@article{10902/38316, year = {2025}, month = {2}, url = {https://hdl.handle.net/10902/38316}, abstract = {This Letter presents the first measurements of the groomed jet radius and the jet girth g in events with an isolated photon recoiling against a jet in lead-lead (PbPb) and proton-proton (pp) collisions at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The observables and g provide a quantitative measure of how narrow or broad a jet is. The analysis uses PbPb and pp data samples with integrated luminosities of and , respectively, collected with the CMS experiment in 2018 and 2017. Events are required to have a photon with transverse momentum and at least one jet back-to-back in azimuth with respect to the photon and with transverse momentum such that . The measured and g distributions are unfolded to the particle level, which facilitates the comparison between the PbPb and pp results and with theoretical predictions. It is found that jets with , i.e., those that closely balance the photon , are narrower in PbPb than in pp collisions. Relaxing the selection to include jets with reduces the narrowing of the angular structure of jets in PbPb relative to the pp reference. This shows that selection bias effects associated with jet energy loss play an important role in the interpretation of jet substructure measurements.}, organization = {We thank Daniel Pablos and Krishna Rajagopal for providing their theoretical calculations of the groomed jet radius and jet girth adapted with the selection requirements used in this analysis. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MOST, and NSFC (China); Minciencias (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and MoER TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LMTLT (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MoSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, 101115353, 101002207, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Science Committee, project no. 22rl-037 (Armenia); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIABelgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010 and Fundamental Research Funds for the Central Universities (China); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Shota Rustaveli National Science Foundation, grant FR10 The CMS Collaboration Physics Letters B 861 (2025) 139088 22-985 (Georgia); the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number 400140256 - GRK2497; the Hellenic Foundation for Research and Innovation (HFRI), Project Number 2288 (Greece); the Hungarian Academy of Sciences, the New National Excellence Program -ÚNKP, the NKFIH research grants K 131991, K 133046, K 138136, K 143460, K 143477, K 146913, K 146914, K 147048, 2020-2.2.1-ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; ICSC – National Research Center for High Performance Computing, Big Data and Quantum Computing and FAIR – Future Artificial Intelligence Research, funded by the NextGenerationEU program (Italy); the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B37G660013 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).}, publisher = {Elsevier}, publisher = {Physics Letters Section B Nuclear Elementary Particle and High Energy Physics, 2025, 861, 139088}, title = {Girth and groomed radius of jets recoiling against isolated photons in lead-lead and proton-proton collisions at VsNN=5.02 TeV}, author = {Hayrapetyan, A. and Tumasyan, A. and Bhowmik, Sandeep and Blanco Fernández, Sergio and Brochero Cifuentes, Javier Andrés and Cabrillo Bartolomé, José Iban and Calderón Tazón, Alicia and Duarte Campderros, Jorge and Fernández García, Marcos and Gómez Gramuglio, Gervasio and Lasaosa García, Clara and Martínez Rivero, Celso and Martínez Ruiz del Árbol, Pablo and Matorras Weinig, Francisco and Matorras Cuevas, Pablo and Navarrete Ramos, Efrén and Piedra Gómez, Jonatan and Scodellaro, Luca and Vila Álvarez, Iván and Vizán García, Jesús Manuel}, }