@article{10902/22740, year = {2021}, month = {9}, url = {http://hdl.handle.net/10902/22740}, abstract = {This paper presents the application of an linear quadratic gaussian (LQG) control strategy for concrete caisson deployment for marine structures. Currently these maneuvers are carried out manually with the risk that this entails. Control systems for these operations with classical regulators have begun to be implemented. They try to reduce risks, but they still need to be optimized due to the complexity of the dynamics involved during the sinking process and the contact with the sea bed. A linear approximation of the dynamic model of the caisson is obtained and an LQG control strategy is implemented based on the Kalman filter (KF). The results of the proposed LQG control strategy are compared to the ones given by a classic controller. It is noted that the proposed system is positioned with greater precision and accuracy, as shown in the different simulations and in the Monte Carlo study. Furthermore, the control efforts are less than with classical regulators. For all the reasons cited above, it is concluded that there is a clear improvement in performance with the control system proposed.}, organization = {The Spanish FEDER/Ministry of Science, Innovation and Universities—State Research Agency is greatly acknowledged for partially funding our research through the SAFE Project (Desarrollo de un Sistema Autónomo para el Fondeo de Estructuras para Obras Marítimas), GrantAgreement: RTC-2017-6603-4. The Regional Ministry of Universities, Equality, Culture and Sports of the Gov-ernment of Cantabria has supported this work through the ControlFond project (Control De Ve-hículos Subacuáticos No Tripulados Para Supervisión De Estructuras Para Obras Marítimas Fondeadas). The authors would like to thank FCC Construcción CO as a collaborator in the de-velopment of the SAFE Project, specially Victor Florez Casillas and Nuria Cotallo Aguado (Tech-nical Direction/Hydraulic and Maritime Works) and Alvaro de Toro Mingo (Machinery Direction). R. Guanche also acknowledges financial support from the Ramon y Cajal Program (RYC-2017-23260) of the Spanish Ministry of Science, Innovation and Universities.}, publisher = {MDPI}, publisher = {Sensors, 2021, 21(19), 6496}, title = {LQG control for dynamic positioning of floating caissons based on the Kalman filter}, author = {Sainz Gutiérrez, José Joaquín and Revestido Herrero, Elías and Llata García, J. R. and González Sarabia, Esther and Velasco González, Francisco Jesús and Rodríguez Luis, Álvaro and Fernández Ruano, Sergio and Guanche García, Raúl}, }