@article{10902/9824, year = {2015}, url = {http://hdl.handle.net/10902/9824}, abstract = {Here, we show CRISPR/Cas9-based targeted somatic multiplex-mutagenesis and its application for high-throughput analysis of gene function in mice. Using hepatic single guide RNA (sgRNA) delivery, we targeted large gene sets to induce hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). We observed Darwinian selection of target genes, which suppress tumorigenesis in the respective cellular/tissue context, such as Pten or Cdkn2a, and conversely found low frequency of Brca1/2 alterations, explaining mutational spectra in human ICC/HCC. Our studies show that multiplexed CRISPR/Cas9 can be used for recessive genetic screening or high-throughput cancer gene validation in mice. The analysis of CRISPR/Cas9-induced tumors provided support for a major role of chromatin modifiers in hepatobiliary tumorigenesis, including that of ARID family proteins, which have recently been reported to be mutated in ICC/HCC. We have also comprehensively characterized the frequency and size of chromosomal alterations induced by combinatorial sgRNA delivery and describe related limitations of CRISPR/Cas9 multiplexing, as well as opportunities for chromosome engineering in the context of hepatobiliary tumorigenesis. Our study describes novel approaches to model and study cancer in a high-throughput multiplexed format that will facilitate the functional annotation of cancer genomes}, organization = {The work was supported by the German Cancer Consortium Joint Funding Program and the Helmholtz Gemeinschaft (Preclinical Comprehensive Cancer Center).}, publisher = {National Academy of Sciences}, publisher = {PNAS November10, 2015 vol.112 no. 45 13982-13987}, title = {CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice}, author = {Weber, J and Olliger, R and Friedrich, M and Ehmer, U and Baremboim, M and Steiger, K and Heid, L and Mueller, S and Maresch, Roman and Engleitner, T and Gross, N and Geumann, U and Fu, B and Segler, A and Yuan, D and Lange, S and Strong, A and De la Rosa, J and Esposito, L and Liu, P and CadiƱanos, J and Vassiliou, GS and Schmid, RM and Schenider, J and Unger, K and Yang, F and Braren, R and Heikenwalder, M and Varela Egocheaga, Ignacio and Saur, D and Bradley, A and Rad, Roland}, }