@conference{10902/15194, year = {2018}, url = {http://hdl.handle.net/10902/15194}, abstract = {Subspace averaging is proposed and examined as a method of enumerating sources in large linear arrays, under conditions of low sample support. The key idea is to exploit shift invariance as a way of extracting many subspaces, which may then be approximated by a single extrinsic average. An automatic order determination rule for this extrinsic average is then the rule for determining the number of sources. Experimental results are presented for cases where the number of array snapshots is roughly half the number of array elements, and sources are well separated with respect to the Rayleigh limit.}, organization = {The work of I. Santamaría has been partially supported by the Ministerio de Economía y Competitividad (MINECO) of Spain, and AEI/FEDER funds of the E.U., under grant TEC2016-75067-C4-4-R (CARMEN). The work of D. Ramírez has been partly supported by Ministerio de Economía of Spain under projects: OTOSIS (TEC2013-41718-R) and the COMONSENS Network (TEC2015-69648-REDC), by the Ministerio de Economía of Spain jointly with the European Commission (ERDF) under projects ADVENTURE (TEC2015-69868-C2-1-R) and CAIMAN (TEC2017-86921- C2-2-R), and by the Comunidad de Madrid under project CASI-CAM-CM (S2013/ICE-2845). The work of L. L. Scharf was supported by the National Science Foundation (NSF) under grant CCF-1018472.}, publisher = {IEEE}, publisher = {IEEE Statistical Signal Processing Workshop (SSP), Freiburg, Germany, 2018, 323-327}, title = {Subspace averaging for source enumeration in large arrays}, author = {Santamaría Caballero, Luis Ignacio and Ramírez García, David and Scharf, Louis L.}, }