@article{10902/17570, year = {2019}, month = {2}, url = {http://hdl.handle.net/10902/17570}, abstract = {This work assesses the suitability of a first simple attempt for process-conditioned bias correction in the context of seasonal forecasting. To do this, we focus on the northwestern part of Peru and bias correct 1- and 4-month lead seasonal predictions of boreal winter (DJF) precipitation from the ECMWF System4 forecasting system for the period 1981–2010. In order to include information about the underlying large-scale circulation which may help to discriminate between precipitation affected by different processes, we introduce here an empirical quantile–quantile mapping method which runs conditioned on the state of the Southern Oscillation Index (SOI), which is accurately predicted by System4 and is known to affect the local climate. Beyond the reduction of model biases, our results show that the SOI-conditioned method yields better ROC skill scores and reliability than the raw model output over the entire region of study, whereas the standard unconditioned implementation provides no added value for any of these metrics. This suggests that conditioning the bias correction on simple but well-simulated large-scale processes relevant to the local climate may be a suitable approach for seasonal forecasting. Yet, further research on the suitability of the application of similar approaches to the one considered here for other regions, seasons and/or variables is needed.}, organization = {This work has received funding from the MULTI-SDM project (MINECO/FEDER, CGL2015-66583-R). The authors are grateful to SENAMHI for the observational data, which are publicly available from http://www.senamhi.gob.pe/?p=data-historica, and to the European Center for Medium-Range Weather Forecast (ECMWF), for the access to the System4 seasonal forecasting hindcast.}, publisher = {Springer}, publisher = {Climate Dynamics, 2019, 52(3-4), 1673-1683}, title = {Process-conditioned bias correction for seasonal forecasting: a case-study with ENSO in Peru}, author = {García Manzanas, Rodrigo and Gutiérrez Llorente, José Manuel}, }