@article{10902/11157, year = {2017}, month = {4}, url = {http://hdl.handle.net/10902/11157}, abstract = {Offline Land-Surface Model (LSM) simulations are useful for studying the continental hydrological cycle. Because of the nonlinearities in the models, the results are very sensitive to the quality of the meteorological forcing; thus, high-quality gridded datasets of screen-level meteorological variables are needed. Precipitation datasets are particularly difficult to produce due to the inherent spatial and temporal heterogeneity of that variable. They do, however, have a large impact on the simulations, and it is thus necessary to carefully evaluate their quality in great detail. This paper reports the quality of two high-resolution precipitation datasets for Spain at the daily time scale: the new SAFRAN-based dataset and Spain02. SAFRAN is a meteorological analysis system that was designed to force LSMs and has recently been extended to the entirety of Spain for a long period of time (1979/80-2013/14). Spain02 is a daily precipitation dataset for Spain and was created mainly to validate Regional Climate Models. In addition, ERA-Interim is included in the comparison to show the differences between local high-resolution and global low-resolution products. The study compares the different precipitation analyses with rain gauge data and assesses their temporal and spatial similarities to the observations. The validation of SAFRAN with independent data shows that this is a robust product. SAFRAN and Spain02 have very similar scores, although the later slightly surpasses the former. The scores are robust with altitude and throughout the year, save perhaps in summer, when a diminished skill is observed. As expected, SAFRAN and Spain02 perform better than ERA-Interim, which has difficulty capturing the effects of the relief on precipitation due to its low resolution. However, ERA-Interim reproduces spells remarkably well, in contrast to the low skill shown by the high-resolution products. The high-resolution gridded products overestimate the number of precipitation days, which is a problem that affects SAFRAN more than Spain02 and is likely caused by the interpolation method. Both SAFRAN and Spain02 underestimate high precipitation events, but SAFRAN does so more than Spain02. The overestimation of low precipitation events and the underestimation of intense episodes will probably have hydrological consequences once the data are used to force a land surface or hydrological model.}, organization = {We are grateful to the French National Centre for Meteorological Research (CNRM UMR3539, Météo-France CNRS) for allowing us to use the code of the SAFRAN analysis system for our studies, the Spanish State Meteorological Agency (AEMET) for sharing their very valuable observational data with us and the European Centre for Medium-Range Weather Forecasts (ECMWF) for making their ERA-Interim product openly available. This is a contribution to the FP7 eartH2Observe project (http://www.earth2observer.eu), which received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement no. 603608. This work has been funded by the Spanish Economy and Competitiveness Ministry and the European Regional Development Fund through grant CGL2013-47261-R. This work has been supported by the Metropolitan Area of Barcelona Project (no. 308321; flood evolution in the metropolitan area of Barcelona from a holistic perspective: past, present and future) and the Spanish Project HOPE (CGL2014-52571-R) supported by the Ministry of Economy and Competitiveness. This work is a contribution to the HyMeX program (Hydrological cycle in the Mediterranean EXperiment; http://www.hymex.org).}, publisher = {European Geosciences Union (EGU)}, publisher = {Hydrology and Earth System Sciences, 21, 2187-2201, 2017}, title = {Validation of a new SAFRAN-based gridded precipitation product for Spain and comparisons to Spain02 and ERA-Interim}, author = {Quintana-Seguí, Pere and Turco, Marco and Herrera García, Sixto and Miguez-Macho, Gonzalo}, }