 29: Radial force component on the planet for the

three wheel assembly

is now referred to the sun position, which is:

θS = −θR
zR
zS

+ θC

(
1 +

zR
zS

)
+∆θS (26)

where the first two terms corresponds to the two DOF

which determine the rotation of a planetary transmis-

sion. These two terms are strictly kinematic, and the

last term represents the extra rotation suffered by the

sun due to all deformation occurred in the system. The

difference ∆θS between the theoretical (or kinematic)

angular sun position and the actual position is now the

TE for the sun-planet-ring assembly:

(TE) = ∆θS = θS + θR
zR
zS
− θC

(
1 +

zR
zS

)
(27)

In Fig. 30 it is shown the TE for three meshing cy-

cles and a range of external torques. At the initial car-

rier angular position, the sun-planet mesh presents one

teeth couple in contact, while the planet-ring presents

two. At θcarrier = 0.025rad the planet-ring mesh drops

to one teeth pair in contact. Later a pronounced step

due to a nearly simultaneous entry of a new teeth cou-

ple for each mesh occurs. The difference between both

entries is noticeable for low torques, while the coupling

deformation for higher torques blurs the two consecu-

tive steps. The meshing cycle concludes with the finish

of an external teeth couple contact, resuming the initial

situation.

4.3 Planetary transmission

Once simulated and validated (in terms of stiffness)

the performance of the model for external and inter-

nal mesh simulation, as well as the combination of sun,
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Fig. 30: TE for the three wheel assembly

planet and ring, the study of the transmission model-

ing is extended to the full planetary. The three planet

example transmission is modeled, and two case config-

urations are approached: the fixed configuration, with

only rotational degrees of freedom, and a floating con-

figuration, in which the sun can move freely.

The static equilibrium for a given position (always con-

sidering the ring and carrier angular position known)

can be posed for the fixed configuration through a 4

equation system as(
TmeshS−Pi

)
+
(
TmeshPi−R

)
= 0 i = 1, 2, 3

3∑
i=1

(
TmeshPi−S

)
= Text

When considering the floating configuration, it is neces-
sary to determine the position of the center of the sun,

so the system of equations must be extended with the

balance of forces in the sun:
3∑

i=1

(−→
F meshPi−S

)
= 0

Fixed configuration. Analyzing the TE for the fixed

configuration (which can be determined following Eq.

(27)) it can be appreciated in Fig. 31 how the result-

ing TE corresponds to the triple combination of the

TE shown in Fig. 30. The different starting and finish-

ing points for each teeth couple are marked as PRi1,2
(planet-ring) and SPi1,2 (sun-planet), where the i refers

to the planet index and the subscript inform about the

number of teeth couples in contact.

The effect of torque increase on the planetary TE is

threefold: it changes the mean value, the peak-to-peak

amplitude and the shape of the lobes, as presented in

Fig. 32.
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Fig. 31: TE for planetary transmission with fixed con-

figuration (300Nm)
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Fig. 32: Planetary TE comparison with different load

level (fixed configuration)

Floating configuration. In planetary transmissions, one

of the main concerns is the equilibrium among planet

load levels. Due to the variable stiffness and different

manufacture and mounting errors, the planets are of-

ten unequally loaded. To avoid this, several methods

are available. One of the most simple and easily im-

plemented solutions is to allow one central member to

move freely, without supports. To prove the model ca-

pabilities, a floating sun configuration has been tested,

and the results in terms of TE and sun orbit are pre-

sented.

The sun describes and orbit that compensate for the

stiffness variation among load paths. For the example

transmission, with a load level of 300Nm the orbit ra-

dius is 3µm, as shown in Fig. 33. This small sun dis-
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Fig. 33: Sun orbit for the floating configuration

(300Nm)

placement also causes an increment in the TE mean

level, as the system tends to the least stiff possible po-

sition. This fact is shown in Fig. 34, where the TE for

fixed and floating configurations is compared.
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Fig. 34: Planetary TE comparison between fixed and

floating configuration (300Nm)

Planetary mesh deformation coupling. Among the model

virtues, one of the most significant ones is the capac-

ity of deformation coupling consideration. The deforma-

tion coupling between adjacent teeth pairs in the same

mesh has been studied and presented in Sect. 4.1, as

well as the model generalization necessary to take into

account coupling between meshes (in Sect. 3.2). In Fig.
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35 is shown a comparison of the planetary TE, repre-

senting four different cases. In blue is depicted the TE

without consideration of mesh coupling. In red is de-

picted the coupling through planet body deformation,

whereas in green color it is shown the coupling through

sun deformation. Finally, the TE for both planet and

sun couplings is represented in black.

