@article{10902/20674, year = {2020}, month = {11}, url = {http://hdl.handle.net/10902/20674}, abstract = {In this study, we evaluate a set of high-resolution (25–50 km horizontal grid spacing) global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP), developed as part of the EU-funded PRIMAVERA (Process-based climate simulation: Advances in high resolution modelling and European climate risk assessment) project, and from the EURO-CORDEX (Coordinated Regional Climate Downscaling Experiment) regional climate models (RCMs) (12–50 km horizontal grid spacing) over a European domain. It is the first time that an assessment of regional climate information using ensembles of both GCMs and RCMs at similar horizontal resolutions has been possible. The focus of the evaluation is on the distribution of daily precipitation at a 50 km scale under current climate conditions. Both the GCM and RCM ensembles are evaluated against high-quality gridded observations in terms of spatial resolution and station density. We show that both ensembles outperform GCMs from the 5th Coupled Model Intercomparison Project (CMIP5), which cannot capture the regional-scale precipitation distribution properly because of their coarse resolutions. PRIMAVERA GCMs generally simulate precipitation distributions within the range of EURO-CORDEX RCMs. Both ensembles perform better in summer and autumn in most European regions but tend to overestimate precipitation in winter and spring. PRIMAVERA shows improvements in the latter by reducing moderate-precipitation rate biases over central and western Europe. The spatial distribution of mean precipitation is also improved in PRIMAVERA. Finally, heavy precipitation simulated by PRIMAVERA agrees better with observations in most regions and seasons, while CORDEX overestimates precipitation extremes. However, uncertainty exists in the observations due to a potential undercatch error, especially during heavy-precipitation events. The analyses also confirm previous findings that, although the spatial representation of precipitation is improved, the effect of increasing resolution from 50 to 12 km horizontal grid spacing in EURO-CORDEX daily precipitation distributions is, in comparison, small in most regions and seasons outside mountainous regions and coastal regions. Our results show that both high-resolution GCMs and CORDEX RCMs provide adequate information to end users at a 50 km scale}, organization = {The PRIMAVERA project is funded by the European Union's Horizon 2020 programme, grant agreement no. 641727. We acknowledge the World Climate Research Programme's Working Group on Regional Climate and the Working Group on Coupled Modelling, the former coordinating body of CORDEX and responsible panel for CMIP5. We also thank all the climate modelling groups (listed in Tables 1 and 2 of this paper) for producing and making available their model output. We also acknowledge the Earth System Grid Federation infrastructure, an international effort led by the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison, the European Network for Earth System Modelling, and other partners in the Global Organisation for Earth System Science Portals (GO-ESSP). Marie-Estelle Demory, Silje L. Sørland, Roman Brogli, and Christoph Schär acknowledge the Partnership for advanced computing in Europe (PRACE) for awarding us access to Piz Daint at ETH Zürich/Swiss National Supercomputing Centre (Switzerland) for conducting COSMO simulations. This work used JASMIN, the UK's collaborative data analysis environment (http://jasmin.ac.uk, last access: July 2020). Ségolène Berthou gratefully acknowledges funding from the European Union under Horizon 2020 project European Climate Prediction System (EUCP; grant agreement: 776613). Jesús Fernández acknowledges support from the Spanish R&D Program through project INSIGNIA (CGL2016-79210-R), co-funded by the European Regional Development Fund (ERDF/FEDER). We acknowledge the E-OBS dataset from the EU-FP6 project UERRA (http://www.uerra.eu, last access: September 2019) and the data providers in the ECA&D project (https://www.ecad.eu, last access: September 2019). We acknowledge the CARPATCLIM Database © European Commission – JRC, 2013. The authors thank IPMA for the PT02 precipitation dataset, as well as AEMET and UC for the Spain02 dataset, available at http://www.meteo.unican.es/datasets/spain02 (last access: September 2019). The SAFRAN dataset was provided by METEO FRANCE. The European Climate Prediction system, which provided UKCPobs, is funded by the European Union's Horizon 2020 programme, grant agreement no. 776613. We thank the Federal Office of Meteorology and Climatology MeteoSwiss for providing the Alpine precipitation grid dataset (EURO4M-APGD) developed as part of the EU project EURO4M (http://www.euro4m.eu, last access: September 2019). The authors would like to thank Andreas F. Prein and an anonymous referee for their thorough review and constructive comments that contributed to the improvement of this paper.}, publisher = {Copernicus Publ. para European Geosciences Union}, publisher = {Geosci. Model Dev., 13, 5485-5506, 2020}, title = {European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP)}, author = {Demory, Marie Estelle and Berthou, Ségolène and Fernández Fernández, Jesús (matemático) and Sorland, Silje L. and Brogli, Roman and Roberts, Malcolm J. and Beyerle, Urs and Seddon, Jon and Haarsma, Rein and Schär, Christoph and Buonomo, Erasmo and Christensen, Ole B. and Ciarlo, James M. and Fealy, Rowan and Nikulin, Grigory and Peano, Daniele and Putrasahan, Dian and Roberts, Christopher D. and Senan, Retish and Steger, Christian}, }