@article{10902/38542, year = {2025}, month = {8}, url = {https://hdl.handle.net/10902/38542}, abstract = {Bound states of charm and anticharm quarks, known as charmonia, have a rich spectroscopic structure that can be used to probe the dynamics of hadron production in high-energy hadron collisions. Here, the cross section ratio of excited (psi(2S)) and ground state (J/psi) vector mesons is measured as a function of the charged-particle multiplicity in proton-lead (pPb) collisions at a center-of-mass (CM) energy per nucleon pair of 8.16 TeV. The data corresponding to an integrated luminosity of 175 nb^{-1} were collected using the CMS detector. The ratio is measured separately for prompt and nonprompt charmonia in the transverse momentum range 6.5 < pT < 30 GeV and in four rapidity ranges spanning -2.865 < yCM < 1.935. For the first time, a statistically significant multiplicity dependence of the prompt cross section ratio is observed in proton-nucleus collisions. There is no clear rapidity dependence in the ratio. The prompt measurements are compared with a theoretical model which includes interactions with nearby particles during the evolution of the system. These results provide additional constraints on hadronization models of heavy quarks in nuclear collisions.}, organization = {We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF(Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3, and MoER TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LMTLT (Lithuania); MOE and UM (Malaysia); BUAP,CINVESTAV,CONACYT,LNS,SEP,andUASLPFAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC(Pakistan); MES andNSC(Poland); FCT(Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); and DOE and NSF (USA).}, publisher = {American Physical Society}, publisher = {Physical Review Letters, 2025, 135(9), 092301}, title = {Observation of the charged-particle multiplicity dependence of s psi(2S)/sJ/psi in p-Pb collisions at 8.16 TeV}, author = {Chekhovsky, V. and Hayrapetyan, A. and Makarenko, V. and Blanco Fernández, Sergio and Cabrillo Bartolomé, José Ibán and Calderón Tazón, Alicia and Duarte Campderros, Jorge and Fernández García, Marcos and Gómez Gramuglio, Gervasio and Lasaosa García, Clara and López Ruiz, Rubén and Martínez Rivero, Celso and Martínez Ruiz del Árbol, Pablo and Matorras Weinig, Francisco and Matorras Cuevas, Pablo and Navarrete Ramos, Efrén and Piedra Gómez, Jonatan and Scodellaro, Luca and Vila Álvarez, Iván and Vizán García, Jesús Manuel}, }