@article{10902/37166, year = {2025}, month = {7}, url = {https://hdl.handle.net/10902/37166}, abstract = {The Canadian Fire Weather Index (FWI), widely used to assess wildfire danger, typically relies on noonspecific meteorological data. However, climate models often provide only daily aggregated values, posing a challenge for accurate FWI calculations.Weevaluated daily approximations for FWI95d-the annual count of extreme fire-weather days-against the standard noon-based method (1980-2023). Our findings reveal that noon-based FWI95d show a global increase of ~65% (11.66 days over 44 years). In contrast, daily approximations tend to overestimate these trends by 5-10%, with combinations involving minimum relative humidity showing the largest divergences. Globally, up to 15 million km²-particularly in the western United States, southern Africa, and parts of Asia-exhibit significant overestimations. We recommend (i) prioritizing the inclusion of sub-daily meteorological data in future climatemodel intercomparison projects to enhanceFWI accuracy, and (ii) adopting daily mean approximations as the least-biased alternative if noon-specific data are unavailable.}, organization = {The authors wish to acknowledge the anonymous reviewers for their detailed and helpful comments to the original manuscript. This work was supported by the project ‘Climate and Wildfire Interface Study for Europe (CHASE)’ under the 6th Seed Funding Call by the European University for Well-Being (EUniWell). M.T. acknowledges funding by the Spanish Ministry of Science, Innovation and Universities through the Ramón y Cajal Grant Reference RYC2019-027115-I and through the project ONFIRE, Grant PID2021-123193OB-I00, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. A.P. acknowledges the support of the EU H2020 project “FirEUrisk”, Grant Agreement No. 101003890. Y.Q. acknowledges the support of the EU Horizon Europe project SPARCCLE, Grant Agreement No. 101081369. RJHD was supported by the Met Office Hadley Centre Climate Programme funded by DSIT. C.A-M. received funding from the PROMETEO Ref. CIPROM/2023/38. A.F.S.R. acknowledges the Alexander von Humboldt Foundation (AvH) for a postdoctoral fellowship and the Deutsche Forschungsgemeinschaft (DFG) - Project number 530175554. J.B. has received research support from Grant PID2023-149997OA-I00 (PROTECT Project) funded by MICIU/AEI/10.13039/501100011033 and by ERDF/EU.}, publisher = {Springer Nature}, publisher = {npj Climate and Atmospheric Science, 2025, 8, 284}, title = {Challenges in assessing Fire Weather changes in a warming climate}, author = {Matteo, Aurora and Garnés Morales, Ginés and Moreno, Alberto and Ribeiro, Andreia and Azorín Molina, César and Bedía Jiménez, Joaquín and Di Giuseppe, Francesca and Dunn, Robert J.H. and Herrera García, Sixto and Provenzale, Antonello and Quilcaille, Yann and Torres Vázquez, Miguel Ángel and Turco, Marco}, }