@article{10902/4114, year = {2013}, month = {8}, url = {http://hdl.handle.net/10902/4114}, abstract = {Context. Accretion onto supermassive black holes is believed to occur mostly in obscured active galactic nuclei (AGN). Such objects are proving rather elusive in surveys of distant galaxies, including those at X-ray energies. Aims. Our main goal is to determine whether the revised IRAC criteria of Donley et al. (2012, ApJ, 748, 142; objects with an infrared (IR) power-law spectral shape), are effective at selecting X-ray type-2 AGN (i.e., absorbed NH > 1022 cm-2). Methods. We present the results from the X-ray spectral analysis of 147 AGN selected by cross-correlating the highest spectral quality ultra-deep XMM-Newton and the Spitzer/IRAC catalogues in the Chandra Deep Field South. Consequently it is biased towards sources with high S/N X-ray spectra. In order to measure the amount of intrinsic absorption in these sources, we adopt a simple X-ray spectral model that includes a power-law modified by intrinsic absorption at the redshift of each source and a possible soft X-ray component. Results. We find 21/147 sources to be heavily absorbed but the uncertainties in their obscuring column densities do not allow us to confirm their Compton-Thick nature without resorting to additional criteria. Although IR power-law galaxies are less numerous in our sample than IR non-power-law galaxies (60 versus 87 respectively), we find that the fraction of absorbed (NHintr > 1022 cm-2) AGN is significantly higher (at about 3 sigma level) for IR-power-law sources (~2/3) than for those sources that do not meet this IR selection criteria (~1/2). This behaviour is particularly notable at low luminosities, but it appears to be present, although with a marginal significance, at all luminosities. Conclusions. We therefore conclude that the IR power-law method is efficient in finding X-ray-absorbed sources. We would then expect that the long-sought dominant population of absorbed AGN is abundant among IR power-law spectral shape sources not detected in X-rays.}, organization = {We are grateful to the referee for comments that helped improve the paper. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. N.C.-M., F.J.C., S.M. and X.B. acknowledge financial support provided by the Spanish Ministry of Economy and Competitiveness through grant AYA2010-21490-C02-01. S.M., F.J.C. and A.A.-H. acknowledge financial support by the Spanish Ministry of Economy and Competitiveness through grants AYA2010-21490-C02-01 and AYA2012-31447. SM acknowledges financial support from the JAE-Doc program (Consejo Superior de Investigaciones Cientficas, cofunded by FSE). A.A.-H. acknowledges support from the Universidad de Cantabria through the Augusto G. Linares program. P.G.P.-G. acknowledges support from the Spanish Programa Nacional de Astronomía y Astrofísica under grants AYA2009-07723-E and AYA2009-10368. This work has made use of the Rainbow Cosmological Surveys Database, which is operated by the Universidad Complutense de Madrid (UCM). We acknowledge financial contribution from the agreement ASI-INAF I/009/10/0 and from the INAF-PRIN-2011.}, publisher = {EDP Sciences}, publisher = {Astronomy and Astrophysics, 2013, 556, A114}, title = {The XMM deep survey in the CDF-S VI. Obscured AGN selected as infrared power-law galaxies}, author = {Castelló Mor, Nuria and Carrera Troyano, Francisco Jesús and Alonso Herrero, Almudena and Mateos Ibáñez, Silvia and Barcons Jaúregui, Francesc Xavier and Ranalli, P. and Pérez-González, Pablo G. and Comastri, Andrea and Vignali, Cristian and Georgantopoulos, Ioannis}, }