The ring body coupling is not shown, due to its insignif-

icant effect on the TE for the example transmission

used. This lack of effect is attributable to the construc-

tion and mounting of the real transmission, which de-

mands very specific boundary conditions imposed to the

ring FE model. The outer nodes are completely fixed,

which greatly impedes gear deformation. For other ap-

plications, especially flexible rings are used to improve

the load sharing between planets. Those implementa-

tions would give very different results in terms of ring

deformation coupling effect compared to the presented

ones, which are focused solely on the gear torsional de-

formation.

Regarding the coupling effect and the case compari-
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Fig. 35: Planetary TE comparison for various coupling

cases (300Nm)

son, the planet contact forces tend to bring closer the

tooth profiles of the opposite planet mesh, which has a

stiffening effect on the overall stiffness. This expected

behavior is found in red in Fig. 35, with a reduction

of the TE mean value. On the contrary, the coupling

deformation through the sun body has the opposite ef-

fect. This coupling is equivalent to the deformation cou-

pling between teeth pairs in the same gear mesh. Con-

tact forces tend to deform the body, separating the rest

of the contacting teeth pairs, which causes an increase

of the contacts flexibility. Again, this behavior can be

confirmed by means of observing the greater TE mean

value for the green case, which corresponds to the sun

coupling. Regarding the overall consequences, the re-

sultant TE when all couplings are considered (shown in

black) shows a drop in the planetary meshing stiffness,

due to the prevailing effect of the deformation coupling

through the sun over the planet.

5 Conclusions

A mathematical tool has been developed to simulate the

inner gear cutting process, where the generation of the

trochoid is implicitly included, as well as the possibility

of generating shifted gears. A tip rounding arc has been

added at the top of the teeth, in order to avoid singu-

larities during occasional contact at these points. This

model feature provides good results, but the approach

applied to calculate the local deformations introduces a

step in the transition between different contact types,

due to the change in the curvature radii.

The analytical model used to calculate the local de-

formation has been extended to consider the different

conditions of curvature which can be found in the plan-

etary transmission. The problem of the step between

contact types has been solved with the inclusion of a

linear transition between zones, resulting in a signifi-

cant improvement of the model performance.

The algorithm used for the calculation of the mesh-

ing forces has been broadened and extended with re-

spect to previous versions, expanding the number of

DOF to 6+3n for a planetary transmission with n plan-

ets. Furthermore, the coupling of deformations through

the gear body flexibility has been also considered.

While the coupling through the planet deformation

causes a torsional stiffening of the system, the defor-

mation coupling of the n meshes of the sun causes a

lessening of the system torsional stiffness, equivalent to

the effect of coupling between adjacent teeth. This ef-

fect has a great impact, partially due to the proximity

of meshes, and therefore it is increased with the number

of transmissions paths. The coupling through the ring

deformation has a negligible effect on the transmission

behavior, due to the boundary conditions used in this

study.

The contact forces model has been assessed both in

inner and external gears. The procedure followed in-

cluded the comparison of the average meshing stiffness

obtained with the model and those defined by the in-
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ternational norm ISO 6336-1-(2006), and the compari-

son in terms of shape and peak-to-peak amplitude with

other models’ results, the proposed model fitting well.

The choice of applying a hypothesis of plane stress or

strain during the calculation of contact forces has an

impact lower than 4% on the average meshing stiffness.

A step-by-step integration of the planetary trans-

mission have been done, and the model capability for

transmission simulation of a planetary with distinct

pressure angles is demonstrated and shown. The model

has also been put to the test with the simulation of the

transmission error of a real transmission system, and re-

sults for varying external torque demonstrate the model

possibilities.
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