@article{10902/15059, year = {2018}, url = {http://hdl.handle.net/10902/15059}, abstract = {Bacterial conjugation is a key mechanism by which bacteria acquire antibiotic resistance. Therefore, conjugation inhibitors (COINs) are promising compounds in the fight against the spread of antibiotic resistance genes among bacteria. Unsaturated fatty acids (uFAs) and alkynoic fatty acid derivatives, such as 2-hexadecanoic acid (2-HDA), have been reported previously as being effective COINs. The traffic ATPase TrwD, a VirB11 homolog in plasmid R388, is the molecular target of these compounds, which likely affect binding of TrwD to bacterial membranes. In this work, we demonstrate that COINs are abundantly incorporated into Escherichia coli membranes, replacing palmitic acid as the major component of the membrane. We also show that TrwD binds palmitic acid, thus facilitating its interaction with the membrane. Our findings also suggest that COINs bind TrwD at a site that is otherwise occupied by palmitic acid. Accordingly, molecular docking predictions with palmitic acid indicated that it shares the same binding site as uFAs and 2-HDA, although it differs in the contacts involved in this interaction. We also identified 2-bromopalmitic acid, a palmitate analog that inhibits many membrane-associated enzymes, as a compound that effectively reduces TrwD ATPase activity and bacterial conjugation. Moreover, we demonstrate that 2-bromopalmitic and palmitic acids both compete for the same binding site in TrwD. Altogether, these detailed findings open up a new avenue in the search for effective synthetic inhibitors of bacterial conjugation, which may be pivotal for combating multidrug-resistant bacteria.}, organization = {This work was supported by Spanish Ministerio de Economia y Competitividad (MINECO) Grants BFU2016-78521-R (to E. C. and I. A.) and BFU2014-55534 (to F. d. l. C.) and by Grant P20GM103475-16 from the National Center for Research Resources and NIGMS, National Institutes of Health (to D. S. R.). The authors declare that they have no conflicts of interest withthe contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.}, publisher = {American Society for Biochemistry and Molecular Biology Inc.}, publisher = {J Biol Chem. 2018 Oct 26;293(43):16923-16930}, title = {Conjugation inhibitors compete with palmitic acid for binding to the conjugative traffic ATPaseTrwD, providing a mechanism to inhibit bacterial conjugation}, author = {García Cazorla, Yolanda and Getino Redondo, María and Sanabria Ríos, David J. and Carballeira, Néstor M. and Cruz Calahorra, Fernando de la and Arechaga Iturregui, Ignacio María and Cabezón Navarro, María Elena}, }