@article{10902/34942, year = {2018}, month = {4}, url = {https://hdl.handle.net/10902/34942}, abstract = {Nanosize pores can turn semimetallic graphene into a semiconductor and from being impermeable into the most efficient molecular sieve membrane. However, scaling the pores down to the nanometer, while fulfilling the tight structural constraints imposed by applications, represents an enormous challenge for present top-down strategies. Here we report a bottom-up method to synthesize nanoporous graphene comprising an ordered array of pores separated by ribbons, which can be tuned down to the one nanometer range. The size, density, morphology and chemical composition of the pores are defined with atomic precision by the design of the molecular precursors. Our measurements further reveal a highly anisotropic electronic structure, where orthogonal one-dimensional electronic bands with an energy gap of ⁓1 eV coexist with confined pore states, making the nanoporous graphene a highly versatile semiconductor for simultaneous sieving and electrical sensing of molecular species.}, organization = {This research was funded by the CERCA Programme/Generalitat de Catalunya and supported by the Spanish Ministry of Economy and Competitiveness, MINECO (under Contract No. MAT2016-78293-C6-2-R, MAT2016-78293-C6-3-R, MAT2016-78293-C6-4-R, MAT2016-75952-R and Severo Ochoa No. SEV-2013-0295), the Secretariat for Universities and Research, Knowledge Department of the Generalitat de Catalunya 2014 SGR 715, 2014 SGR 56 and 2017 SGR 827, the Basque Department of Education (Contract No. PI-2016-1-0027), the Xunta de Galicia (Centro singular de investigacion de Galicia accreditation 2016–2019, ED431G/09), and the European Regional Development Fund (ERDF) and the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 696656. C.M was supported by the Agency for Management of University and Research grants (AGAUR) of the Catalan government through the FP7 framework program of the European Commission under Marie Curie COFUND action 600385. M. Par. thanks the Spanish Government for financial support through PTA2014-09788-I fellowship.}, publisher = {American Association for the Advancement of Science}, publisher = {Science, 2018, 360(6385), 199-203}, title = {Bottom-up synthesis of multifunctional nanoporous graphene}, author = {Moreno Sierra, César and Vilas Varela, Manuel and Kretz, Bernhard and Garcia-Lekue, Aran and Costache, Marius Vasile and Paradinas, Markos and Panighel, Mirco and Ceballos, Gustavo and Valenzuela, Sergio O. and Peña, Diego and Mugarza, Aitor}, }